
Proceedings

12th INTERNATIONAL
MESHING ROUNDTABLE

September 14 � 17, 2003
Santa Fe, New Mexico

Prepared by:
Sandia National Laboratories

�� ������ �� 	��
����� �����	���� �	����� �����		� �� ��	������ ���������� ��� 	���� 	��

�������� ��������� ��� �������� 	�������� ����� ������� ��� 	��� ����� ���	���

���� �������	 ����� ������	
� ��

������ ��	����� �� �
� �
�� �
���� ��

������ ����� ���� ������ ��������� �	���

�	��� ��	�� �� �����
� �
�� �
���� ��

!�� "���� �	���
��� ����
	����� ��

#��$%� ������ "�� � !
 ����
	����� ��

������� "��� ���� ��� �
�� �
���� ��

����� "����	 ��� ����� �������� ��"�� ��

������ "����� ���#�� �������� ��"�� ��

&����� "��������� ���� ��$
��� 	�� �	���

'����� "����	� ����� �� %
&�� �� ����� ��

(���� ����� � ��	�
��
 '
���� ����
	����� ��

)����� ����� ����� �� %
&�� �� ����� ��

���$*�� ���� ()��%� (���)���

������ ��������� ���� �� *������ + '�	�� ��

+���� ������������� ���� �� *������ + '�	�� ��

���� (�������,�� ��	�� �
 ����
	����� ��

!���� (�� ,��� ����
 ����
	����� ��

+��� %����� ��������
� ��

��	�� %������ �	��	�� �
�
����
�� ���� ��

-.���/� %���� � !
 ����
	����� ��

��, %������� ����� �� �������� �� ��-��� ��

���� 0����� ����� .
��
�	� ���� ������ ��

'��� 0���	�$(������ ���#�� �������� ��"�� ��

������ 0��� ���� ���$
��� 	�� �	���

���)�������� ��� ����� �������� ��"�� ��

����$'����)���� ���� ���$
��� 	�� �	���

(�����)��� ����� �� �������� �� ��-��� ��

1��)����� ����� �� '�������� ��

"�� &����� '���%�� ��

(���� &��� ���#��	! .	������� ��

����� &����� ����
	���� �� *��
�� �)

)��� &���� ��	�
�� ����
	����� ��

*�� ��� &��� ����
	���� ��)������ ��

"����	 &����� ��	�
��
 '
���� ����
	����� ��

-������ 1���� ��'� /����

"��� ����� �� �����
� �
�� �
���� ��

"���	�� ����� ����� �� �
� �� �� *��
�� ��	����

!����� -�������� ����� �� %
"���
�� .
	����

�	��� -����� ����� �� %
��
��

 �� ��� ��

��	���� -���� ���#�� �������� ��"�� ��

2�������� -������ %
������� ��	�
�

*�� -��� ����� ��

0������� '������ �� �� �� �
	!
�
�� ��

2������� '������� ��% �� ������"�	�!� � ����

���
���	� ����
	���� �� ����� .
	����

!���
����� %�
 ��
��� �������� ��

)���
����� ��	�
��
 '
���� ����
	����� ��

���		
�	����� ���#�� �������� ��"�� ��

+���
����� ������	# ����
	����� ��

2�3�� +�	���3�� � !
 ����
	����� ��

�	���� ���� ���#�� �������� ��"�� ��

�	���� ��� ��	�
��
 '
���� ����
	����� ��

��� ����������� ����� �� �������� �� ��-��� ��

-���� ������ .
�	��� ����� �� %
��������� ��

�������� ����� ���#�� �������� ��"�� ��

���$���� ������� '���%�� ��

���� ��� � ����
	��#�# #
 ��� ������� �����

��� ����	��� '���������� ����
 ����
	����� ��

���� ������ ����
	���� �� ����
� ����

������� ������� �� �����
� �
�� �
���� ��

������� ������ ����
	���0�� #
� ���	���#
�� .
	����

����� ������ ���� ��	�
�

���� ���,�� %
������� ��	�
�

��� �������� �
���
��
	 �����
����� ������ ��

����� �������� ���#�� �������� ��"�� ��

����	��� �������� �� �� �� �
	!
�
�� ��

-������� ������ ����
	���� �� *��������� ��

%�	�4��� !�����4�� ������� ��

!�� !��	�� ���#�� �������� ��"�� ��

-�$0�� !���� ����
	���
 #
 '���	
��� ����#�

������� !��	� ����� �� �������� �� ��-��� ��

(���� !������� '���������� ����
 ����
	����� ��

&����� !����� ����1� ��	���
�� �������� ��"�� ��

��� !���	��� ����� ��

����� 56�5�� � !
 ����
	����� ��

���� *��� ���� ��	�
�� ����
	����� ��

������� *���� ,��� ����
 ����
	����� ��

(���� *��	� ���#�� �������� ��"�� ��

0���� *�	 ���� �	 ��	�
 �
�� ��"� ��

+��� *���� ��������
� ��

����� 7��� *�	�
��
	 �����
����� ������ ��

���� ����8 ���� �	����������8 ��� ����� 56�5��

!�������� ������ ��$������

Introduction
In 1992, Sandia National Laboratories started the Meshing Roundtable as a small meeting of like-
minded companies and organizations striving to establish a common focus for research and
development in the field of mesh and grid generation. Now after 12 consecutive years, the
International Meshing Roundtable has become recognized as an international focal point annually
attended by researchers and developers from dozens of countries around the world. The relaxed
atmosphere at each Roundtable provides an open and technically rich environment in which to share
new ideas and technical advances.

The International Meshing Roundtable continues to focus on bringing together researchers and
developers from academia, national labs and industry in a stimulating, open environment to share
technical information related to mesh generation and general pre-processing techniques.

The Roundtable will consist of short course presentations, technical presentations from contributed
papers, invited speakers, an invited panel of experts discussing topics related to the development and
use of automatic mesh generation tools, Birds-of-the-feather sessions, and a poster session and
competition.

The Program Committee would like to express gratitude to the meshing community for the response
to the call for papers. This year, there were 56 submissions to the Roundtable, which is an increase of
nearly 20% over the number of submissions received in previous years. During the Program
Committee meeting in Santa Fe on June 23, 2003, the committee had the difficult responsibility of
narrowing the number of papers accepted down to the 35 available time slots in the conference
schedule. The 35 papers selected are scheduled for presentation at the conference and publication in
the Roundtable Proceedings, and were selected based on their perceived quality and originality, and
on the appropriateness to the theme of the International Meshing Roundtable.

Papers were sought that present original results on meshing and pre-processing techniques. In
addition to our core topics in meshing related algorithms, we were also interested in obtaining
technical papers that related analysis and application solution to the mesh generation process. Topics
include but are not limited to:

Adaptive meshing
Anisotropic mesh generation
CAD interface for meshing
Geomety simplification, decomposition, and cleanup
Tetrahedral/Hexahedral Hybrid meshing
Industrial applications for complex geometries
Mesh data formats and databases

 Mesh quality, smoothing, and optimization
Mesh simplification and compression
Meshing of parametric models
Parallel meshing algorithms and software
Scientific visualization
Structured and unstructured grid generation
Surface reconstruction
Theoretical basis of mesh generation
Volume and surface mesh generation

The 2003 Roundtable is steered by a committee taken from private industry, universities, and
government laboratories.

Roundtable information can be found on the World Wide Web at URL http://www.imr.sandia.gov

Jason Shepherd, Committee
Chairman,
Short Courses and Panel
Discussions
Sandia National Laboratories
P.O. Box 5800, MS 0847
Albuquerque, NM 87185
Phone: 505-284-6600
Fax: 505-844-9297
E-mail: jfsheph@sandia.gov
http://www.sandia.gov

Paul Chew, Technical Papers Co-
Chair
Cornell University
Computer Science Department
Ithaca, NY 14853
Phone: 607-255-9217
Fax: 607-255-4428
E-mail: chew@cs.cornell.edu
http://www.cornell.edu

Eric Hjelmfelt, Co-Chair for
Industry,
BOF and Posters
Altair Engineering
1820 East Big Beaver Road
Troy, MI 48083
Phone: 248-614-2400
Fax: 248-614-2411
E-mail: eeh@altair.com
http://www.altair.com

Alper Üngör, Technical Papers
Co-Chair
Duke University
Department of Computer Science,
LSRC
Durham, NC 27708
Phone: 919-660-6503
Fax: 919-660-6519
E-mail: ungor@cs.duke.edu
http://www/cs/duke.edu/~ungor

John Steinbrenner, Technical
Papers
Co-Chair and Panel Discussions
Pointwise, Inc.
213 S. Jennings Ave.
Fort Worth, TX 76104
Phone: 817-377-2807 ext. 106
Fax: 817-377-2799
E-mail: jps@pointwise.com
http://www.pointwise.com

Jamshid Samareh, Co-Chair for
Government,
BOF and Short Courses
Bldg. 1192D, Room 179 MS 159
Hampton VA 23681
Phone: 757-864-5776
Fax: 757-864-9713
E-mail: j.a.samareh@larc.nasa.gov
http://www.larc.nasa.gov

Bernadette Watts, Financial
Coordinator
and Webmaster
Sandia National Laboratories
P.O. Box 5800, MS 0321
Albuquerque, NM 87185
Phone: 505-844-3936
Fax: 505-844-2415
E-mail: bmwatts@sandia.gov
http://www.sandia.gov

Anita Vasey, Conference
Coordinator
Sandia National Laboratories
P.O. Box 5800, MS 0321
Albuquerque, NM 87185
Phone: 505-844-1338
Fax: 505-844-2415
E-mail: arvasey@sandia.gov
http://www.sandia.gov

VISIT OUR WEB SITE:
http://www.imr.sandia.gov

Agenda

Sunday, September 14
8:00-8:30 am Short Course Registration

8:30-10:00 am Basic Mesh Generation Algorithms (Steve Owen)

10:00-10:30 am Break

10:30-12:00 pm Introduction to Geometry and CAD (Tim Tautges)

12:00-1:30 pm No-Host Lunch

1:30-3:00 pm Hexahedral Mesh Generation (Ted Blacker)

3:00-3:30 pm Break

3:30-5:00 pm Unstructured Meshing (Paul-Louis George)

5:00 pm Adjourn

5:45-9:00 pm Conference Registration and Reception

Monday, September 15
8:00-8:15 am Registration

8:15-8:30 am Rob Leland, Welcome Address

8:30-9:30 am Tom Bickel, Keynote Address

9:30-9:50 am Break

9:50-11:30 am Session 1 (Parallel Sessions)
1A � Geometric Models
1B � Mesh Refinement

11:30-2:00 pm Luncheon and Poster Session � Catered at Hotel

1:00-2:00 pm Poster Judging and Voting

2:00-3:00 pm Shang-Hua Teng, Invited Speaker

3:00-3:15 pm Break

3:15-4:55 pm Plenary Session

4:45-6:00 pm Birds-of-a-feather Session

6:00 pm Adjourn

Tuesday, September 16
8:15-8:30 am Opening Remarks

8:30-9:30 am Michael Garland, Invited Speaker

9:30-9:50 am Break

9:50-11:30 am Session 2 (Parallel Sessions)
2A � Surface Meshing
2B � Quality

11:30-1:00 pm Lunch � No host

1:00-2:00 pm Jami Shah, Invited Speaker

2:00-2:10 pm Break

2:10-3:50 pm Session 3 (Parallel Sessions)
3A Structured Meshing
3B Adaptivity

3:50-4:00 pm Break

4;00-5:30 pm Panel Discussion

5:45-6:45 pm Bus Run from Inn at Loretto to Bishop�s Lodge

7:00 pm Dinner Banquet � Bishop�s Lodge
Mark Shephard, Invited speaker

9:00-10:00 Bus Run from Bishop�s Lodge to Inn at Loretto

Wednesday, September 17
8:15-8:30 am Opening Remarks

8:30-10:10 am Session 4 (Single Session)
Smoothing

10:10-10:30 am Break

10:30-12:10 pm Session 5 (Single Session)
Mesh Topology

12:10 pm Conference Closing Remarks

Table of Contents

Acknowledgements ... 2

Introduction.. 3

Committee ... 4

Agenda .. 5

Table of Contents .. 7

Index of Authors & Co-Authors .. 441

Index by Affiliation .. 443

Distribution ..445

Welcome Address

Welcome Address... 15
Dr. Robert Leland - Sandia National Laboratories

Keynote Address

Keynote Address .. 17
Dr. Tom Bickel - Sandia National Laboratories

Session 1A – Geometric Models

1a.1 Unified Geometry Access for Analysis and Design ... 21

R. Haimes, C. Crawford

1a.2 Accessing CAD Geometry for Mesh Generation .. 33
 M. Beall, J. Walsh, M. Shephard

1a.3 Parallel Generation of Unstructured Surface Grids ... 43

U. Tremel, F. Deister, O. Hassan, N. Weatherill

1a.4 Interpolation from a Cloud of Points.. 55

T. Baker

Session 1B – Mesh Refinement

1b.1 Mesh Refinement Based on the 8-Tetrahedra Longest-Edge Partition............... 67

A. Plaza, M. Rivara

1b.2 Propagation Path Properties in Iterative Longest-Edge Refinement 79

J. Suarez, A. Plaza, G. Carey

1b.3 When and Why Ruppert’s Algorithm Works.. 91

G. Miller, S. Pave, N. Walkington

1b.4 A Crystalline, Red Green Strategy for Meshing Highly Deformable
 Objects with Tetrahedra... 103
 N. Molino, R. Bridson, J. Teran, R. Fedkiw

Invited Speaker

 Generating Sliver-Free Well-Shaped Three Dimensional

Delaunay Meshes (Invited) …………………………………………………………...117
 Shang-Hua Teng – Boston University and Akama Technologies Inc.

Plenary Session

1a Meshing Complexity of Single Part Cad Models .. 121

 D. White, S. Saigal, S. Owen

1b Compact Representations of Simplicial Meshes
 in Two and Three Dimensions .. 135
 D. Blandford, G. Blelloch, D. Cardoze, C, Kadow

1c A Mesh Warping Algorithm Based on Weighted Laplacian Smoothing............ 147
 S. Shontz, S. Vavasis

1d A New Algorithm for Generating Quadrilateral Meshes
 and its Application to FE-Based Image Registration... 159
 S. Ramaswami, M. Siqueira, T. Sundaram, J. Gallier, J. Gee

Invited Speaker

Surface Approximation and Remeshing in Computer Graphics (Invited) 173
Michael Garland – University of Illinois at Urbana-Champaign

Session 2A – Surface Meshing

2a.1 Meshing of Diffusion Surfaces for Point-Based
 Tensor Field Visualization... 177

R. Sondershaus, S. Gumhold

2a.2 Geodesic-Based Surface Remeshing ... 189

O. Sifri, A. Sheffer, C. Gotsman

2a.3 Toward Quality Surface Meshing .. 201

J. Cabello

2a.4 Isotropic Remeshing of Surfaces:

 A Local Parameterization Approach .. 215
 V. Surazhsky, P. Alliez, C. Gotsman

Session 2B – Quality

2b.1 An Adaptable Surface Parameterization Method .. 227

P. Degener, J. Meseth, R. Klein

2b.2 The Mesquite Mesh Quality Improvement Toolkit... 239
 M. Brewer, L. Diachin, P. Knupp, T. Leurent, D. Melander

2b.3 BSP-Assisted Constrained Tetrahedralization .. 251
 B. Joshi, S. Ourselin

2b.4 Generalization of the Kantorovich Method of Dimensional Reduction 261

K. Suresh

Invited Speaker

Evolution of Geometric Feature Recognition Techniques Through
Four Generations (Invited) .. 273

 Jami Shah – Arizona State University

Session 3A – Structured Meshing

3a.1 Automatic Nested Refinement – ATtechnique for the Generation
 of High Quality Multi-Block Structured Grids for Multi-Scale
 Problems Using Gridpro ... 277
 K. Rajagopalan, P. Eiseman

3a.2 Multiple Stationary and Moving Boundary Handling in Cartesian Grids 285

K. Pekkan

3a.3 Constructing Anisotropic Geometric Metrics Using Octrees and Skeletons...... 293

K-F. Tchon, M. Khachan, F. Guibault, R. Camarero

Session 3B – Adaptivity

3b.1 Fully Automatic Adaptive Mesh Refinement Integrated
 Into the Solution Process.. 307

J. Tristano, Z. Chen, D. Hancq, W. Kwok

3b.2 A New Type of Size Function Respecting Premeshed Entities 315

J. Zhu

3b.3 Automated Adaptive Forming Simulations .. 323

J. Wan, S. Kocak, M. Shephard

3b.4 Anisotropic Mesh Adaptation for Transient Flows Simulations 335

P. Frey, F. Alauzet

Session 4 – Smoothing

4a Multilevel Accelerated Optimization for Problems in Grid Generation............... 351

M. Berndt, M. Shashkov

4b Combined Laplacian and Optimization-Based Smoothing For

Quadratic Mixed Surface Meshes ... 361
Z. Chen, J. Tristano, W. Kwok

4c A Local Cell Quality Metric and Variational Grid Smoothing Algorithm 371

L. Branets, G. Carey

4d Increasing TAU3P Abort-Time via Mesh Quality Improvement 379

N. Folwell, P. Knupp, M. Brewer

Session 5 – Mesh Topology

5a Back to Edge Flips in 3 Dimensions ... 393

P-L. George, H. Borouchaki

5b Increasing the Number and Volume of Hexahedral and Prism
 Elements in a Hex-Dominant Mesh by Topological Transformations................ 403

S. Yamakawa, K. Shimada

5c Topology Modification of Hexahedral Meshes using
 Atomic Dual-Based Operations .. 415

T. Taugtes, S. Knoop

5c Tetrahedral Mesh Generation From Segmented Voxel Data 425

T. Udeshi

Panel Discussion and Birds-of-a-Feather Session

 Notes: ..439-440

Welcome/
Keynote Address

arvasey
16

Robert Leland, Ph.D.

Sandia National Laboratories
1515 Eubank SE

Albuquerque, New Mexico 87123-0310
Leland@sandia.gov

505-845-8439

Robert Leland studied undergraduate electrical engineering with a minor in
mechanical engineering at Michigan State University. He attended Oxford
University as a Rhodes Scholar and studied applied mathematics and computer
science. There he completed a Ph.D. in Parallel Computing in 1989 and
continued his studies as a National Science Foundation Graduate Fellow. He
joined the Parallel Computing Sciences Department at Sandia National
Laboratories in 1990 and pursued work principally in parallel algorithm
development, sparse iterative methods and applied graph theory. There he co-
authored Chaco, a graph partitioning and sequencing toolkit that is widely used
to optimize parallel computations and which was a finalist in the Wilkinson
competition for the best numerical software released in a four year period. In
1995 he worked for the White House as one of fourteen White House Fellows
appointed that year by the President. His primary responsibility was to advise
the Deputy Secretary and Secretary of the Treasury on technology modernization
at the IRS. Upon returning to Sandia in 1996, he lead the Parallel Computing
Sciences Department, an R&D group of approximately 30 staff developing
algorithmic technology and software tools in support of the Lab's supercomputing
efforts. He also served part time for several years as a member of Sandia's
Advanced Concepts Group studying long term national security issues. In 2001
he became responsible for Computer and Software Systems, a group of 80 staff
members organized into four departments working on R&D in supercomputing
hardware, operating systems, meshing and visualization.

mailto:Leland@sandia.gov
arvasey
15

arvasey
18

Thomas C. Bickel

Sandia National Laboratories
1515 Eubank SE

Albuquerque, New Mexico 87123-0841
tbickel@sandia.gov

505-845-9301

Thomas Bickel attended Trinity Univ. in San Antonio, Texas. He received a Bachelors of
Science degree with honors in Engineering Science in 1973. He attended the Univ. of
Texas, receiving a Ph.D. degree in Chemical Engineering in 1978. His graduate work was
in the field of nonlinear, integer programming.

Dr. Bickel has been employed at Sandia National Laboratories since 1978. From 1978
through 1990, as a Member of the Technical Staff, he performed research in areas of
chemical kinetics, heat transfer and multiphase fluid dynamics of fossil fuels, and applied
geophysics of petroleum reservoirs. Dr. Bickel left Sandia for a brief period in 1981 to
become manager of the Engineering Dept. at Vedette Energy Company. He was
responsible for the thermal and chemical performance of the Down-Hole Steam Generator
for secondary and tertiary oil recovery. He subsequently returned to Sandia and was
principal investigator on the joint Occidental Oil Shale/DOE Modified In Situ Oil Shale
retorts 7 and 8, geophysical simulation and modeling of the surface electric potential of oil
reservoirs, and high-temperature superconductivity material science research and
application development.

In 1990 Dr. Bickel was appointed a Distinguished Member of the Technical Staff in
recognition of his work in energy research. In 1991 Dr. Bickel became a Division
Supervisor with responsibility for High-Temperature Superconductivity and Optical
Properties Research. Subsequently, he was given responsibility of managing photovoltaic
research on single-crystal and multicrystalline silicon materials and concentrating
photovoltaic systems engineering. In 1995 Dr. Bickel was appointed an American Society
of Mechanical Engineers Federal Government Fellow attached to the Secretary of Energy
Advisory Board in Washington, DC. He was the senior technical advisor to the Task Force
on Strategic Energy Research and Development chaired by Dr. Daniel Yergin. At the
completion of the Yergin Task Force, he became technical advisor to Deputy Secretary
Charles Curtis and Pete Didisheim on the DOE Laboratory Operations Board, developing
the Strategic Laboratory Missions Plan for the 28 DOE laboratory complex.

In 1996 Dr. Bickel returned to Sandia as the Manager of the Thermal Sciences Dept.,
guiding work in massively parallel, computational simulation of the
thermal response of nuclear weapons with programmatic responsibility for
fundamental research in thermal sciences. In 1997 Dr. Bickel became the Deputy Director
of the Engineering Sciences Center with responsibility for the stewardship of Engineering
Sciences research and development at Sandia. He was subsequently appointed a Senior
Manager. In 2000, Dr. Bickel was promoted to Director of Engineering Sciences at
Sandia. In this role he has responsibility for the stewardship of R->D->A of the engineering
disciplines at Sandia. With over 180 professional staff, he is responsible for the
development of massively parallel computational mechanics software at Sandia as well as
the experimental validation of the engineering models of the codes.

mailto:tbickel@sandia.gov

Session 1A
Geometric Models

UNIFIED GEOMETRY ACCESS FOR ANALYSIS AND
DESIGN

Robert Haimes1 Curran Crawford 2

1 Aerospace Computational Design Laboratory, Massachusetts Institute of Technology, U.S.A
haimes@mit.edu

2 Aerospace Computational Design Laboratory, Massachusetts Institute of Technology, U.S.A
ccrawfor@mit.edu

ABSTRACT

This paper presents a comprehensive approach for CAD based geometry handling in support of single and multi-
disciplinary analysis and design. Unlike previous schemes, the model presented here allows for hands-off automated
meshing, a requirement for design studies. Multidisciplinary analysis is handled through solid modeling constructs,
using the geometry as a transfer media. For design applications, the engineer specifies the design space directly by the
parameters of the CAD model. Key defining values in the model specified during part synthesis are later exposed to
carry out design studies and optimization. Proper layout and definition of the CAD model facilitates design changes
and use across all stages of design. A turbine blade model suitable for detailed aero/structural/thermal analysis is
used to illustrate these concepts.

Keywords: CAD interfaces, Parametric build, Feature tree, Master-Model, Analysis, Design, Opti-
mization

1. INTRODUCTION

There are a number of projects [1, 2, 3] and some
commercial software [4, 5, 6] that facilitate building
complex, multidisciplinary analysis, optimization and
design systems. These software products either pro-
vide closed systems or can take existing applications
and through encapsulation allow the building of com-
plex custom applications. This is primarily a top-down
view where each module requires a number of inputs
and produces some output. The infrastructure’s func-
tion is to control the flow of data between modules.
None of these systems can alleviate a bottleneck in
a discipline, and at the simplest level these software
systems just minimize the need for input and output
files. These efforts primarily deal with discrete design
variables, objectives and constraint functions, rather
than complete geometric descriptions of the system.

When analyzing (or designing/optimizing) some phys-
ical object that will ultimately be manufactured, it is
common practice to create a geometric definition in
a CAD system. Erroneously, the CAD model is of-
ten only a final repository of the design details. For
most disciplines (all except for Structural Analysis),

the bulk of time (and human intervention) is expended
in transforming this data into a mesh that is suitable
for the physics to be analyzed. In some cases, such as
for Computational Fluid Dynamics (CFD), this time
period can be weeks to months when first setting up
a new complex part. Clearly, one cannot hope to do
a parametric study, no less design optimization, under
these conditions. The problems associated with grid
generation stem from a number of sources, with the
most obvious being the use of inadequate file ‘stan-
dards’ for transmitting the geometry.

The commonly used IGES file format contains data
that is defined as disjoint and unconnected surfaces
and curves; that is, it only contains geometry with no
notion of topology. 3D meshing software ultimately
requires a closed “water tight” model. Much effort is
therefore needed to take the geometric data, trim the
curves and surfaces, and then deduce the topology.
A common side effect of this process is the creation
of many “sliver” surfaces to close the model. This
process is particularly onerous for all modern CAD
systems where solid modeling is fully supported. Be-
fore translation, the part was a proper closed solid
with defined topology, the CAD system having been

responsible for verifying the necessary conditions; in
the translation to IGES this important characteristic
is needlessly lost.

The STEP file format supports topology as well as ge-
ometry. This is therefore the preferable file type to
use for the transmittal of CAD neutral data. Surpris-
ingly, this format is seldom used in practice. This may
be due to the fact that constructing a STEP reader is
complex and requires a complete solid modeling geom-
etry kernel to deal with the data. Also, transferring
data via STEP is not without its own set of problems.
Each CAD system uses a different mathematical for-
mulation to represent the same types of surfaces and
also have different tolerances for closure. After read-
ing a solid part, one may find the model is now open,
again requiring some form of patching. An additional
problem with data transmitted via IGES and STEP
formats are that the writers rarely are in strict ad-
herence to the “standard”. Standards can only be as
good as the extent to which they are followed.

These problems do not exist for some native
CAD/Analysis interfaces. Ansys, MARC, and Patran
(as well as other widely used commercial codes) couple
directly to CAD systems. These analysis codes are de-
signed to be activated from within the graphical user
interface of the CAD package. The part’s geometry
and topology are queried directly from the CAD’s ge-
ometry kernel using an Application Programming In-
terface (API). Curve and surface queries through the
originating CAD system insure that points placed on
these entities match the part being meshed. These di-
rect interfaces are inherently limiting, in that a module
must be pre-existing for the analysis code of interest
(i.e. what CFD codes are run from within the CAD en-
vironment). Furthermore, the full functionality of the
analysis package may not be available from within the
CAD system, limiting the user’s options for exploiting
the software’s full capabilities.

Even if all of the analysis codes in an integrated suite
have no geometry-handling issues the following ques-
tion needs to be asked: is each application seeing the
same representation of the design? Some codes with
direct CAD interfaces still translate the geometry into
a simplified or uniform definition before using the data
to generate a mesh. Many organizations also maintain
multiple models of the same part within different di-
visions, introducing unnecessary overhead.

2. A UNIFORM DIRECT INTERFACE

The grid generation techniques used in a discipline
such as CFD are more varied and complex than the
(relatively coarse) tetrahedral meshes used for Struc-
tural Analysis. Due to the economics (the enormous
amount of work) of coupling to each CAD system, this

approach is prohibitive for other “smaller” disciplines.
A direct vendor neutral API would allow an analysis
builder access to the CAD data without programming
directly for each system. Examples of this approach
include OMG CAD Services [7], CADScript [8], and
CGM [9]. CAPRI [10] (Computational Analysis PRo-
gramming Interface) also provides a solution to the
CAD dependency issue. Coupling to any supported
CAD package is both unified and simplified by using
the CAPRI definition of geometry (with topology) and
its API to access the geometry and topological data.

CAPRI’s CAD-vendor neutral API is more than just
an interface to CAD data; it is specifically designed for
the construction of complete analysis suites. A ‘Geom-
etry Centric’ approach allows access to the CAD part
from within all sub-modules (grid generators, solvers
and post-processors), facilitating such tasks as node
enrichment by solvers and designation of mesh faces
as boundaries (for the solver and the visualization sys-
tem). CAPRI supports only manifold solids at its base
level, eliminating problems associated with manually
closing surfaces outside of the underlying CAD kernel.
Multidisciplinary coupling algorithms can use the ac-
tual geometry as the medium to interpolate data from
differing grids.

One clear advantage to this approach is that the geom-
etry never needs to be translated and hence remains
simpler and closed. The other major advantage is that
writing and maintaining the grid generator (coupled to
the CAD system) can be done once through the API;
all of the major CAD vendors are then automatically
supported.

2.1 CAD Representation of Geometry

CAD systems have a tolerance that determines the
meaning of “closure” for solids. This means that the
Nodes that bound an Edge are probably not on the un-
derlying curve; Edges that bound a Face (through the
Loops) do not necessarily sit on the supporting sur-
face. All that is required is that the bounding objects
be within a specified tolerance of the higher dimen-
sioned entity. Therefore, for any precision higher than
the tolerance, gaps and overlaps may exist in the geom-
etry definition. This tolerance is generally much larger
than those associated with double precision floating-
point arithmetic (e.g. the default relative tolerance for
Pro/ENGINEER is only 10−2).

In order to deal with the gap and overlaps, most CAD-
based applications must “fix” the geometry. This usu-
ally entails translating the geometric definition to an-
other (simpler) representation where the bounding en-
tities fall closer to, or on the object. This type of
translation has a variety of side effects, including:

• Inconsistency: Not querying the same geometry.
Since the geometry has changed, the representa-
tion is different than in the CAD system.

• Complexity: At times additional Faces are re-
quired to close the model. There is no way to
predict how many of these “sliver faces” may need
to be introduced; moreover, slivers can cause sig-
nificant problems for grid generators.

• Automatic: There are always situations that can-
not be healed in a hands-off manner. The require-
ment of user intervention is problematic for any
fully automated process such as design optimiza-
tion.

CAPRI’s perspective is that the geometry in the CAD
system is truth and should not be modified (though
CAPRI may modify the topology). Therefore fixing
the CAD’s model is no longer part of the analysis pro-
cedure.

2.2 An Associative Triangulation

Early in the design and implementation of CAPRI, it
became obvious that providing an API only giving the
programmer access to the geometry and topology of a
solid part was insufficient. The burden of deciphering
the CAD data and attempting to generate a discrete
representation of the surfaces required for mesh gen-
eration was too great. Fortunately, many grid genera-
tion systems (used in CFD and other disciplines) can
use STL (Stereo Lithography) files as input. Combin-
ing a discretized view of the solid part as well as it’s
geometry and topology can provide a complete, and
easier to use, access point into the CAD data. A tes-
sellation of the object that contains not only the mesh
coordinates and supporting triangle indices but other
data, such as the underlying CAD surface parameters
(for each point), as well as the connectivity of the tri-
angles, assists in traversing through and dissecting the
CAD representation of a part. This is a fundamental
difference between CAPRI and the other Direct Inter-
face implementations.

An important aspect of CAPRI is that it provides
CAD vendor neutral access to all of the data obtained
from the models that is to be passed back to the ap-
plication. The triangulation generated by CAPRI is
guaranteed to be “watertight”, regardless of the CAD
kernel in use. Some CAD system geometry kernels can
provide data of this quality (i.e., UniGraphics, Para-
solid, CATIA and ComputerVision). Other CAD sys-
tems can provide the data, but it is not of sufficiently
high quality to use. (For example, Pro/Engineer re-
quires one to buy Pro/MESH to get a closed trian-
gulation.) Finally, SDRC’s Open I-DEAS API does
not provide access to a triangulation at all. The fact

that not all CAD systems provide such a tessellation
has forced the development of a surface triangulator
within CAPRI for CAD solid parts that does meet all
of the quality requirements.

It should be noted that CAPRI’s tessellations are
not intended as the starting point for computational
analysis (though they could be used in some cases).
CAPRI sees only geometry, and it cannot anticipate
the smoothness, resolution or other requirements of
the downstream application(s). The triangulations ap-
proximate the geometry only; some processing of the
tessellation is expected in order to refine the trian-
gulation to a state suitable for the physical problem
being investigated. The triangulation can be enhanced
through either physical or parameter space manipula-
tion, using point “snap” and (u, v) surface evaluations
routines provided by the CAPRI API [11]. The tri-
angulation technique used within CAPRI displays the
following characteristics [12]:

• Robust. It is imperative that the scheme work for
all possible topologies and provide a tessellation
that can be used.

• Correct. The triangulation is of no use if it is not
true to the CAD model. The tessellation must
be logically correct; i.e. provide a valid trian-
gulation in the parameter space (u, v) of the in-
dividual surface. It must also be geometrically
correct; i.e. depict a surface triangulation that
truly approximates the geometry. This involves
ensuring all facets have a consistent orientation
with no creases or abrupt changes in triangle nor-
mals. Correctness in both physical and param-
eter space allows CAPRI based application en-
hancement schemes to operate in either or both.

• Adjustable. To minimize the post-processing of
CAPRI’s tessellation for a specific discipline or
analysis, some a priori adjustment of the resul-
tant quality is available. It must be noted how-
ever, that any criteria may not be met (especially
near the bounds of a CAD object) due to issues of
closure and solid model accuracy. This goal may
conflict with the more important characteristic
of being watertight and having a smooth surface
representation.

• No geometric translation. To truly facilitate
hands-off grid generation, anything that requires
user intervention must be avoided. All data
maintained within CAPRI is consistent with the
CAD’s solid model representation. An alternate
or translated representation is not used, because
then the result will be something different than
resides within CAD.

• Watertight. Triangulated CAD solids are closed
and conformal; having this characteristic allows
for meshing without “fixing” geometry. For the
tessellation of a solid object, this means that all
Edge (trimming) curves terminate at consistent
coordinates of the bounding Nodes and a single
discretization for Edge curves be used on both
surfaces sharing the common Edge. Each trian-
gle side in the tessellation is shared by exactly
two triangles, and the star of each vertex is sur-
rounded and bounded by a single closed loop of
sides. The triangulation is everywhere locally
manifold. In a manifold triangulation, there are
no voids, cracks or overlaps of any triangles that
make up the solid.

3. MULTIDISCIPLINARY ANALYSIS

The classic example of multidisciplinary analysis is
the modeling of fluids/structures interactions. In this
case, the domain of interest is clearly demarcated be-
tween regions containing the fluid and the rest of the
volume representing the structural components. The
interaction effects are usually handled at the bounds
of the shared domain (the interface), represented by
some surface (or set of surfaces) found in the solid ge-
ometry (usually of the structural component). The in-
teraction can be simulated by adjusting the boundary
conditions at the interface surface(s) from the com-
puted results of the other discipline. Most commonly,
pressure values on the structure are obtained from the
CFD calculation, causing regions of the structure to
deflect. This movement then effects the fluid simula-
tion, which generates a new pressure field, et cetera.
In most cases, the CFD simulation can take the struc-
tural deflections and morph the existing mesh so that
the fluid domain need not be regenerated. This still
requires careful handling of the following issues:

3.1 Geometry

It is important that each discipline see the same inter-
face. There are two reasons for this: (1) so that each
analysis is examining results from the same part; (2)
so that the interpolation task can be done with some
degree of accuracy.

CAPRI supports multidisciplinary analysis tasks by
supplying API calls that implement solid Boolean op-
erators. Since the intersection, subtraction and union
operators are performed by the CAD system’s geome-
try kernel, the end results contain the same geometry
fragments. For example, if the solid is of an airplane,
subtracting it from a larger box will produce the fluids
domain. The surfaces that make up the bounds of the
aircraft will be identical in both the original and the
new solid (though the normals will be opposite).

3.2 Interpolation

CAPRI facilitates multidisciplinary coupling by pro-
viding interpolation routines. These routines work on
sets of Faces (the topological equivalent of surfaces)
called Boundaries. Information associated with the
points in the Boundary can be scalar, vector or gen-
eral state-vector. This data can be interpolated to
the points of the mating Boundary found in the other
Volume. CAPRI provides a number of API functions
that help manage the Boundary information so that
the interpolation can be a single call.

4. WRITING GEOMETRY

At beginning of the CAPRI project there was always
the notion that design functionality would be sup-
ported. At the time, it was thought that CAPRI would
support the direct construction of 3D solid geometry
in order to allow for the modification of said geometry.
As the readers were being implemented, it became ob-
vious that this would not be possible. Each CAD sys-
tem deals with the low- level geometry construction in
very different manner. There was not a common ven-
dor neutral perspective on direct construction. In fact,
only those systems based on geometry kernels (and al-
lowing the use of the kernel) could perform construc-
tion. Therefore, only if one programmed in Parasolid,
ACIS or OpenCASCADE could this kind of construc-
tion be performed.

As it turns out, this limitation was fortunate; another
type of construction was required that could be driven
by an API. Most modern CAD systems support the
Master-Model concept of representing an object. A
Master-Model describes the sequence of topological
operations to build the geometry of a solid model. At
a basic level, it is an ordered list of extrude, revolve,
merge, subtract and intersection operations. CAD
systems support more meaningful abstractions, such
as blends, fillets, drilled holes and bosses. When the
CAD model is regenerated, the operation list is inter-
preted by the CAD system to sequentially build the ge-
ometry of the part. This gives the operator the ability
to construct a family of parts (or assemblies) by build-
ing a single instance. Many of the operations used in
the construction can be controlled by parameters that
may be adjustable. By changing these values, a new
member of the family can be built by simply following
the prescription outlined in the Master-Model defini-
tion.

The recipe may be simple, like a serial collection of
primitive operations, but can also be complex, where
operations are performed on previously or temporarily
constructed geometry. The representation of this con-
struction in most CAD systems is the form of a tree,
usually referred to as the “Feature Tree”. By sup-

porting this method of construction, a direct API can
provide both simple and powerful access to the CAD
system. This approach is clearly outside the static
view traditionally held of geometry. That is, this kind
of access and control is not possible from any type of
file transfer.

Within CAPRI, this tree is presented to the program-
mer in the form of “branches”. Each of these entities
has an index to identify where in the tree the refer-
ence is made. All indices are relative (that is they can
occur anywhere in the tree – the assignment is usu-
ally given during initial parsing of the CAD internal
structures). There is a special branch always given
the index zero, the root of the tree. Therefore, the
entire tree may be traversed starting at the root and
moving toward the end of each branch. The branches
terminate at leaves (branches that do not contain any
children). To aid in traversing the tree toward the root
the parent branch is always available. Unlike simple
binary trees, a branch in CAPRI’s Feature Tree may
contain zero or more children.

Currently, the structure of tree itself cannot be edited
from within CAPRI (though this may change at some
future release). However, some branches may be
marked “suppressible” – these features may be turned
off, in a sense removing that branch (and any children
of the branch) from the regeneration. This is powerful
in that it allows for defeaturing the model, so that it
may be made appropriate for the type of analysis at
hand. For example: if fasteners are too small for a fluid
flow calculation, they may be easily suppressed (if the
Master-Model was constructed with this in mind). Af-
ter part regeneration the resultant geometry would be
simplified and the details associated with the fasteners
would not be expressed.

Parameters are those components of the Master-Model
that contain values (and should not be confused with
the geometric parameterization). CAPRI exposes all
of the adjustable (non-driven) parameters found in the
model. This is a separate list from the Feature Tree,
but references back to the associated branch features
where the values are used or defined. Parameters may
be single or multi-valued and can be Booleans, inte-
gers, floating-points or strings.

This CAD perspective on parametric building of parts
and assemblies is fine for driving the part using simple
parameters but is problematic for shape design. For
example, simple parameters may be used to define the
plan-form of an aircraft, but are difficult to use to de-
fine the airfoil shape of the wing and tail components.
The designer would need to expose the curve/surface
definition at a very fine and detailed level (i.e. knot
points as the parameters) to allow for the exact speci-
fication of shapes. CAPRI avoids placing this burden
on the CAD designer by exposing certain curves as

multi-valued “parameters”. These curves are obtained
from independent sketched features in the model that
later are used in solid generation as the basis for ro-
tation, extrusion, blending and/or lofting. The curves
can be modified, and when regenerated, the new part
expresses the changed shape(s). This functionality
is critical for shape design in general and specifically
aerodynamic shape design.

5. AN UPSTREAM VIEW

The traditional design process (in many fields) starts
from a conception stage where no actual geometry may
be specified, to a final design where the part is fully re-
alized down to the finest details. In a multidisciplinary
design setting, one discipline may set some “parame-
ters” before passing its information along to the next.
Only when there is the requirement for more detailed
analysis requiring geometric properties will the design
be fleshed out and placed into a CAD system in a solid
representation. It should now be clear that if the de-
sign process changes from this traditional situation to
one where the designer predefines the part’s intent and
possible expression (through a Master-Model defini-
tion) the following becomes feasible:

• Consistency. Each phase in the design process
uses the same suite (or a subset of the suite) of
parameters. Any parameter value change that
produces differing geometry can be viewed by an-
other stage in the process without writing and
reading the geometry in files. The CAD part,
regenerated with a particular set of parameter
values and Feature Tree suppression statuses,
uniquely describes the geometry.

• Data Repository. The CAD system and Product
Data Management (PDM) software can be used
to track and maintain the design. Also, because
the design is in the CAD system from the begin-
ning, issues of manufacturability can be easily ad-
dressed early on and unrealistic expressions kept
out of the design space.

• Use of defeaturing to go from preliminary to final
design. If the Master-Model is built in a man-
ner that reflects the design process, then travers-
ing the stages in the process is just a matter of
adjusting the Feature Tree. During preliminary
design where the resultant geometry may be sim-
ple (or nonexistent) most of the branches of the
tree are suppressed. As the design approaches
the final intent, more and more of the details
of the part are expressed by unsuppressing the
branches. This will also require setting various
parameters as their effects become active.

• Use of defeaturing for various disciplines. Sup-
pressing branches of the Feature Tree can also be
used to match the fidelity of the geometry to the
analysis being performed. For example, if CFD is
being used and the meshing scheme cannot han-
dle fillets, then the fillets can be suppressed. This
is a much simpler and more rigorous approach
than trying to modify the fully expressed part
after the fact (and it can be done automatically).

• Parameter studies and design optimization. The
designer has specified the parameters (hopefully)
in a meaningful manner. This means that param-
eter studies can become as simple as setting a new
value, having the CAD system regenerate the ge-
ometry and then analyzing the new instance. A
complete design space can be mapped out from
the complete set (or subset) of the parameters.
This means that the process of automated design
can be tracked and some insight gained into the
design by visually tracing the selection of param-
eter values.

In order for the proposed approach to be successful,
the designer must understand the nuances of the CAD
package in use to robustly define features that will per-
sist across the family of parts. The parts must be put
together with care, to ensure that the appropriate di-
mensions in the model are driven by meaningful pa-
rameters. Also, features must be created in such as
way as to allow later suppression and modifications to
the CAD model as the design matures. For example,
a simple box with filleted edges should be created as
an extrude feature of a rectangle, followed by another
feature defining the fillets on the edges. The alterna-
tive approach is to extrude a rectangle with filleted
corners. The latter representation will make it im-
possible to later suppress the fillets for lower fidelity
analysis, and will also tend to break the CAD model
should the fillets later be deleted from the design.

The CAD model should be constructed so that Master-
Model effectively captures the decomposed intent of
the design, starting with the most basic definition
through to the finest manufacturing details. To
achieve an even higher level of modularity and to more
fully capture the design intent, complex parts should
be modeled inside an assembly, especially for aero-
dynamically constrained applications. This approach
will be illustrated in the next Section.

6. A TURBINE BLADE EXAMPLE

A turbomachinery blade model is manipulated to il-
lustrate ideas expressed in the previous Section. The
complete representation of the blade can be seen in
Figure 1.a The source model was constructed using
Pro/ENGINEER.

It should be noted that all of the figures in this Section
were generated from CAPRI’s triangulation directly
and without any massaging. Also, all modifications
to the Master-Model were done using CAPRI func-
tionality and not Pro/ENGINEER’s Graphical User
Interface.

This solid part model contains 134 parameters. 12
of these parameters are the curves gleaned from four
sketches in the model. The sketches are located at the
root, tip and two mid-span locations on the blade, and
each contains curves used to define the suction and
pressure surfaces, in addition to a third curve defin-
ing the camber-line (metal turning angles at the lead-
ing and trailing edges connected by a tangent spline).
13 are floating point and integer named parameters,
which include things like trailing-edge thickness, wall
thickness, and number of blades in the row, etc. The
remaining parameters are what Pro/ENGINEER calls
dimensions. These are unnamed values that are re-
quired by the sketcher to fully determine sections
(CAPRI also exposes these values when not driven and
treats them the same as Pro/ENGINEER parameters).

The Feature Tree for the model contains 233 nodes.
This may seem excessive until one realizes that the
turbine blade is internally cooled. Figure 1.b displays
the same part as seen in Figure 1.a except that the
exterior and interior Faces that bound the pressure
surface of the blade have been removed, exposing the
interior of the blade. The triangulation of the inte-
rior of the suction surface wall has been highlighted to
better display the structure. The internal flow enters
through a hole that can be seen on the left had side
of the root (under the hub surface). The fluid travels
up the left (leading edge), being tripped by the ridges
that can be seen (and do not completely block the
passage). The cooling air continues to follow the ser-
pentine until it is back down at the root in the center
of the blade. The flow leaves the slot in the trailing
edge as it continues to be mixed by the pins blocking
the exit.

Figure 1.c depicts just the internal void of the blade
displayed as a solid. Here the entire internal flow path
can clearly be seen.

Figure 2 shows the turbine blade at various levels of
feature suppression. Figure 2.a displays the turbine
blade with all of the internals removed (i.e. this is
a solid blade). In this view, the only visible differ-
ence is the absence of a hole at the root. It should be
noted that the solid seen in Figure 1.c was generated
in CAPRI by performing a solid Boolean subtraction
of the full part as seen Figure 1.a from this instance
(Figure 2.a).

The fillets that merge the aerodynamic portion of the
blade to the hub and tip casements have been removed

a. b. c.

Figure 1: a) The internally cooled turbine blade, b) pressure surface removed to display internal features, c) the internal
flow path as a solid

in Figure 2.b. Due to the view angle this difference can
only be seen down at the root/blade juncture. Fig-
ure 2.c depicts the blade in its simplest solid form; all
extraneous details of the hub and tip have been re-
moved. This geometry could be used for preliminary
and/or aerodynamic design.

When performing grid generation for CFD, one needs
a solid representing the flow regime. A fluid volume
suitable for analysis of the turbine blade using periodic
boundary conditions is shown in Figure 3.a. This step
illustrates the utility of using assemblies during part
construction. The solid model of the blade is contained
as the second part of an assembly. Analogous to parts,
assemblies are also described by Master-Models. In
this case, the first element in the assembly Master-
Model is a specialized type of part, referred to as a
skeleton in Pro/E parlance. The distinction is that it
contains no solid geometry, only datums, which can
include non-manifold surfaces.

The skeleton Master-Model contains two revolved sur-
faces, one for each of the inner and outer walls of the
turbine stage annulus. The solid blade part then ref-

erences these two surfaces to construct the root and
tip shrouds on the blade, adding material to go from
Figure 2.c to Figure 2.b. A third part was created in
the assembly, again referencing the annulus surfaces
to create a complete manifold solid over the entire cir-
cumference of the annulus, both upstream and down-
stream of the blade. The sketches of the metal turning
angles in the blade part are then referenced to create
the offset sides of the periodic wedge seen in Figure 3.a,
by slicing the complete annulus. The dimensions of
the wedge are determined by a parameter in the blade
Master-Model specifying the number of blades in the
row.

Modularizing the CAD model in the above manner
effectively separates the design intent. The flow annu-
lus design becomes an independent operation, while
remaining a driving factor in the blade design. In this
way, consistency is also maintained between the parts.
The references used in each part are created from the
published features of the other parts, affording fur-
ther control over the model composition and avoiding
non-robust topological constructs. For example, the

a. b. c.

Figure 2: The defeatured turbine blade – a) no interior, b) no fillets c) only the aerodynamic blade

rotation axis of the rotor is made a common reference
point between each part. As the design matures, the
upstream and downstream rows of blades and stators
will be able to reference the same annulus definition,
again maintaining coherence between the CAD mod-
els.

In order to produce the complete CFD domain, as seen
in Figure 3.b, the blade seen in Figure 2.c is subtracted
from the blank passage of Figure 3.a. Figure 3.b is dis-
played with the periodic surface closest to the viewer
stripped away to show the blade cut-out.

If it was desirable to compute on the complete flow
regime (both internal and external), a solid Boolean
union of the objects seen in Figure 3.b and Figure 1.c
could be used. The result can be seen in Figure 4.a.
This could also have been performed by subtracting
the complete turbine blade (Figure 1.a) from the pas-
sage seen in Figure 3.a, but the inflow region (seen be-
low the passage) would be absent, because the lower
surface of the wedge did not extend below the hub
surface definition.

Figure 4.b displays the effect of changing a parameter

value. In this case the number of blades in the blade
row was reduced by half. The result is that the casing
treatments grew to accommodate the requirement of
completing the circumference.

7. DISCUSSION

The approach articulated in this paper, with its pre-
cise control over the geometry, is quite powerful (as
displayed in the previous Section). One can now have
the CAD system central in an automated design opti-
mization loop, without the encumbrance of user inter-
action. This approach does not replace the top-down
approach but augments it well, producing a system
that also has a consistent bottom-up geometry method-
ology.

It should be reiterated that when using a direct inter-
face there is CAD vendor independence. The analysis
modules are isolated from the details of the underly-
ing back-end system. Also when the modifications to
the model are made through the API, by the analysis
application, there is no need to step back out to inter-
actively use the CAD system (hence interrupting the

a. b.

Figure 3: a) The fluid domain wedge, b) the fluid domain for CFD

design process).

There remain some issues that need attention before
this view of design can be considered complete and
realized. They are discussed below:

7.1 Regeneration and Consistency

The Master-Model method of generating parts has lit-
tle ability to control the part’s topological outcome.
In fact, the resultant geometry may not be explicitly
specified in any branch of the Feature Tree. This has
the side effect that the topology may fundamentally
change, even when two parts may be almost identical.
Consider a wing/fuselage configuration where the fuse-
lage is a cylindrical surface that due to the CAD mod-
eler happens to be split along an axis generally aligned
with the wing juncture. Assume the Master-Model has
a parameter that controls the vertical mating position
of the wing relative to the fuselage center-line, where
zero aligns the wing with the seam of the cylinder.
Consequently, the fuselage is maintained in CAD as
2 Faces each with half of the wing cutout. If the pa-
rameter is now set to a value greater than 1/2 of the
wing thickness, the underlying topology is completely
altered even though the parts differ only in a minor
way. In this latter case, one of the two half cylinders
is left untouched, while the other one ends up with a
complete cutout (hole) where the wing fuses with the
cylinder.

Topological inconsistencies are not a problem for most
types of analysis, but can introduce difficulties in some
cases. When using Adjoint methods (or other gradient

approaches), one needs to compute geometric sensitiv-
ities for parameter changes. In order to perform this
task, one determines the sensitivities either analyti-
cally or by computation. Because it is not possible to
differentiate through the CAD system, the easiest way
to get the sensitivities is to difference two instances.
But, how does one track point movement from one
part to a position in another instance when they dif-
fer at the topological level? Stated another way: how
does one smoothly map from a start position to an-
other position when components of the mapping can
appear and disappear?

Assuming that there was some consistency at the topo-
logical level, tracking points is still problematic. The
methods that provide a discrete view (i.e. triangula-
tion) have no regard for history. All schemes place
points to best satisfy some geometric criteria. Two
parts that are almost identical will most likely dis-
play different tessellations, described by different den-
sities of triangles. There has been some success with a
technique that scribes a consistent quadrilateral patch
topology over the CAD geometry [13].

It is possible to get sensitivities analytically if the con-
struction is performed in a geometry kernel and con-
trol is exerted over the type of surfaces used. The
result could be incorporated as an initial component
of the Feature Tree. This has been done for tur-
bomachinery aerodynamic design using Parasolid for
construction[14]. UniGraphics could import the re-
sult of this work so that the fundamental blade shape
could be defined outside of CAD as the rest of the
model could be built upon the initial aerodynamic

a.

b.

Figure 4: a) Complete flow regime, b) 75 blades in the row instead of 150.

blade shape. This would obvious make a more com-
plex (and less consistent) system and detracts from the
overall utility of the approach by limiting generality.

7.2 Tagging

In order to completely setup analysis codes, boundary
conditions must be set. Some of the values are linked
to the geometry (i.e. points of load application, sur-
face(s) representing inflow, outflow or solid walls, etc.).
Because the Feature Tree does not directly represent
geometry, but creates the part, it is not clear from
the tree perspective how to tag or map the resultant
geometry.

This could be accomplished at the Face level by query-
ing the CAD system for the branch of the Feature Tree
that is responsible for generating the surface.

7.3 CAD Model Construction Issues

Top-down design is often referred to in CAD circles.
All to often, proper techniques are not followed since
proper practice requires slightly more effort up front

in the design process. It is far too easy to create a
bad one-off model that is virtually useless and must
be thrown away if later changes are required. Engi-
neers must be educated in the proper methodology for
building robust CAD models that are extensible and
can hold together through repeated design alterations
and regeneration cycles.

7.4 Organizational changes

By far the most difficult challenge in having this ap-
proach adopted is not a technical one. Before the bene-
fits articulated in this paper can be realized the process
of design as it currently stands (in organizations that
manufacture) needs to change. This is a difficult task
in that the organization currently has a process that
works no matter the efficiency and time-to-market for
new designs.

ACKNOWLEDGEMENTS

The authors would like to thank the following CAPRI
“usual suspects” for their prodding, assistance and/or
support in this effort: Michael Aftosmis (NASA Ames
Research Center), Juan Alonso (Stanford University),
John Dannenhoffer III (Syracuse University), Peter
Gage (NASA Ames Research Center), William T.
Jones (NASA Langley Research Center), Al Magnu-
son (ICEM-CFD/ANSYS) and James Reuther (NASA
Ames Research Center).

References

[1] R. Sampath, M. Kolonay and C.M. Kuhne. 2D/3D
CFD Design Optimization Using the Federated In-
telligent Product Environment FIPER Technology.
AIAA Paper 2002-5479, September 2002.

[2] G. Follen, R. Claus, R. Blech, K. Meinert, D.
Vandrei, A. Apel, V. Fields, R. Hare, N. Craw-
ford, R. Ashleman, M. Davis, J. Reed. Numerical
Propulsion System Simulation Architecture Defi-
nition. NASA TM 107343, November 1996.

[3] R. Braun. NASA’s Intelligent Synthesis Environ-
ment Program: Revolutionizing The Agency’s En-
gineering and Science Practice. Integrated Enter-
prise 2:1, Winter 2001.

[4] http://www.phoenix-int.com

[5] http://www.engineous.com

[6] http://www.cfdrc.com/products/ace

[7] http://www.omg.org/homepages/mfg/mfgcadv1-
1rtf.htm

[8] http://www.transcendata.com/support/cadscript

[9] T.J. Tautges. Common Geometry Module: A
Generic Extensible Geometry Interface. Proceed-
ings of the 9th International Meshing Roundtable.
Sandia National Laboratories, October 2000.

[10] R. Haimes, and G. Follen. Computational
Analysis PRogramming Interface. Proceedings of
the 6th International Conference on Numerical
Grid Generation in Computational Field Simula-
tions. University of Greenwich, June 1998.

[11] M. Aftosmis, M. Delanaye and R. Haimes. Auto-
matic Generation of CFD-Ready Surface Triangu-
lations from CAD Geometry. AIAA Paper 99-0776,
January 1999.

[12] R. Haimes, and M. Aftosmis. On Generating
High Quality “Water-tight” Triangulations Di-
rectly from CAD. Proceedings of the 8th Interna-
tional Conference on Numerical Grid Generation

in Computational Field Simulations. Honolulu HI,
June 2002.

[13] J. Alonso, J. Martins, J. Reuther, R. Haimes and
C. Crawford. High-Fidelity Aero-Structural Design
Using a Parametric CAD-Based Model. Proceed-
ings of the 16th AIAA Computational Fluid Dy-
namics Conference, AIAA 2003-3429. Orlando FL,
June 2003.

[14] A. Merchant and R. Haimes. A CAD-Based Blade
Geometry Model for Turbomachinery Aero Design
Systems. Proceedings of the 2003 ASME Turbo
Expo, GT 2003-38305. Atlanta GA, June 2003.

ACCESSING CAD GEOMETRY FOR MESH GENERATION

Mark W. Beall1, Joe Walsh2, Mark S. Shephard3

1Simmetrix Inc., Clifton Park, NY., U.S.A. mbeall@simmetrix.com
1Simmetrix Inc., Clarkesville, GA., U.S.A. jwalshl@simmetrix.com

3Rensselaer Polytechnic Institute, Troy, NY., U.S.A. shephard@scorec.rpi.edu

ABSTRACT

One of the major issues of mesh generation today is access to CAD geometry in an accurate and efficient manner. This paper
will provide an overview the process of accessing CAD geometry for mesh generation and will review several of the issues
associated with accessing CAD geometry for mesh generation. This paper will also evaluate alternative techniques for accessing
CAD geometry and review how these techniques address or do not address the issues related to CAD geometry access for mesh
generation. The techniques for CAD geometry access to be reviewed include: Translation & Healing, Discrete Representations,
Direct Geometry Access, and Unified Topology Accessing Geometry Directly. The intent of this paper is to provide an overview
to the alternative approaches and how they address the specific issues related to accessing CAD geometry for mesh generation. It
is not the intent of this paper to provide detailed algorithms related to accessing or repairing CAD data.

Keywords: CAD, geometry, topology, tolerances, design integration, adaptivity, mesh generation, geometry-based,
geometry access, Unified Topology Model

1. INTRODUCTION

Automatic and semi-automatic mesh generation has seen
dramatic improvements over the last ten (10) years. One of
the most important and often overlooked aspects to mesh
generation is accessing CAD geometry. The emphasis on
analysis in recent years has moved from failure analysis
and validation to becoming an active part of the design
process. There is a growing demand from manufacturing
companies to include performance evaluation based on
simulation results earlier in the design process, making
simulation an integral part of their design process. To do
this in a cost effective manner requires automation of all of
the steps involved in performing such simulations from the
product design data. Accessing CAD geometry for mesh
generation is still one of the major technical issues related
to moving simulation forward as an essential ingredient of
the design process. This desired ability to move simulation
forward in the design process requires a review of current
techniques for accessing CAD geometry [1].

This paper will review several of the issues related to CAD
geometry access and will evaluate four techniques for CAD
geometry access as follows: 1) Translation & Healing, 2)
Discrete Representations, 3) Direct Geometry Access, 4)
Unified Topology Accessing CAD Geometry Directly.

2. CAD GEOMETRY

CAD systems and their geometric representations have
been around for quite some time. Almost all CAD systems
have evolved into similar representations for their models.
This representation often includes feature based data and a
resulting B-Rep instance or a B-Rep model. The B-Rep
model consists of much more than just geometry, and
indeed one of the major problems in accessing CAD
geometry has been due to an oversimplification of what
constitutes a valid B-Rep Model.

B-Rep models contain geometry (shape), topology (how
things are connected), and tolerances (how closely do they
actually fit together). This combination of model data is
then accessed by the CAD systems methods to define a
valid B-Rep model. Therefore, a valid B-Rep model
should be considered to consist of geometry, topology,
tolerances and methods used by the CAD system it was
defined within [2].

CAD systems often use relatively large tolerances on an
entity-by-entity basis to provide robustness to model
operations. This approach is referred to as variable
tolerances or tolerant modeling by different CAD systems.
The use of these large variable tolerances produces gaps
and overlaps in the geometry and topology of the CAD
system B-Rep model as illustrated in the simple (and
extreme) example in Figure 1.

The algorithms used in the CAD system modeling engines
are written to deal with these tolerances in a consistent
manner and they do not see the gaps or overlaps.

Figure 1. Large / variable tolerances result in
gaps and overlaps

Geometric modeling kernels such as ACIS, Granite and
Parasolid are often used to supply the methods and model
representations used by CAD system modeling engines.
CAD systems that use a common geometric modeling
kernel also share common methods for evaluating
tolerances and the validity of a B-Rep model. These
methods can be accounted for directly in the mesh
generation process in a consistent manner using
information easily provided by the CAD system API [2],
[3].

 3. GEOMETRY RELATED ISSUES FOR
MESH GENERATION

There are several issues associated with effective and
efficient access of CAD geometry for mesh generation.
This section will provide a quick overview of several of the
major issues and the ramifications that this issues have on
mesh generation. A detailed review of these issues is
beyond the scope of this paper. Specifically excluded from
this paper are model abstraction or idealization for analysis
and domain decomposition.

3.1 Understanding the Analysis
Requirements

The first major issue with CAD geometry access for mesh
generation is the need to understand the analysis
requirements. The appropriate mesh and geometry to be
used for meshing is a function of the analysis to be
performed and the desired accuracy [4]. There does not
exist an optimal mesh independent of the analysis to be
performed. A-prioi element shape quality test have often
been used as a misleading indicator of a good mesh
independent of the analysis to be performed or the accuracy
desired. The appropriate mesh is one that produces the
desired accuracy for the problem to be solved. In practice
this is only achievable through adaptivity.

Different types of analyses require different instances of the
geometry to capture the physics. For example, we can
perform a dynamic structural response analysis and a
Computational Fluid Dynamics (CFD) analysis on the same
part. The dynamic structural response analysis requires the

solid geometry of the part while the CFD analysis requires
the geometry of the cavities through which the fluid will
flow. This simple illustration of different use of geometry
representations is illustrated in figure 2.

Dynamic structural response analysis
requires solid geometry of the part.

While CFD analysis requires geometry
of the flow cavities.

Figure 2. Different analysis require different
geometric representations

Physics simulations such as external flow,
electromagnetics, and radiation are actually concerned with
the volume not occupied by the part.

Different types of analysis also require different resolutions
of mesh to achieve the desired accuracy on a particular
design.

3.2 Defeaturing

Defeaturing is one of the most complex issues associated
with CAD geometry access for mesh generation. Indeed
one of the major issues that the CAD and CAE software
industries have encountered is developing a consistent
definition of a feature. For the purposes of this paper we
will classify features into two main groups.

The first group of features will be called “intended
features”. Intended features are features that were explicitly
defined as features in the model that drive the resulting
geometry. In this case a feature-based modeling system was
used to create a model which contains intended features.
Intended features can only be created by feature-based
modeling systems and can be suppressed by the original
modeling system.

The second group of features will be called “artifact
features”. Artifact features are features that are created
indirectly by the modeling process. One example of artifact
features is the creation of engineering features such as
holes by a modeling system that is not feature-based. The
second example of artifact features is the creation of
recognizable patterns of geometry / topology data that
create a valid design model but also create difficulties
associated with mesh generation. Artifact features can be
created from any modeling system and cannot be
suppressed in the original modeling system.

Part of the complexity associated with CAD geometry
access for mesh generation is due to the fact that
historically analyses are performed too late in the design
process and the design model contains more details than are
appropriate for analysis. Moving the analysis earlier in the
design process will help to reduce, but will not remove, the
need for defeaturing. Since multiple analysis types may be
required for any design state there remains a need for
defeaturing to various levels to support the range of
analysis to be performed.

One of the most common unwanted artifact features
encountered in CAD data are “slivers”. Slivers can be
described as very small artifact features that are larger than
the geometric tolerances of the CAD System modeling
engine but extremely small with respect to the model size.
These very small artifact features can provide problems to
mesh generation algorithms and are meaningless to the
analysis [5]. Slivers are introduced into models to maintain
validity and integrity of the model. Native models contain
far fewer slivers than translated models. A very common
method of healing or repair algorithms used in translation is
to introduce slivers to resolve gaps, overlaps and tangency
conditions.

Modeling engines and healing algorithms may also
introduce an large number of faces into the model to ensure
that the model is valid. This often occurs in blend and
chamfer regions and in areas of similar surface curvature or
near tangent conditions. These additional faces may over-
constrain mesh generation and one approach is to combine
faces into a single larger logical face. This approach has
had significant success but typically relies on user input to
specify which faces to combine. Extra faces are another
type of artifact feature.

Another common unwanted artifact feature type is “small”
model features. Small model features can be described as
artifact features that are very large with respect to the
geometric tolerances but small with respect to the local

target mesh size. This definition of small features indicates
that the classification of a small feature is a function of the
target element size and accuracy desired. The actual
definition of the small sizing with respect to target mesh
size can vary with each analysis to be performed. Some
typical values for small features are less than 25-30% of the
target mesh size. This definition also allows for support of
an adaptive representation of geometry used for meshing as
part of the mesh adaptivity process that we will discuss
further later in this section.

Slivers may be re-classified as a special case of small
features that will remain small through all possible target
mesh sizes. Small features are another type of artifact
feature. The issue of dealing with small geometric features
in the mesh generation process has been discussed in
various references [6], [7]. An example of a small feature
and its potential impact on mesh generation is illustrated in
Figure 3.

Figure 3. Small feature

CAD models may include geometric features that are
important for design but are irrelevant for the simulation to
be performed. These unwanted features can be classified as
“simple” features and “complex” features. These features
can be suppressed by the CAD system if and only if they
were intended features.

Simple features can be described as features which when
suppressed or removed refer back to a single parent face on
the B-Rep model. Simple features may be intended
features or artifact features but are most likely intended
features from a feature-based modeling system. Simple
features are defined in terms of the topology of their base
features rather than their size. Examples of simple features
are illustrated in Figure 4.

Figure 4. Simple features on top face

Complex features can be described as features that are not
simple. Complexe features may be intended features or
artifact features but are most likely intended features
from a feature-based modeling system These features
include a variety of features as follows:

• Features whose base feature spans across multiple
faces.

• Features whose base features need to be extended for
feature removal or suppression such as fillets and
chamfers.

• Features that interfere with other features.

Complex features are the largest challenge to deal with in
defeaturing. If these features are not small with respect to
target mesh size, careful consideration should be given
regarding why these are being defeatured and the impact on
accuracy. If these features are small then they can be
treated as small features independent of their complexity.
For complex features that need to be removed or suppressed
that are not small a thorough understanding of the feature
data is required and it usually best to suppress these in the
CAD system prior to geometry access.

3.3 Tolerances and Methods for Evaluating
Tolerances

Understanding tolerances and methods for evaluating
tolerances plays an important role in accessing CAD
geometry for mesh generation. One of the key areas
influenced by tolerances and their associated methods is
that of tangencies and near tangencies. The methods used
in CAD system modeling engines are written to deal with
tolerances in a consistent manner. These methods are not
available outside of the CAD system modeling engines,
therefore, translated data introduces “dirty” geometry.

3.4 “Dirty” Geometry

Dirty geometry has been one of the most nagging issues
related to geometry access. Dirty geometry consists of
gaps, overlaps and other incompatibilities in the model
preventing the model from being valid. These
incompatibilities do not exist in the native CAD system and
are introduced from translating the native CAD geometry to
another format. Differences in representations, methods
and tolerances between modeling engines create dirty
geometry. Translators must then heal or repair the
geometry to represent it as a valid model in the non-native
system [5], [8], [9]. Note that without knowledge of the
modeling system tolerances and methods, there is no a-
priori means to ensure a healing process will successfully
recover the correct model representation.

3.5 Support for Curved Meshing

The previous issues associated with geometry access have
focused on ensuring the correct geometry representation
and level of detail in the geometry be used for mesh
generation. The next three issues deal with ensuring that
the geometry access can support key mesh generation
functionality. The first mesh generation functionality to be
considered is curved meshing. Curved meshing involves
the ability to create curved mesh edges and faces that have
the level of geometric approximation needed to ensure that
as the simulation results are improved by the introduction
of higher-order equation approximations (e.g., high-order
finite elements), the geometric approximation errors do not
control the solution accuracy. The ability to properly curve
the mesh entities occurs arises as soon as higher than linear
basis functions are used and, as demonstrated by simple
example in [10], the order of geometric approximation
needed to be increased as the basis order increases.

In the simplest cases, the appropriate curved meshes can be
created by moving mesh on the boundary of the model to
the “closest” location on the model geometry. However,
even in the simplest, and common, case of quadratic h-type
finite elements (see example at the top of Figure 5), a more
complex algorithm is required to ensure the elements can
be properly curved [11]. The complexity of the curved
mesh generation process increases further in the case of p-
version methods where coarse meshes, such as the example
at the bottom of Figure 5, must have higher order geometric
approximations.

Initial coarse “h” type curved mesh

Very Coarse “p” type curved mesh

Figure 5. Curved Meshing

3.6 Support for Curvature Based Mesh
Refinement

The next meshing functionality to be considered as
desirable to be supported is curvature based mesh
refinement. This meshing functionality provides automatic
refinement of the mesh based on the underlying geometry
curvature. The benefits of this functionality are: 1) the
ability to capture the geometry with a considerable smaller
number of elements and/or grid points and 2) resulting
improvement in mesh quality in areas of rapid geometric
changes. Figure 6 illustrates the benefits of curvature based
mesh refinement.

Figure 6. Curvature Based Mesh Refinement

3.7 Support for Geometry Based Mesh
Adaptivity

The final mesh generation functionality to be considered, in
this paper, as an issue for geometry access is the support for
geometry based mesh adaptivity. This functionality
involves the ability of the adapted mesh to adhere to the
original geometry as illustrated in figure 7 and requires
access to the original geometry to be present. Mesh
adaptivity that does not adhere to the geometry is limited
by the initial mesh geometric approximations and can
provide results that are meaningless. For example, Figure 7
is a close-up of a geometric feature in an accelerator cavity
geometry where the simulation procedures must provide
highly accurate estimates of the electrical and magnetic
losses. The sensitivity of the results to the local geometric
shape is so high that if the mesh geometric approximation
did not improve as the adaptive simulation process
continued, the results obtained would have been not just a
poor approximation, but meaningless.

In many problems of interest the mesh edges and faces are
of the same size as the small geometric features that are
often critical to the analysis, such as the accelerator cavity.
In these cases, the simple movement of new nodes
introduced during refinement to the curved model surfaces
can yield invalid elements. The algorithms needed to
effectively deal with these situations include must include
general mesh modification operations and a control
algorithm that ensures the procedure is progressing in a
positive manner [12].

Solid model detail of complex blend feature

Initial coarse mesh Adaptive mesh adheres to
initial geometry

Figure 7. Geometry based mesh adaptivity

The advantages of geometry based mesh adaptivity include:
1) the ability to start with coarser initial meshes and, 2) the
ability to ensure that the resulting model adheres at an
appropriate level of accuracy to the design geometry. An
additional benefit that may not be apparent is the

combination of geometry based mesh refinement with the
small feature defeaturing as a function of target mesh size.
This can result in adaptive geometry representation for
mesh adaptivity where small features are ignored in the
initial mesh and accounted for as a function of target mesh
size in each stage of the mesh adaptivity process. This
combined approach dramatically reduces the defeaturing
requirements associated with geometry access for mesh
generation and allows for initial coarse meshes of detailed
geometric models. Figure 8 illustrates an example of this
combined approach to adaptive geometry representation.

Initial coarse meshes approximates
small features

Adaptive mesh accurately accounts for
small features

Figure 8. Adaptive geometry representation

3.8 Evolving Geometry Problems

There are a number of situations where the model shape
and topology can evolve during the simulation. When the
simulation is performed using Lagrangian type analysis and
there are large deformations and/or model fracturing, it is
often necessary to update the domain and mesh several
times during the simulation (e.g., in fragmentation
simulations [13] or metal forming 14]). In these situations
the model topology and shape must be updated based on
the simulation results. Even in the case where the original
geometric model was defined in a CAD system, it is most
likely not desirable to continue to use the original CAD
system to update the CAD model. This is because the new
geometric information available from the simulation is

limited to node point coordinates on the mesh facets and
most CAD systems do not effectively support such
geometry updates.

An important aspect of properly updating the geometric
model for these cases is to update the model topology based
on the simulation information and to associate the
appropriate collections of mesh edges and mesh faces with
the resulting model edges and faces to use in the
subsequent definition of shape information. Algorithms to
do this based on mesh based geometry parameters and/or
simulation contact or fracture information have been
developed [15], [16], [14]. Once the model topology has
been defined, the geometric shape information can be
defined directly in terms of the mesh facets, or can be made
higher order using subdivision surfaces [17], [16] or higher
order triangular patches [18] [19]. Reference [14] provides
a description of an automated adaptive medal forming
procedure where the updated geometric model is defined
based on the simulation information and higher order
updated shapes of the edges and surfaces are defined by
subdivision patches applied on a model entity level.

3.9 Integration of Simulation in the Design
Process

Integration of simulation in the design process is a driving
factor for improved geometry access for mesh generation
and support of this integration should be considered as a
major issue when considering geometry access. This
integration allows for simulation to be an integral part of
the design process and requires use of the native CAD
system geometry as the geometry source to allow for
effective reuse through multiple design iterations. Mesh
generation needs to access the current design state and
evolve with the design [20]. Automatic meshing and
geometry based mesh refinement are fundamental
requirements to ensure efficiency and accuracy. Integration
of simulation in the design process also requires
sophisticated management of simulation attributes to
support design change insensitivity for simulation.

3.10 Multiple CAD Geometry Sources

The geometry access issues discussed so far in this paper
are limited to a single CAD system. These issues are
further complicated by the need to support multiple CAD
systems. Each CAD system modeling engines uses
different representations for geometry and topology and
different tolerances and methods for evaluating tolerances.
Direct interface utilities to multiple CAD systems is both
complex and expensive to develop and support. Modeling
kernels such as ACIS, Granite and Parasolid help to reduce
the scope of this problem.

Commercial software vendors need to provide support for
multiple CAD systems to properly support their customer
base. It should also be noted that large-scale design
environments and processes typically consist of multiple
CAD systems both internally within a company and
throughout the supply chain.

4. TECHNIQUES FOR ACCESSING CAD
GEOMETRY FOR MESH GENERATION

There are several techniques currently used and being
developed to address the geometry access issues outlined in
this paper. The techniques used for geometry access can be
classified into four major approaches as follows:

• Translation & Healing

• Discrete Representations

• Direct Geometry Access

• Unified Topology Accessing Geometry Directly

4.1 Translation and Healing

Translation and Healing has historically been the most
commonly used technique for geometry access. The
translation may involve use of standard file formats or
direct translators.

IGES does not address issues with representations, global
tolerances, features, tolerancing or tolerance methods and
typically results in dirty geometry [5]. Standards such as
VDAFS and STEP do address issues with representations
and global tolerances but do not address features,
tolerancing or tolerance methods and often results in dirty
geometry (typically cleaner than IGES).

Many companies have invested millions to resolve the
translation related issues (ITI, Elysium, Spatial,
TransMagic, CAD-CAMe, TTI, TTF, …) An entire
interoperability industry has evolved to attempt to address
the issues of Translation and Healing. Progress has been
made but the Translation and Healing process is still not
reliable or robust. The fundamental issue of differing
native tolerance methods has not been addressed.

Evaluation of Translation and Healing as related to
geometry access issues presented in this paper is as
follows:

• Defeaturing is difficult since intended feature
information is lost in translation and unwanted
artifact features may be created.

• Feature-based translators attempt to reproduce
models from feature representations but do not
address tolerance methods and may fail to rebuild
models or introduce slivers and small features.

• Healing typically introduces slivers and small
features to resolve dirty geometry.

• Non feature-based translators require explicit
feature removal.

• Feature suppression with non feature-based
translators requires feature recognition
algorithms.

• Translation & Healing introduces dirty geometry due
to differences in CAD systems modeling engines
representations, tolerances and methods.

• The resulting geometry representation typically can
support curved meshing, curvature based refinement
and geometry based mesh adaptivity on modified
representation.

• It is possible to support adaptive geometry
representation on modified representation with
small feature recognition.

• The ability to support evolving geometry is limited
by the geometry representation available.

• The integration of simulation in the design process is
not effectively addressed.

• Differences in algorithms and tolerances between
modeling engines make it impossible to exactly
exchange data between them. Results and robustness
vary dramatically with different CAD systems.

4.2 Discrete Representations

The Discrete Representations technique is based on the
generation of a faceted model by the CAD system and
accessing the resulting faceted model for mesh generation.
This is most commonly done based on simple facets
generated by the CAD system faceter but may also use
subdivision surfaces [17], [16] or higher order triangular
patches [18].

This technique is often used to attempt to eliminate dirty
geometry and to resolve differences between different CAD
systems. There are some remaining concerns regarding
robustness since the simple facet representations are
designed for visualization and may not close as illustrated
in figure 9. These facet representations are often done on a
face-by-face basis and may not be incompatible across face
boundaries.

The successful use of the simple facets in Discrete
Representations technique is highly dependent on the
faceter used by the originating CAD system. All Discrete
Representation techniques result in an approximation of the
geometry and do not retain the intended feature data, and
geometry of the CAD model.

Figure 9. Facet representations from major CAD
system modeling engines may not close

Evaluation of Discrete Representations as related to
geometry access issues presented in this paper is as
follows:

• Defeaturing of any type is difficult since all intended
feature information is lost.

• Simple facet representations are designed for
visualization and may still have some problems with
dirty geometry.

• Simple facet representations cannot support curved
meshing, curvature based refinement and geometry
based mesh adaptivity.

• More sophisticated discrete representations such
as subdivision surfaces and higher order
triangular patches can support an approximate
version curved meshing, curvature based
refinement and geometry based mesh adaptivity.

• It is difficult to support adaptive geometry
representation on modified representation with
small feature recognition.

• The definition of evolving geometry can be
supported.

• The integration of simulation in the design process is
not effectively addressed.

• Handles data from different systems in a consistent
manner but results may vary dramatically due to
differences in CAD System faceters.

4.3 Direct Geometry Access

Direct Geometry Access is a technique that is growing in
popularity based on accessing CAD geometry directly
through CAD system toolkits such as CATIA CAA and
Pro/Toolkit [21]. Use of the CAD system toolkits requires
that a seat of the CAD system is available for geometry
access.

Since many CAD systems use geometric modeling kernels
this approach can also achieved by licensing the same
geometric modeling kernel as the CAD system and
accessing the geometry through the modeling kernel APIs
[1], [3], [22], [23].

The main theme of this approach is to leave the data in the
native modeling engine and to use that native modeling
engine to access geometry so that the native tolerances and
methods are used for geometry access and wherever
possible the intended feature data is retained.

Evaluation of Direct Geometry Access as related to
geometry access issues presented in this paper is as
follows:

• Defeaturing is an issue for artifact features that
cannot be suppressed.

• Small features, slivers and multiple faces cannot
be suppressed.

• Native geometry is not dirty.

• Can support curved meshing, curvature based
refinement and geometry based mesh adaptivity.

• Adaptive geometry representation with small
feature recognition is extremely difficult (if not
impossible) to support.

• The ability to support evolving geometry is limited
by the geometry representation available.

• The integration of simulation in the design process
can be effective addressed with unique solutions for
each CAD modeling source.

• Requires multiple direct interfaces for a broad range
of geometry support.

• Each CAD system has a different geometry and
topology representation to interrogate for
meshing.

• Each CAD system has different tolerances and
methods to understand.

• Each CAD system has a different toolkit for
accessing geometry and topology data.

4.4 Unified Topology Accessing Geometry
Directly

The final geometry access technique to be considered is
Unified Topology Accessing Geometry. This is a natural
extension of the Direct Geometry Access technique with
enhancements to overcome the shortfalls of that technique
(especially associated with multiple CAD sources and
defeaturing of artifact features. This approach is based on
an abstraction of the geometry that allows multiple sources
of geometry to be treated the same by the mesh generator
[1], [3], [22], [23]. For the purposes of this paper this
abstraction of the geometry will be referred to as the
Unified Topology Model.

The Unified Topology Model is a representation of the
model for simulation purposes that retains it connection to
the original CAD system geometry and topology. This
approach provides a separate topology data structure that
allows for multiple forms of defeaturing while retaining the
original geometry & topology. This approach also
facilitates the use of geometry from multiple sources.

The geometry is directly accessed from the native modeling
system as per the Direct Geometry Access technique,
however, a common description of the topology is created
that is well suited for mesh generation. This Unified
Topology Model accounts for the topology of the original
modeling systems and enhances this representation to make
it more suitable for analysis. These enhancements may
include; support for multi-dimensional models, non-
manifold model (extremely useful for assemblies),
defeaturing of unwanted features, and support for models
from multiple CAD sources for a single analysis.

One important aspect of the Unified Topology Model is to
maintain a relationship between the Unified Topology
Model and the topology of the original CAD model. This
may be a one to one relationship, or a one to many

relationship. Maintaining these relationships allows the
Unified Topology Model to be modified for analysis
without affecting the underlying CAD model while still
maintaining the Direct Geometry Access for all geometric
queries.

One example of a Unified Topology Model is the
Simulation Modeling Suite provided by Simmetrix, another
example is the CGM provided by Sandia National
Laboratories. In the Simmetrix example the Unified
Topology Model builds on top of the CAD topology to
present a standard representation for all modeling sources
(non-manifold topology similar to Radial Edge Data
Structure [24]). The Unified Topology Model is built from
the CAD topology and geometric queries are passed
through to the CAD system via direct access to APIs or
modeling kernels. The implementations by Simmetrix and
Sandia also support discrete geometry as a modeling
source. The resulting Unified Topology Model used is
illustrated in Figure 10.

Figure 10. Unified Topology Model

Evaluation of Unified Topology Accessing Geometry as
related to geometry access issues presented in this paper is
as follows:

• Allows for various forms of defeaturing.

• Slivers and small features can be addressed as a
function of global and local target mesh sizes.
Figure 11 illustrates the effect on meshing results
related to defeaturing of the small features
illustrated in Figure 3.

Figure 11. Small feature removed from Unified
Topology Model

• Simple features can be suppressed in Unified
Topology Model for meshing purposes.

• Complex features may be addressed either by
suppression of intended features in the CAD
system or as small features in the Unified
Topology Model.

• Uses native system tolerances and methods.

• Native geometry is not dirty.

• Curved meshing, curvature based refinement and
geometry based mesh adaptivity can be supported.

• Can support adaptive geometry representation
with small feature recognition.

• Creation of new topology in the Unified Topology
Model based on a discrete geometry basis provides
support for evolving geometry problems.

• Proven effective to address issues related to
integration of simulation in the design process.

• Used in large Simulation-Based Design
initiatives and commercial CAE Software
(Visteon, John Deere, Blue Ridge Numerics,
CFD Research Corporation, ESRD, Coventor,
PVM Corporation and many others)

• Provides a single interface for a broad range of
geometry support.

• Geometry abstraction layer handles all CAD
systems specific issues.

• Mesh generation algorithms access a consistent
Unified Topology Model.

5. SUMMARY

The desire to use simulation as an integral part of the
design process has necessitated an evaluation of the issues
and techniques associated with CAD geometry access for
mesh generation. A broad range of issues was highlighted
in this paper and four techniques for CAD geometry access
were reviewed with respect to these issues.

Translation and Healing was the initial technique reviewed
and was found to lack the reliability and robustness
necessary to support design/analysis integration. The
Translation and Healing technique does not address several
of the geometry access issues outlined.

The second technique reviewed was Discrete Geometry
Representations. This technique does address some of the
geometry access robustness issues but does not address
well those issues related to feature representations,
curvature based meshing and design integration.

The third technique reviewed was Direct Geometry Access.
This technique does address many of the geometry access
issues but does not address well those issues related to
defeaturing of artifact features and multiple CAD systems.

The final technique reviewed was Unified Topology
Accessing Geometry Directly. This technique provides an
effective means to address to the geometry access issues
outlined in this paper. The Unified Topology Model
Accessing Geometry Directly technique is the most flexible
technique for addressing issues related to accessing CAD
geometry for mesh generation.

Unified Topology Accessing Geometry Directly can
provide a single environment to effectively deal with
integration to CAD from multiple sources, along with
integration with various discrete models, and defeaturing of

artifact features providing a firm foundation for
design/analysis integration.

REFERENCES

[1] Shephard, M.S., Georges, M.K. and de Cougny, H.L.,
“Geometric model interactions required to support a
fully automatic mesh generator”, SCOREC report 25-
1993, RPI, Troy, NY, 1993.

[2] Braid, I., “A History of Geometric Modeling”, Spatial
Tech-Ex, pp. 1-1 – 1-17, 1991.

[3] Shephard, M.S., and Georges, M.K., “Reliability of
Automatic 3-D Mesh Generation”, Comp. Meth. Appl.
Mech. and Engng., 101:443-462, 1992.

[4] Walsh J.L. “Exposing the Myths of Design to Analysis
Data Exchange”, Proc. ABAQUS User’s Conference,
pp 659-672, 1993

[5] Butlin, G., Stops C., “CAD Data Repair”, Proc. 5th Int.
Meshing Roundtable, pp. 7-12, 1996.

[6] Shephard, M.S., Beall, M.W. and O’Bara, R.M.,
“Revisiting the elimination of the adverse effects of
small model features in automatically generated
meshes”, Proc. 7th International Meshing Roundtable
'98, SAND 98-2250, Sandia Nat. Labs., Albuquerque,
NM, pp. 119-131, 1998.

[7] Dey, S., Shephard, M.S. and Georges, M.K.,
“Elimination of the adverse effects of small model
features by local modifications of automatically
generated meshes”, Eng. With Computers, 13(3):134-
152, 1997.

[8] Mezentsev, A.A. and Woehler, T., “Methods and
algorithms of automated CAD repair for incremental
surface meshing”, Proc. 8th Int. Meshing Roundtable,
Sandia report SAND 99-2288, pp. 299-309, 1999.

[9] Ribo, R., Bugeda, G. and Onate, E., “Some algorithms
to correct a geometry in order to create a finite element
mesh”, Computers and Structures, 80:1399-1408,
2002.

[10] Luo, X., Shephard, M.S., Remacle, J.-F., O’Bara,
R.M., Beall, M.W., Szabó, B.A. and Actis, R., “p-
Version Mesh Generation Issues”, 11th International
Meshing Roundtable, Sandia National Laboratories,
pp. 343-354, 2002.

[11] Dey, S., O’Bara, R.M. and Shephard, M.S.,
“Curvilinear mesh generation in 3D”, Computer-Aided
Design, 33:199-209, 2001

[12] Li, X., Shephard, M.S. and Beall, M.W., “Accounting

for curved domains in mesh adaptation”, International
Journal for Numerical Methods in Engineering, 2002.

[13] Pandofi, A. and Ortiz, M., “An efficient procedure for
fragmentation simulations”, Engng. With Computers,
18(2):148-159, 2002.

[14] Wan, J., Kocak, S, Shephard, M.S. and Mika, D.,
Automated adaptive forming simulations”, submitted
to 12th Int. Meshing Roundtable, 2003.

[15] Krysl, P. and Ortiz, M., “Extraction of boundary
representation from surface triangulations”, Int J. Num.
Meth. Engng, 50:1737-1758, 2001.

[16] Lee, C.K., “Automatic metric 3-D surface mesh
generation using subdivision surface geometry model.
Part 1: Construction of underlying geometric model”,
Int J. Num. Meth. Engng, 56:1593-1614, 2003.

[17] Cirak, F., Ortiz, M. and Schroder, “Subdivision
surfaces: a new paradigm for thin shell finite-element
analysis”, Int J. Num. Meth. Engng, 47:2039-2072,
2000.

[18] Owen, S.J. and White D.R., “Mesh-based geometry: A
systematic approach to constructing geometry from a
finite element mesh”, Proc. 10th Int. Meshing
Roundtable, Sandia report SAND 2001-2967C, pp. 83-
96, 2001.

[19] Owen, S.J., White D.R. and Tautges, T.J., “Facet-
based surfaces for 3-D mesh generation”, Proc. 11th

Int. Meshing Roundtable, pp. 297-311, 2002.

[20] Walsh J.L., “Geometrically Associative Analysis
Modeling”, Spatial Tech-Ex, pp 9-1 – 9-16, 1991.

[21] Merazzi, S., Gerteisen, E.A. and Mezentsev, A., “A
generic CAD-mesh Interface”, Proc. 9th Int. Meshing
Roundtable, Sandia report SAND 2000-2207, pp. 361-
369, 2000.

[22] Tautges, T.J., “The common geometry module (CGM):
A generic, extensible geometry interface”, Proc. 9th Int.
Meshing Roundtable, Sandia report SAND 2000-2207,
pp. 337-359, 2000.

[23] Shephard, M.S., “Meshing environment for geometry-
based analysis”, International Journal for Numerical
Methods in Engineering, 47(1-3):169-190, 2000.

[24] Weiler, K.J., “The radial-edge structure: A topological
representation for non-manifold geometric boundary
representations”, Geometric modeling for CAD
applications, North Holland, pp. 3-36, 1988.

�������� ��������	� 	
 �����������

���
�� �����

��� ������� ��	
� ������� ���	� �	��	
� ���� �� ��	�������

������ ����	
� ������ ����������������������������������
���������� �� ����� �������� �������� ���� ���
��������������
���������������	���

��������

�� ���� ����	 � ��
 �	�� ����	���� ������ �� �	������� �	 ��� ��	����� ����	���� � ����	����	�� �	�������	 ��	����
�	���� ��� ������	������ ������ ��� ������������� � ��� ������� ��� ����	��� �������� ��� ��� ��	����� �������
�	���� ������ �	� ����	����� ��������� �� � 	����	������ ������ ��� �����	� � �� ������ �� �������� ��� � ����
����	������ � ���� ������� ����� �� ��� ����� �� ��� �� ������������ ��� ��	�� �� � ��	������ ����� ���� �����	���
���� �� ���� �� ��� ��������� �	�� ��	���� �����	 �� ������� �� ����� �	 ��� �	������ ����	����� !�� ���
	����	������ ��� ��� ������� �	� "#����	���������� ��� ����	����� �	�������� ��� ��	�������
��� �� ������� ������	

��� ��� ���������� ��� ���������� � ��� ���	���� ��� ����	
��� �� ��������
��� �$������ ������	����� ���
������������ � ��� �	������� ���	����

��������� 	
���	��	��� �	���� ���� ��
������
� �������� ������������
� ������������� �	��������

�����������
�����

�� �	��
�����
	

��� ����	���� � ����	����	�� ��	���� �	��� �� �����
�� � ��� ��� ����	������ ����� � �� ��	�	��� ��	�
��� � ����	���� �%� �������� 	�&��	��� � ������	����
����� � ����� �'	�� %	 ��� �����$ �� ��	��
���� ��		����� �� � 	����� ���� ��� ���� � ��� �
���
������ ��	���� �	�� ����� � ����� � ���������()*
����	�� � ��� ����	 ������ ���� �� ����� ���� ����
�	���� ��� ����	���� ���������� �
 ���� 	�����
��� �� ������ �� ������� �����

+�� �	���� �� ��� �	���	���� � ��� �����	� ����
������ ������� ���� ����	����� �	����� ��� ��������
�$�������� ��� ����� �� � ��� ���� �����	�� ���
� ���������� ��� ��	����	�� �����	��� �����	�� ����	�
���� ���	 ��	��� ��� ������� �	����� ����� �			�
��������� ����� 	����	 ��� ��� ����� ����� �����
��� �����	� �� ����� ��� �� ������ �������������
� ������	��� ���� �	����� ��� 	������ ���� � ���
��	���� �	�� ����	��	 ����� �� �� ��	� �� ��������

��� ����� 	���� �� ���� ����� ����	������� �� ���

��� � ��� ���� ������� ����� � �� ������� �	 ����
��	��� ��	�� � ��� �����	�� %	 �$������ �	 �
���
������ ��	������� ��	���� �	�� ��� ������� ��� �	����
��� ����� ���� � �� 	������ ����	����� �	� ��� ���
�������� ����	�� � ���	 	����� ���� �� ��������
��	������ ���� ,��� �� ��� ���� � ���� ���������
������ ��	��� ��� ���������� ��� ������� ��	���� �	��
����� �� ���� � 	����� ��� ���	 -
 ���	����	���
����� � ���� ��� � ��
 ��������� ����� �	� �������
�� 	��	 � ����� �� ���������� 	������ ���� �������
���� 	�������� ������� ����� ���� � �� �� ��� �	
��� .�������/ ��	���� �	��� 0�����	� ����� �	� ���	��
���	�� �����	��� �	��� ��� ��	���(1* ������	
���
��	�������� ���	����� (�� 2*� %	 �����$ �� ���
	����� ���� �� ������� ��	�	����� ����	��� � ��	���
�	� �� ������� ������� � ��� ���	 ��	� � ���
����
	��

�� ��� ���
��� ������� � 	������� �������� ��	����
���� ����	���� ������ �� �	�������� ��� �������� ��
� 	����� ��� ���� �������� �	����� �� ��	 �� ���
������ ��� ������	������ ������ ��� �������������

�� ����	���� 	��� ���
�� �� � ������ ������� �
��� �������� �� ����� � ��� ���� ������� ����� ��
��� ������ �� ������ 2 ��� ��	����������� � ��� �����
�������� ����� �� ������	���� ��� �� ������ 3 �$���
���� ������	��� ��� ������������ � ��� ���	���� ���
����	 �� �������� �� � �����	��

�
������
���	��� �����	 �	�
�������	����
	

!���� � ��� �$������ %4��,50� ��	���� ����
����	��	(3* �	� ��� 0��� � ,������	��� � ��� 6���
��	���� � 7���� 0
������ � ��
 ������	������ .++/
��	���� ���� ����	��	 ������� ��� 0�88�������� ���
���� �������� �� ,9�0"� ��� ++��������� ���
���� ����� ������� ��� ++ ������� � ����	�
������ ����	������ ��� ������������(:* (;* ����	�����
������ ��� ����	� ��� �������� ��� ����������� �
��	�� ��� �����$ ���
�	� �������� ����	�� �
��� �	����	�� ��	����	�� �	�	������ ��� �	 �$���
���� %	�	��;; 	 �� ��� 	�������� ��� �� ����	����
�����	 ����	���������� ������������� �$�������� ���
	�������� ���� �� ������ �� ��� �
�	��� �����	�� ����
�	��� �� ++ ��������� ���� �� ��	���� ����� ����	�
������ ���������� ������ �����	��� ����(<* (=* �88 ���
���� �������� �� ������������� �������� ��� � ���
	��� ++ �����	�� ��� �������� '�	��� 9����	 	����
�� ��� �
�
�	� ������������ � �
���� ������� ���
�����	���� ��� 	���� � ��	���� ���������� ���������
��� ������ �������� � ��� %	�	��;;>=? 	�������

�� �����������
�������

�� %���	�) ��� ��	�� ���	 �������� � ��� 0�88�
������ �	� ��
�� ����� ������ ����	��� ������	 ���

Geometry
Definition

Surface Mesher

Advancing
Front

Triangulator

Initial Front
Generator

Advancing Front

Surface Mesh

Surface Mesh
Enhancer

Volume Mesher

Mesh Size
Specification Background Grid

• Tetrahedra

Sources
• Point, Line,
 Triangle, ...

Default
•constant

Cartesian Mesh
• Octree-cells

Groupings

Geometry

Points
Curves

Surfaces

Topology

Vertices
Edges

Faces

Curve
Discretiser

������ �� ������� ��	
 �������� ��	����

������� ��	
 ��
��� �����
 ��� �����	�
 ���
������
�
�
�	���
�� �������� �����
� ��� ���
����
�� ���
����
��
	�
������ ��
 �������� �
�	���
 ������� ������ � � �

��	�	� ��� ���
��� ����� � ����	��� � ��	���� ����@

)� ��� �����	� �� ����� ���	�� ��� �����	����
��� �������� ����� �	� �9� �����

1� ��� ���� ���� ����� ����� ����������� ��� �	��
��	���� ����� � �� �� ��� ���������

�� ��� ��	���� �����	 ���	�� ��� ��������� �	�� �	��
��������� � ��� �����	�� ���	�� ��� ���� ���
���������� ��� �	���	�� ��� �$�	�� ��� ��	����
���� ����	 � �� ���� �� ��� ����� ���� ����	�
�����

� �������� �� !����!

9�� ��� �����	���� ��� �������� �������� �	� ������
������� �� ��� �����	� �� ����� ����� ������	����
�� %���	� 1� ��� ����������� �����	� 	��	�������

Geometry Definition

Surface Mesher

Point TPoint Typesypes
• 3-D cartesian point

Surface TSurface Typesypes
• Plane surface
• Linear extrusion surface
• Ferguson surface
• NURBS surface
• Rectangular trimmed surface
• Trimmed surface

Curve TCurve Typesypes
• Line curve
• Ferguson curve
• NURBS curve
• Trimmed curve

Geometry

Points
Curves

Surfaces

Topology

Vertices
Edges

Faces

Groupings

Groups Tables
Attributes

OperationsOperations
• Insert / Delete
• Extract
• CAD cleaning
• Connectivities
• Transform
• State queries
• I/O

Import FilterImport Filter
• STEP-Subset
• IGES-Subset
• FLITE
• CENTAUR
• Native binary

������ �� ������� �������� ���������

��� .!�A��/ ��	����	� ������� � �����	���� ������
��	��� ��� ��	����� 	���	����� �� �������� ��	������
����� ��� ����� 	������������ �� ���� ��� ���	 ����
� ��� ��� � �� ������� 9�� ����� � ����� ��� ��
�	���� ������	 ��� ��� �	����� ���	����� ���
�� ���� �� �������� ������ � ���
 ������&�� �����
�� �	��� 0���� � ���	������ ��� �� �������� � ����
�	���
���� �������� �	 �$������ ��� ��� � ����
��	��� ���	����� �	 ��� �� ��	���� ��� ��� ���	
��	 ��� ��	��� ���	� ���	� �	� ��������� �	 ���
������	��� 	������� ���� �$������ �	���� 0�,#()?*�
B909��C,0())* ��� ��� �	�������� %4��, �	���(3*�

9�� ��� �����	���� �������� �	� ��	���� �	� � ����	��
����� ��	�� 	 ��	���� ����� �� ���� � ���� ����	�
���� �	 ��� ��	���� ������ %	 �$������ ��� ���
���
������ �	� ��	� � ��� ����	���� �	 ��	���@

��
	
����� �� ��
 !� �������
 ��
 �
��
��� "��
��	���
� �����

� ����������	�
��� �� �	�
��� 	������
�	�
��� 	������������

� �����������	�����	���	��� �	�
��� ����
�	�
��� 	��!�

� ���������"��#����$��	�
��� �%� �	�
���
�&� �	�
��� 	��#�

9��	�����
	���� ���
��� ���� �� ����	��� ����	�
���� �	� ����������� �	� ��� 	��� ������������ 	���
	��������� � ��� ����	����� ��	����	�� ������ ���
����� ��	��� ��� ����	��	���� ��	������ ������
������ �	� ��	��� ����� � ��	��� ��� ��	����� ���� ��
%�	������������()1*� !����	��������()�* 	 B6A!0()2*�

%	 ������� ��� ������ ��� �����	� �� ����� ��
���� '�	� ������ �	 ��� ����	��� ��� ������� �
�����	�� ��������� �	 ��� �	����	����� � �$������
��������� ���� +�� ���	���� ���������� �� ��� �$�	���
��� � �	���	�	� ��������	����
���� �� ������� ����
�� ��� ��	����� �����	 � �$�	��� �����	�� �	���������
� ��� ������ �� �����	 �	�����

�" ���# ��$� �%�&� &'���!

9����	 ���	���� ������ � ���� ����	����� �������
��� �������� � �����	���� �9� ����� �� ��� ���	�
��	 ��� ������� ����	������ � ���� ��� ����� � ���
�������� � �� ����	����� ������ ��� 0�88��������
���� �� ��� ���� � ��� ���� ���� ����� ����� �����
��
� �� %���	� �� ��� ���� ������� ���� �� � ��	�

Mesh Size Specification

DefaultDefault
• constant

• local mesh size
• stretching directions

OperationsOperations
• GetSpacing()
• InsertSource()
• DeleteSource()
• RasterGeometry()
• ScaleSpacings()
• Transform()

Surface Mesher

Cartesian MeshCartesian Mesh
• octree-cells
• local lengths

Import FilterImport Filter
• FLITE
• CENTAUR
• native

Background GridBackground Grid
• tetrahedra

SourcesSources
• point
• line
• triangle
• quadrilateral
• prism
• hexahedron
• sphere
• cylinder
• cone
• frustrum

������ �� ��	
 	��� 	���������� ���������

���� ���� �� ��� ����� �� ����	����� �� ��� �������
���� �� ��� �� ��� ������ ������� %	 ���� ��	���� �
��	������ �����	��� �	��� � ���	����	�� �����	���
�	�� ��� ��	��� �	� ����������
���� ��� �� ���� �����
��������� �	� ���� ���	 ��������� � ��� 	�&��	��
����� � ��� ���	� 9�������� ����� � ���������� ����
�� � ��	��� ��� ������ �� ������ ������� ��� ��	���
�	� ��	���� �	� � ����	�� ��	�� ����� �� ���� ���
���
��� ���� ���� ����	���� �	 ��� ��	���@

� '��(��)*�������	�
��� 	��(��)*������

� '��)*�������	��� �	�
��� ���� �	�
���
 	��)*������

����� ������ ��� ���� � �� ����������� ��� ���
��������� � ��� � ��
 ��	�� ���� �	�����	����� �
��� ������
	����
��� ��� ���� ���� ����� �����
������

0���	�� ������ �	� '�	�� � ������� ������� ���
� ������ � ��� ���� ���� �������� 0�	��� ��� ��
������ ������� 	 ��� �� ������������ ��� ��������
��� �� ������ �� ���� ��� ������� �	����	������
��� �� ������� � ��� ��������� ����� ��	����� �	�
�������� � �� ���� ��	��� ������� ���� ��� ���
��� �	������ 	��������� �	� �	������� �����������
������ ������������ ����

��� ��������� ����	������� � �
��� ������ ��	���
���� �����	��� ���� ����� � � 	����	������ � ���
�9� �����	� �� �	������� �� ������ �� ���� ���
�	��� ��'�	� �	� ��� ��	�� ����� ���	����� �	��
������ �� (�� 2*� ������� ��� ����� � ��� ��	������ �����
�	� ��	���� ����������� �	� ��� ���� ������� �����
����������� +��� ��� �����	 &��������� �� ��� �� ����
��	������ ���� �	� ���� � ��	��� ��� ���� ���� �� �
��	���� ���� �� ������ ,$��	����� ��� ��
� ����
��� ��	������ ���� ���� �� ����	���� �
 � ����� �����
��	��	 ���� ��� ���������� �������� ������ ��� ��	���
���� ������ �	����� �	� ���� ������	 ���� ���� �	���
����	���� �� (�� 2*�

�(�)�*'&� ���#��

��� ��	��� � ��� 0�88������� �� ��� ��	���� �����	
������� ������	���� �� %���	� 2� ��� ���� �� ���

Surface MesherSurface Mesher

Volume Mesher

Initial FrontInitial Front
GeneratorGenerator

•SetTolerance()
•CreateInitialFront()

Advancing FrontAdvancing Front
• Ordered set of sides
• InsertSide()
• DeleteSide() Advancing FrontAdvancing Front

TTriangulatorriangulator
•SetTolerance()
•Triangulate()Surface MeshSurface Mesh

• Nodes, Edges, Triangles
• Connectivities on demand
• Append()
• Extract()

Surface MeshSurface Mesh
EnhancerEnhancer

•SetTolerance()
•SwapDiagonals()
•Smooth()

Mesh Size SpecGeometry Def.

CurveCurve
DiscretiserDiscretiser

•SetTolerance()
•DiscretiseCurves()

Set ofSet of
DiscretisedDiscretised

CurvesCurves

������ 	� ������� ��	
�� ���������

���	� ��� ��� �$������ � ���� ���
��� ��� ��'�	�
��� ������ 	��������� �	 ��� ��'�	��� ����� � ���

������� �	����	�� !���� � ��� ��������� �	��
���	����()3* ():* ��� ��'�	��� ����� �	� ��	��� ��	��
��� ��	�� ����	�����	� ��� ������� �	�� ����	��	 ��� ���
��������� �	�� �	��������	 ������ %	 ���� �����
���� ���� � �� ������� ��� ��	�� ����	�����	 ����	������
��� ��� �������� ����� �������� � ��� ���� �� ��
��	���� ���� ���� ��� � ��	����� ����� �� ����� �
��� ������� �	�� ����	��	
���� ������ �� ��� �������
��������� �	��� ��� �	��������	 ���� ���� ���	����
�	�� � ����	��� ��� �	������� ����� � ��� ��	����
����� 7��� � ����� �	� ���� �� ��� �	��� ��� �	��
��������� �� ������ ��� ��� ��	���� ���� �� �	����
��		�� � ��� ���� �������	 �	 ����������� 9���	
������ ����	������� ������ ���� �� 	����� � ���
������� ���� ��� ������ �		������ ��� 	�������� �
��� ������� ������� ����� ��� ��	��� ��	���� ������ ���
��� �� ��� ���	���� ���� �	 � ����� �	�����������

"� ��
����+ �����������
	

9 ����� �������� ��� ��	����� �����	������� 	����	��
����� � ������ �9� ���� ��� ���� ��������� ���
���� ��	����	� ��� ���	����	����� ������ �	� ��������
����� ���� �9� ��	��� ��� ������ �	����� �9�
��	����� �� 	��	 � �� �� ���� ������ �������� 9 ��
����� 	� ��� ��	������ �����	��� ���� .��	�� �����
��	����	�/ �� ����	����� � �	������ ��� ���	�
���
���� ��� ������ �������� 9����������� ��	������
����� ������ ��� �����	� ��� �� ������� �� �� 	�
��	 � ���� ������ �	������� ��	��� ���� ���
���� ��	��� ��� ��	���� ���� ����	����� ��� ��	������
�����	��� ���� ��	��� �� ��� ���� ���� ����� ������
������� �	� �	����� �� ();*�

"�� �'������'���! �* 	'���� ��� �)����

��� 	����	������ � �9� ��	��� �	� ���	���� ������
�� ��	�� �������� ��	�����	� ����� �� �� ��� ���	@
������� �	� ������ ����� ��$���� �	� ������ ����

��� ��$���� ��	����	� ����� ����� B
 � �9� ��	��
�� ���������� ��� ���������� ��	�� �������� ��������
��� ���
��� ��	�� �������� �	���	��@ ��� �	� ������ �
� ��	�� ������� ���� �� �� ������	 ���� ��� ������
 �� ������� �	� ������ ����� ����	����� ��� ��	��
������� ������ ���� �� ������	 ���� ��� ��$���� �	�
������ ����� %������� ��� ��	����	� ����� ���� ��
������	 ���� ��� ��$���� ��	����	� ����� ����� ����
���� �������� �	���	�� �� ��� �������� �� ��� �	� ������
�� ��	��	 ���� ��� ������� �	� ������ ����� ��� ��	���
��	� ����� �� ����� �� ��� ����� ���
��� ��� ����������
����	� �� ��� �
 ��� ����� � � ��	�� �������� ���
������ ������ ����� �� ��	��	 ���� ��� ������ � ���
�		�������� �9� ��	��� %������� ��� ��	�� ��������
�	� ���	$������ �� ��	����� ������ %	 ���� ��	�����
���� � ������� �$ �� ����	������ ��	��� 	����	 �$�

���� ���	�� ��� ���� 	������� � ��� ����	 � ��
����	���� ��	������ �����

"� �'������'���! �* 	'���� ��� �)�*'&��

��� 	����	������ � �9� ��	����� 	�&��	�� ��� ����
��	�� ���	 ����� �� �������� ��	�����	� ����� ����
��� �����
���� �	� ���� ��� �	 ��	�� 	����	�������
!������ ��� ��� ��	� ������ � �	����� �9� ��	����
�� ������	��� � ��������� ���	����()<* ()=* �	� ���
����	 �	������ �� �������� 9� � 	�� ����� ��� �	������
�9� ��	��� �	� ���	$������ �� ��&������ � ��	�����
������ %	 ����� ���� �	� 	����	���� �� ����	���� ��	�
���	� ��� 	�������� ��	����� ����� �� �������� .��	���
����/ ����� �	� �	����	��� � ��� .���/���	�����	
����� � ��� �9� ��	����� ��
���� ��� 	�������� ���
������� ����� ������ ���� ����	��� 	��	��������� �
�		�������� �	������ ��	��� ���� �� ����	���� ����
���	 ������� � ��� ��������� ���	�����

��� ����� ���� ������� � �������� ��� ������� ����
����	�������
��	� ��� ���� ��	���� ��	����	�
��� ��
������������ ����	� %	 ��� �� ��� ����	����� �&�����
����	������ �����	��� .�	���/ � ��� �9� ��	���� �	�
	����	���� �������� ����� ��� �	����� ��	�� 	����	��
����� ���	����� D
���	� ���� ���� ��� ��	����	�
����� �� �� ��� �� ��� ����� ���
��� ��� ��	���� �	�
��� ����	� �� ��� ��� ����� � � ��	�� �������� ���
��� ����� � ��� ��������� ��	�� �������� �	� �����
�� ��� ����	�� ������� ������ %	 ���� ��	������ ���
 ��� ������� ���� ����	������ �� �$�	����� �	� �����
�	���� �� %���	� 3 ��� ��� ������� ���� ����	������
�� �� ��� ����	����� �	� 	��	������� �� ��� ��	�����

B
 ��� ��������� ���	���� �� ������� ����	����� �	
��� �� ��� �������	����
���� �	� �� ��� �� ��� �����
��� ����� .���	� ����/� �� ������ �� ��� ��	�� � ��� ���
��	���
���� �	� ������ ��� ����� ���������� �� ���
��&������ � ��	����� ����� ��� ���� ������ ��� �	�����
��	����� ��� ����	������ �	� �	�
� �� �&��	�� ��
%���	� 3� D
���	� ����� ����	 ��	�� ��	�� �	� 	���
��	���� �����
��� ��� �	������� ���	���� 9���	�

�	��� ��� ������� ������ ������� �	� 	������ � ���
������� ����� ������ ������ ��� �	����� ��	���� .��	�
���� �	�
�
��� ����� ����� �� %���	� 3/� ,��	� �������

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

trimmed surface

u−v parameter space for CAD surface
trimming curves

inner part of scan line

������
� ��	���	���� �� ������ 	�������

���� ������ ��� �	����� ��	���� ���� � 	����	 �$ ���
�	���� � ��� ��	�� ������ ������� 9�������� 	����	
�$�� �	� �	����� �� ��� �������� ���
��� �
 �������
����� �� ��	��	 ���� ����	 ������ �������� �� ����
���
��� �	����� ��	���� �� ��������� ������� �� 	����	
�$���
���� �	� ���� �	 ��� ����	���� � ��� ��	���
���� �����	��� �����

"�" �'�����'! �'&,-��)!. ���#

��� ������ 	� ��� ��	������ �����	��� ���� ������
 �� ��� ���� ���� 	�&��	�� �� ��� ��	���� ���� ����	�
��	� �� �� ����� � ��� ���	�	������ ��	������� ��	���
��	� ����	����� ��� ����������� ���
��� ��� ��	������
�����(1?* (1)* (11*� ��� 	����	 �$�� ���� ��� �9�
��	��� ��� �9� ��	����� ����	���� ��� ���� 	�����
��� � ��� ��	������ �����	��� ����@ ��� ��	������
�����
���� ����	���� � 	����	 �$ �	� ������ ��� �����
��	������ ����� ���� �� �� ��	��	 ���� ��� ��		���
	����	 �$� !������� ��� ������ ������ � ��� �		��
������� ��	�� �������� 	 	����	� ��� ��	���� �������
���� �� ��	�� �� ���	� ����	������ ��	������ ����� 9�
��� ���� ��� ��	������ �����	��� ���� �� ������
���	������ � � �������� ��'�	���� 	���@ �� �� �� ���
�
�� ���� �
 �������	��� ��	������ ����� ��'�	 ��
�	� ���� �� 	� ������ ������

��� ��	�� ������ ������� �	� �	������� ��	���
��� ��	������ ����� ��� 	��� � ������ ���
��� �����
���� ��	������ ����� �� ������� �� �� ���	��� ��� �����
�� ����
��� � ������ ������ ������ ����	������ ��
�������� �� ��� ������� -
 ������ "	���	� ���
���	 �� ���� � ���	� ��� 	��� � ��	������ � ���
�	���������� �� �������� ���� ���� ��	�����	� %��
������ ��� �	������ � ��� ������ ������ �� ����������
����� � ����� �&��	� ������

��	��� ����	���� � ��� ��	���� �	������ ����� ���
��	������ �����	��� ���� ����� �� ��� ���� ����
����� %	 ���� ����� ��� ���� ���� ���� �� 	�&��	���
%�	��� ��� ��	������ ���� �� ������ �� �������� ��� ���
�	�	������ ��	�� �������	����	� �������� ���� �����
���� ��� ����� ���� ���� �� ����	������ �����	�� ���
��� ��� ������ ������ ��� ��� �	�������
���� �� ��	��
�� ��� ��	������ ����� ��� ������ ���� ���� ������
 ����� �� ��� ��������� �� ����� ��� ���	��	� ������
�� � ����� ���� ����	��	�

"�(�/'!,�!- �)� �* ��/�.�

��� �����	���� � ��� ������ ������ ��	��� �����
�� ������� ���� ������ ���� ��� ���� ���� ���� �
��� �
�	 ���� � � ���� �����	� ��� �� ��-�����
��� ���� ���� � ��� ����	 ����� ���	�
���� ��������
	� ������ �� ������ ��� ��� 	�������� ��	���� ���� ��
������ �	� ��������� ,��������� ���� �'���� ���
&������ � � ������� &������	������� ����� ������� ���
���� �	������� ���� ������ ��	���� ������� � ���

�		�������� .����	�����/ ��	���� �	������� %���	�� :
��� ; ��
 ��� ������ � �������� �� ����� �	 ���
������� � � ����	�� �	����	� ��	�	���@ ��� ������	 ����
��� ������� � ��� ������ .%���	��)3 ���):/ �����	���
��	��� ��� ���� ������� ������ ��� 	����� ��� ����
��� ������� ���	�� %���	� ;� �� ���	���� %���	� : ���
����	���� ���� ���� ��� �� ���	� �� ��� �	�������
��	��� ����� �� ������� %	 ����� �����	���� ������
��� �� � ����� �� �� �������	��

������ �� ��
�� �������� �� 	����	 ��� ������� ��������
���	��� ���������

������ �� ��
 �������� �� 	����	 ��� ������� ��������
���	��� ���������

�� 	��	 � �	����� ������ ������ �	�������
��	��� ������ ��� ��	������ ����� ������ ����� �	�
������� ��@ ����� ����� ������ �	� �� ������	�� �	
��� ������ �	������� �	����	�� 9� �	��	�&������� �

����� ������� ��	���� ���� � ��� �����	� �� 	�&��	���
�� �� ������� ��	���� ���� �� �� ��������� .�	 �$�����
0�4 ����� �	��� � ��� �9� ������/� ��� �������
��	���� ���� �� ����	����
����� �������� �� ������
D�	� � ����	 	����	������ � ��� �����	� ��� ���	�
������ �	������� � ��� ������ ��	������ ����
������	
��� ��� ��������� ��	�� ������ ������� �	�
��	��� ���	�
���� �� �� ������ � 	����	 ��� �����
�	� ����� �	 ����	����� ��� ��� ��	���� �����

9���	 ������� ��� ������� ��	���� ����� ��� ������
������ �� �	������� ����� ����� ��� ��	������ ����
�	������� ��	��� !�� ���� ����� ��� ��	������ ����� ���
���� ��� ��� �	� �� ������	�� �	 ��� ������ �	���
������ �� 	��	 � ����� �� ����	 ������ ��� ��	������
����� �	� ������ ���
���� �	� ����	������ �� ��� ����
���� ��	���� ����� ��� ������� .������ > ������/ �
��� 	�������� ����� �	� ���� ����� � 	����	����� ��� �
��	��� ���	����()=* (11*@ 	�� ��� ������ � � ����
.
��� ���� ��� ������/ �� ����	����� �� 	�� �	������
9���	
�	��� ��� ������	 ����� ����� ��� ���� ������
	���	�������
���� �	� �� ��	��� � �� ����	������
�� ��� �����	�� %���	� < �	������ ��� ��	������ �����

���� �	� ������ ��� ����	�� �	����	� ��	�	����
��	���
��� ����	������ ����� �	� �	�
� �� %���	� =� D�	�� ���
����� �����	�� ��
 ��� 	����� ��	��� �� ��� �����
��	�����

������ � ����	��� ����	 ��	���
� ������� ��������
���	��� ���������

(� �������������
	

� 	����� ��� 	������ ���� � ��� 0�88 ��	���� �	��
����	��	� ��� ��� ������������� ����� �	� ��	�
��������� ����� � ��� ������� ������� �	�	������
���� �� ��� ��� � ��� "#��������	�(1�* (12*� ����
������� ��� �Æ����� ���������� � ��� ���	�� ��� ����
�	������ ���	� ��������
����
��� �� �� ��� ����
�	 � ���	�� ���	� ��	����������� ����� � ������
��	������� ��� � ���� ����	������ ���	� ���	���
��� �����'������ #��������	 ���� ��	�
�	� ��� ��

������ �� ����	��� ����	 ����	���� ��
� �������
�������� ���	��� ���������

���� ������������ �	 ��	����� ��	���� ������� ��
���
�� ��
� �� ������ 3�

(�� �'�'//�/ �������� �'������'���!

��� 	�� ����������� ��������� ��	� �� ��� 	����	����
��� � ��� �����	�� D�	� ��� ���� �� ��	 ��� �����
��� ����� �� ��	��������� �� � �������� ���	����
����
�� ������	���� �� %���	�)?� 9� ��� ��������� ��� � ��	�

Process 0
Rasteriser

Process 1
Rasteriser

Process 2
Rasteriser

Process n-2
Rasteriser

Process n-1
Rasteriser

Subgeometry

Subgeometry
Subgeometry

Geometry Def.

Raster Boxes Raster Boxes Raster Boxes

Mesh Size Specification

Cartesian Mesh

DISTRIBUTOR

WORKER

COLLECTOR

������ ��� ������� ��	���	���� ��
� ��������

���������� �	������ �	� ��������� ��� �� ����	����	�
�� ������	 ��� �� 1
	��	� ��	�	���� ��� ������
���� � ������� �� �������� ��� ��������� ���
	��
�	� 	�� ���� � ��� �	 � ��
 ��� � ����� ���>	 �����
� �� 	����	��� !� ���� E
	� � ������E���	����� ���
��� ��������� ������ �� ��'�	��� �����	�� ���������
��	�����	�� ����� �� ���������� 7��� �
	��	 �	����
 ������ ��� 	����	������ � ��� ��		��� ��������	� ��
����	���� �� ������ �� ��� ������� 	����	 �$�� �	�

���� � ��� ������	 �	���� �	 �� ��������� � ���
��	������ ����� 9� ��� ��� ��� ������	 �	���� ��	�
�	��� ��� ��	���	 ����	������� ��	����� .�����
���� ������ �	�������� �>+� ����/ � ��� ��	������
���� �� ��&������� ���� D����� ��� ����������� � ���
��	����������� �� �������� ��� �� � � ����� �����	 �
�	������ � ��Æ����� ������� � �	� ���� �� 	��	
� ��������� �� ������� �� ������	���� �� ������ 3�

(� �'�'//�/ �)�*'&� ���#�!-

%	 ��� ��	����� ��	���� ������� ��� �� ��	 ��� �����
� �� ������ �� ��	��������� �������	 � ��� ��	�����
	����	������� ���� �� ��
� �� %���	�))� 9���	 ����

Mesh Size Spec

Process 0
Surface Mesher

Process 1
Surface Mesher

Process 2
Surface Mesher

Process n-2
Surface Mesher

Process n-1
Surface Mesher

Subgeometry Subgeometry Subgeometry

Geometry Def.

Surface Mesh
Surface Mesh

Surface Mesh

Volume Mesher

Surface Mesh

DISTRIBUTOR

WORKER

MERGER

Discretised
Edges

Discretised
Edges

Discretised
Edges

������ ��� ������� 	������ ��	
����

�	���� ��� ����	����� ��� 	�� .����	����	� ��	��	
	
	��	/� ��� �������	� ������������� ����� �	� �$��
������ ��� ����	����	 	���� �� ��� ������� �����	�
��� ���
	��	� �	� ������������ ��� ���� ���� ����� ���
���� ���� ��� ��	����� ������� ���	��� ,���
	��	
&��	��� �	 ��� ��$� ��� � ����� � �� ������ � ���
���� �� �������� ��� ���������� ���������
����	
	 �� ��� ����	����	 �	������	������ ��� ���� �����
�	� ������ ��� ��$� ��� � �����	�� �������� �� ����
� ��� �		��������
	��	
��� 	
����� ��� .���
	����/ �	������	������ ������ ���� �	������	�������� ��
������	� ��� � -����� ���� 	���' �			��
����
�� ����� �� ���� � �� ����	������
��� �� ���� �	�
	 �����
���� �	������ ��� 	���������� � ��� ����
������ ��� �� ��������� ���� ��� � �����������
�����	���� D���	������ ������	� 	������ ��'�	���
����� � �	����	� �	� ���������� �	 ���� ��	����� ����
����� 7��� ���
	��	 ��� ������ ��� ��������� �	��
�	���������� ��� ��� ���� ������������� ��� ��	�
���� ���� �� �	��������� � ��� ��	��	 �	����� 9��
��	 ��� ����� ���� ���� ������� ��� ��	��	 ���������
��� ������� ���� �� �������� ��� ��� 	������� ����
������� +� ��� ��� �	�� ��	���	 ����	������� ��

�	����� .�������� ��� 	��������� ����/ �	� ��	�	���
�� ��&������� ����

9�
��� ��� ���������� ��	������ �� �� ���	���� �@

� ���� ��� �������� �����

� ������ ��� ������ ������ � ��� ���������

� ������� ��� ������ � ���� � �� �	������ ���
�
��� ��'�	��� �������

D����� � �9� ���� � 	�������� ���� ����� ��
���� �� ��� ���� �	����	� �	� �������� ���	
���
� 	������� �����������
��� �� �� �������� 9�������
����� ����� 	�&��	��� �	� ����������� �'	� �����
�� �	������ 	�� ��	��� ��� ��	����� ������� � ����
���� ��� ��	������� ,��������� �� ��� ���� ���� �����
����� �� ���	� ���	
��� ��� �	����	� �������

	����
���� ��� � ��� ���	� ���� ��	���� ������
����	
	��
���� ��� ������� �������� ��� ����������� �
��� ���	���� ���	��	� � ���	����� �������
����� ��
���������� �	 ���� ���� ��	��� ��� 	����	������� ����

����� �� ��������� �� ��� ��� ��	 ��� ����	�� ����
������� ����� ��� ��	���� �	��� � ��� �		��������
	����	 �$��� 0��� �
����� �� ���	$������� �	�
�	����� � ��� �����	 � �	������� � �� ����	����
�	 ��� ���� ��� ������� ��� ���� �������� ����
�������� ����	���� ��� 	��	 ��
���� ��� ����� �	�
�������

��� ���� � ��� ��������	��� ��� �� ������� ���	��
����� � ��� ������������ � ��� ����	����� �������
����� ���
	�� 0�����	 ������� ��� �� ���� �	 �
�
�������>���������
���� ���
	���
��	��� ��	��	 ����
�����	��� ����� �� �	� ����	���� �	 ���� ��	�	�
���� ����	������� 	������� ��� �����	 � ��������
� �� �$�������� D
���	� ���� ��� ������� � � ��	��
�$���� � ���	 ����	� ���� �� ��� ���� � ��� �����
�	�� ��� �	����	�� ����

�� �� ����	 ���� ��� ��$���� ������� ���������� ��
����	�� �	�	����� � ��� ��$���� ���� ������ �
	����	>���� � ������ ����� �� ��� ����� ������ �
��	�� ����� � ����������� ����� ��� ��	����� �$��
�����
��� �� ��	�	� �� �$������� �� ���� ����� �
 ����	��� ��	����������� � ��� ����	����� ���	�����

��� ���� � �� ���� � ��	���	 ����� �� ��� �	�
����� B���	�������� �� ��� ������� ���� ��� 	������
�	� ���� �� 	��	 � ��������� ��
��� �� ��
� ��
������ 3� ��� 	����� ��
	�� ��� �'	� ����	���
���
��� �	������� ���	����

(�" �'�'//�/ �)�*'&� �����#�!-

��� ��	����� ��	���� 	�������� �	������� �� %���	�)1
�� ���	����	���� �� � ��	�� ����� ���	���@

)� #�	����� ��	���� ���� ��������

1� #�	����� ��	�� 	�����	��������

�� #�	����� ��	���� 	��������

Process 0
Mesh Analyser

Process n-1
Mesh Analyser

parallel mesh analysis

in each partition

unmodified
Surface Mesh

Process 0
Remesher

Process n-1
Remesher

MERGER

marked
Surface Mesh

marked
Surface Mesh

preparation of parallel
curve re-discretisation

Process 1
Curve Discretiser

parallel mesh initialisation parallel mesh initialisation

Mesh Size Spec

Subgeometry

Subgeometry
Subgeometry

Geometry Def.

Mesh Edges Mesh Edges Mesh Edges

WORKER

MERGER

Process 2
Curve Discretiser

Process n-2
Curve Discretiser

Process 0
Curve Discretiser

Process n-1
Curve Discretiser

DISTRIBUTOR

DISTRIBUTOR

Process 0
Remesher

Mesh Edges

Subgeometry
Subgeometry Subgeometry

Surface Mesh
Surface Mesh Surface Mesh

WORKER

MERGER

Process 1
Remesher

Process 2
Remesher

Process n-1
Remesher

Process n-2
Remesher

Volume Mesher

Surface Mesh

Edges and Curves only!

������ ��� ������� 	������ ����	
����

�� ���	��
��� ��� ������������� � ��� ��� �� ����
���� ����� ����� �� ���	� �	����� "�� ������ ���
�� ������ �� ��� �������>	����� � ��	���� �� �
��� �� 	����	 ������ �	�������� ���� %	 � ��	�
����� �������� ��� �$������ ��	���� ���� �� ��	�������
��	�� ��� ��������� �	������
��� �� ������� ��	���
��	�� ��� ������ �� ����� � ��������������	�	���
�� ��� 	�� ����� ��� �������� .�	�������/ ���������
����� �� 	��������� ��� ���� ���� �	� ��	���
�����

�!� ## ������� �
$
��	
� �� ��
 %��� ������ ��� ��

&'(�	�����
� �������� �� ������ ����������
� �
��
� ���
������� 	������������ �
���	�������� ��������������
���

���� ��	������ � ����	� ���� ��� ��� ��&������� ���
��� ��	����� ��	���� ���	����� 	����� �� ��� ���� ���
� ��	��	�� ��� ������ � ��� �$��	��� ��������� ���� �
�� �$������� ����	 ���� ��	���� �� �� ��� ��	�����
��	���� 9���	 ���� ��	����� �������� ����� ��� ��	������
��������� ��� ��	��	� �	� �������� ����� � ��� ����
��� ����	����	 �	�����
���� �$�	���� ��� ��	�� � ��
	������� ��� �	
�	�� ��� ���������� ��	�� ��	�����
� ��� ��	��	 �	����� �� ��� ����� ������ ��� ��	���
��� 	�����	�������� � ��� ����	��� ����� ����� � ��	���
� ��� �����	� �� ��	�	���� 0��	�� ��� �������� �
���� �������� �	� ����	����� �� ��� ����	����	 ���
����� ������	
��� ��� ����	����� �����	�� �������
� ��� ��$�
	��	
������ �	 ����� ��� 	�����	��
����� �������� �	� �������� ��� 	�������� �� ���
��	��	 ��� 	���	��� ���� � ��� ����	����	
��� ���
	�����	��������� ���� ���� ��	�	���� �� ��� ���	�
����� ��� ����	����	 �$�	���� ��� ���	 �����	� �
���� ��� ��� ����� �
�� ����� ������ ������	
���
��� ����	����� ��	���� �� ������� � ��� ��$�
	��	
&��	���� �	 ����� ��� 	������� ���� �	� �������� ��
��� ��	��	 ��� ����	��� ����� ��� ��� �$������ �����

�� ������� � ��� ���������� �	��
�����	 � ���
����� 	�����	���� �	� ��	���� 	 � ���� 	��������
����� � ��� ��	���� �$������ ��	���� ���� �� ��� ����
��	 ���	���� ����	���� ������� �%� ����������
��� 	��������
��� �� ��� ����	������ � ����� �������
��� � ��� ����� ���� �� �	����� ���� $�� ���
��� � ����� ������ � ��� ���� ��� � �� ��� ���
7��� � ������� ��
 ��	���� ���� ��� ��� ����	� ���
��� ����
��� ���� � �� 	�����	���� ������� ����
�	� ��	���� ����	�� � ��� ���� 	��������� ��	�
��� ��� ����	���� � ��� ������� ��	���� ���� � ���
����� 	�����	���� ����� �� ��� ���� ���� ��� � ���
�	����� ������	 ���� 	�&��	�� ��� ��� �������� �����	
&�������

0� �1������

0�� ��!���& ��'!�%��� ���&�'*�

��� �	������� ������ � ����� �������� ��	���� ����
����	���� �� ������	����
��� � ����	�� �	����	�
��	�	���� ��� �9� ����	����� �� ���	��� ��� ���
0�,# �	��� ��� ������� � <:2 B6A!0 ��	��� ���
�2: B6A!0 ��	������ ��� ��� ����� ��	�����	� .�	
�9� ��	�����/ ����� �� �� ��� ���	 �	� ��� �������
�	� ������ ���� .������� ����� ?�13 (��*� �	
��� ?�)
(��*� �	 ������� ?�� (��*/� ��� ��$���� �	� ������
���� .������� ����� 3? (��*� �	 ������� 1? (��*� �	
��	 ���>������	� �����) (�*/ ��� ��� ��$���� ��	�
����	� ����� ���� .�������)? (Æ*/� 9����������� ���
���
��� �9� ��	��� �	� 	����	��@

���	�����
�
�
�
��� �� ��
 �$
���	 ��
� �� � 	��������
�"�
� ���� �����
� 	���
��

�
��� �	������ ���� .���� F ?�;3 (��*� ���� F
)�3 (��*/�

�
��� 	� ���� .���� F 1�3 (��*� ���� F 3�?
(��*/�

� ���
��� ��� ���� .���� F ?�3 (��*� ���� F)�?
(��*/�

7� ��������� ���� �� � ������ ��	�� �� ����� �� �	
���� ����� %���	�)� �	������ ��� ��	���� ���� � ���
����	�� �	����	� ��	�	���@ ��� ���� �� ��	���� ���
����� � �111?2 �	������� . ��� ��	���� ����/� ���
������� ��	���� ����
����� �������� �� ����� ���
������ ��?�1? �	�������� ������� � ���
��� ��� 	����
�	� ��
� �� %���	�)2� %�	���	�	�� �� %���	��)3
���): ��� ������� ������ �� ������ ���� ��� ����	
��	� � ��� ������ �� 	�������� D�	�� %���	�): ��
�
��� ������ � %���	�)3�
���� �� ��	��� �� ��� �����
��	���� �� %���	�); ������ �����	������ �	� �����

������ ��� ������� ����������� ��� ������� ���	���
��������

������ �	� ���� �� �� ������� ���	��� ��������

�	 ��	����� 	����	������ ��� ��	���� �������� 9�� 	���
��� ���� ��	�	��� � � #� ������	 ������ 	������

��� G,+B 1�:; CD� �	����	� �������� ��� �������
����	���� 9������ ��� � ��	����� ������� ��������
� ���� ��	 ��� �� ������� �): �	����	�� ���

������ �
� !�	��� "��# �� ������� ��� ������� ���	���
��������

������ ��� $���� �� ��	��� "��# �� ������� ��� �������
���	��� ��������

#processes

tim
e

[s
]

sp
ee

d-
up

5 10 15
0

100

200

300

400

500

600

700

1

2

3

4

5

6

7

8

9

10

time [s]
speed-up
time [s]
speed-up

Meshing

Rasterisation

������ ��� ���������� �����	 ��� ������� ���	��� ���%
�����

���	���� ���� ���� .��� ��������� �>+ ��	������
� � � / � ��� � ��	���� ���� �	 ��� ������� �� ��	��
��� ���	���� �	� � �����	�
����� ��� ��	��� ��
	������ �
� � ���� ���� �� ��������

0� �.�'!&�. 2�-#������%� ���&�'*�

��� �����	� �� ����� � ���� �$����� ������� �
:;<< B6A!0 ��	��� ��� 1;2= B6A!0 ��	����� ���
�� ���	��� ��� ��� 0�,#��	���� ����� ��	�����	�
.�	 �9� ��	�����/ ����� �� �� ��� ���	
�	� ��� ����
���� �	� ������ ���� .������� ����� 2 (��*� �	 ��	
���� ����	� ?�3 (��*� �	 ���	 ��� ?�3 (�*/� ��� ��$�
���� �	� ������ ���� .������� �����)?? (��*� �	 ��	
���� ����	� 3 (��*� �	 ���	 ��� 3 (�*/ ��� ��� ��$�
���� ��	����	� ����� ���� .�������)3 (Æ*/� 9����� �
��	���
�	� ����� ��� ��	���� �	�� .���������)�:
������ �	�������/ ��
� �� ������ ��� �� %���	�)<
�� ���� ����� ����� � ��� ���� ������� ���������� ��
��� 	����	������ �	����� �� %���	�)= ������ ����

������ �� &��� "��# �� ��"����� ��
��%��� ��������

��	������ �	� ����� �	 ��	����� 	����	������ ��� ��	�
���� �������� 9�� 	��� ��� ���� ��	�	��� � � #�
������	 ������ 	������
��� G,+B 1�:; CD� �	����
�	� ��������
��� � H69�A��0 ���
	�� 0�����
��� � �	� ���� �� 	��	 � ��������� �	� �������
�	 ��� ��� 	����	������ ��� ��� ��	���� ��������
��� ��� ���	���� 	����� �� ��� 	������� � ��� ����
���� ������ � ��� � ��	���� �	�� ���	���� �	� ���
��
��	����� �����	�� %	 �1 �	����	�� ��� ��	��	���
���� ��� �� 	������ �	� ����)@)? ��	� �
� �
)? ��������

3� �
	�����
	�

��� 	������� �������� 0�88������� ��� ���� �	��
������� ��� ++ ������ ��� ������������� � ���

#processes

tim
e

[s
]

sp
ee

d-
up

10 20 30
0

500

1000

1500

2000

2500

3000

0

5

10

15

20

25

30time [s]
speed-up
time [s]
speed-up

Meshing

Rasterisation

������ ��� ���������� �����	 ��� �� ��"����� ��
��%
��� ��������

������
�� ����	���� ������	
��� ��� ��	�� ���	
��������� ��� �����	� �� ������ ��� ���� ����
����� ����� ��� ��� ��	���� �����	 ������� !���� � �
	����	������ � ��� �����	� �� ��������
�� � ���
��	������ � ���� ����	������ � ��� ������� ����� ��
��� �����
�� ������������ � ������� ���� ��	��	���
������ ��� ������������� ��������� ��	�� ��� �� �$�
������ �� ��	������ ,��������� �	 ��	�� �����$ ���
 ��	����� ��������� �������� � �����	�� ��������
��� ��	��	��� ���� ��� �� 	������ �	����� �� ���
�	������� ���	��� �� ��
� �� ��� �$�������

��4	
5�������	��

7�
��� ���� � ����� ,9�0 "�����	� 9�	�	���� +���
�	���� ��� ��� ��������� �� ��� ����	���� ���������
����	����� �	 ��� ����	��

0������ ����
���������� ���� � �� ����� � 4�����
%	�����	� 0������ "� D������ I��	� 9� 0J	����� ���
D�	��	� A����	 �	 ��� �	��� ����	� ����	���� ����
��	��� ����� � ����
	��

��*���!&��

()* %	�����	 4�� ������	 %�� �	���� 6�� D����� +��
7�����	��� B�#� KA���� ��� ,Æ����� C���	��
��� � 6���	����	�� 0�	���� C	��� ���� C��
���	������ �����$ �� ��	����� 6���� A����
������ �9� �����L ���	
�

������� ����
����� ������� ��� ��	����� 9�99� M��� 1??�

(1* ������ M�%�� 0�� !�I�� 7�����	��� B�#�� ����
�	�� �������� �� ��� ���������� �A� #	���
44��)===� ������	 1:

(�* "�"		�� D�� I�������	�� N� K+��	���9��������
%	�� "���� �	 C���	���� � 6���	����	��
0�	���� ��� O���� "������L
�

 ������� ���
O�� �3� �� B� :� M���)==;

(2* 9������ "�M�� �������� "�� D����� A� K9��
������ C���	���� � �%��A���� 0�	���� �	��
���������� �	� �9� C����	��L
�

 ����
 �!""#�)===

(3* ����������� �������� A����	�� .��A/� ���
������ ����	�� 6����	���� ������� 0�������
#�	�� 0
����� 091 <##� 6�I� $%�&��'()��
������

(:* C���� ,�� D��� A�� M���� A�� O�������� M�
(����� �������* �������� �� +������� ,�-����
,������ ����.��� 9������7������)==3

(;* 0�	���	�� !� &	� /00 ��������� %��������
9������7������ �	� �����)==;

(<* !����	� D� %�	���	 �� ����.���&��	���� 0����
�	�� 9����������	 O�	����)==<� 0��
�	��
"���������� 0��
�	��H�����P��������	���� 6��
��	��������������	���

(=* !����	� D� %�	���	 �� ����.���&��	���� 0����
�	�� 9����������	 O�	����)==<� 0��
�	��
,��
�������

()?* �0+ .����	������� +	��������� �	 0�����	�����
���/� C������ �&����� �� �	� ���	���� ��
������ ����� ���� 1�&��23 ��, �!'!'

())* B�0� .B������ ��������� � 0�����	�� ��� �����
����/� ������� ���	��� ���	���� �����4������
1����23 5����� 67'�)==?

()1* ������ M�%�� 0�� !�I�� 7�����	��� B�#�� ����
�	�� �������� �� ��� ���������� �A� #	���
44��)===� ������	 1;

()�* %�	�� C�,� /�8�� ��� ������� �� /������

���� �������� (������ 9������� #	���� �����
2�� �����)==;

()2* #���� 4�� �����	 7� &	� 9)+:� :���� 0�	����	�
1�� �����)==;

()3* ������ M�%�� 0�� !�I�� 7�����	��� B�#�� ����
�	�� �������� �� ��� ���������� �A� #	���
44��)===� ������	�);�)=

():* 4P���	 A�
������ /$(&��	��;���� M�� 7����
Q 0�� 4��� 1??)

();* ������	 %�� �	���� 6�� D�	����� ,�D�� A����	 D�
K9������� %����	��!���� 0������� � B�����
�9� ���� �	 0�	���� C	�� C���	�����L 9����
���� 9���� �� $���� ���	������ 1??�� � �����	

()<* #���� 4�� A����	� 9� K������������ �	�����
B6A!0 ��	������L /������
���� (������
��� 1;� �� B�)�):51:�)==3

()=* %��� M���� ��� ��� 9�� %����	 0�I�� D�����
M�%� /������ ���	���* ��������� ��� ����
����� 9������7������ 1�� �����)==?

(1?* ������	 %� ������������������� 	<����
��������	�� 9��=8���	�� =� :���	����
8�� ��>������� �� �������� ?��4����������
#���� ������� 6����	���P�� 0������	�� 1??1

(1)* ������	 %�� D�	����� ,� K0����+	�������� D��	��
��	������ C	��>0����� 0�����
��� "�����	���L

�

�@!!@�!��@� 1??1

(11* 9������ "�M� K0����� 9������� ��	������ C	��
"����� �	 9�	������� %�
�
��� �����$
C����	����L %����� ����� /$(� ��� 1� OI��
"�	�)==;

(1�* 0��	 "�� �� ��� ��� A &	� /������� +��������
��� "�� #	���� 1�� �����)==<� O��)� ��� "#�
�	�

(12* C	�� 7�� �� ��� ��� A &	� /������� +����
����� ��� "�� #	����)==<� O�� 1� ��� "#�
,$�������

������������� 	��
 � ���� �	 ������

������� �� 	
��

����� �� ��	
 �������� ��������
 ��������
 �� �����
 ������ �������������������������

��������

��� � � ���� ��� � � � � ��� �� � ��� �� 	�
���
� �
��� �� � �� �	��� ��� ��� ���� ��� � � � � ��� �� ����� ������ �����
����
�
�� ��� 	�
���� ��
� 	�	� 	������ � ������ ��
���	����
�� ������ �� ��� ����� ��
���� � �� ��� 	��
�
�� �
�
��� ������ ���� �� � � ���
���	����� ����
��� �� ��� ��� �� ��� �
���
���	����� �� � �
�	��� � ���� �����
�� �
��� � ����� ������ ���
���� �� ��� �
��� ��� ����� ��� ����� ������ ��
� ���� ������ ��� ����� �� � 	�
���

� � ���� �� ������� �� � ��� �� ��� ������ ���
��� �� � � ����
�
��� ���� �����
�� ���
����
�
�
�� �� ��� �����
������ ������ �� ����
��� ��� ������ �� ������
� ������
��� �� ��� 	��
�
��� �� 	�
���
� ��� ������

��������� 	
�������	�
� ����	�
 �������	�
� ���� ������� ���	���	�

�� �	��
�����
	

����
���	����
�� ��� � �
����� ��� �� 	�
���
� �

��� �� � �� �	���
� ���
��
� ���� �
����
���
���� �
�� ���� ����
�� 	��
�� �
!����
�� �����
���
�� � ���� �� 	�
���� �
�� ��	������ 	������" ��
����	��" ����� ���
� ��� 	�#���
�� �� � �����
�� ��
� �
��� �
��
������ ��� ��� ���� ���� � ���" ���

��� ���� ���� ��� ���� ���	��� �� ��� ���	����
��
�� ��� ���� �
�� ���	� $����� ����	�� �
��� �
�� ���
������ ������ ��
�� ���� ������ �����		
�� ������
�� �	����� � �
��� ����
� �
�� � ���������� ����
�� ������ ��� �����
�� ���� ������� ��� ���	�����
������� %�	�
���
���	����
�� ��� ������ �����
�
�� �� ���� ���� ���� ���� �� &������ �����������
���� ��
�� �� �������
���	����
�� ��� ��������
���� '()� *� ��� ���� ���� 	�������� � �
�� ����� ��
�����
�� +���� �
�� � ������� ���� ������ ��� �� ���
�
���� �
���
���, ����
���	����
�� �� ����� �	�
���
� ������
��
���	����
��
� 	���
���� *� ��� ����
���� ����
��� �� ��
��
�� 	����� 	�
���" ������"
�
�
�� �� �������� �� ���
�� ����
���	����
�� � �
��������
�� ������� ���� �� ��� ��-� ��� � ������

�����	�
��� ����� ��� ������
�� ���� ��������

��
� 	����� ��� ���
��� ���� ������
�� ����� 	�
�����
��� �� �������� ������� '�" �" ." /" 0) +���� -����
�� �	 ������ ��� 	��
�
�� �� ��
�� �������,� ����

���
���
��
� ��	
����� ��
�� ��� �� � ���
�� �����
������ ������ '1" 2) ��
�� ���
��� ��
�&����� ����
�
�� �� ���� ���� 	�
��� ��� ����
� ��
�&�����"
��� ��
�� ��
� �����
��
� ��� 3��" ������� � ��
��
�
������ ��� ��� ���� 	�
��� ���� ���������
�� ��
��� �
��� 	��
�
��
� �	���
� ���� ���
���� �� ���
�
�� ��� ����
���
��� ��� �� ��� ����
�� ��
�&�����
���� ������� ��� 	��
���� 	��
�
���

��� ������ 	�	����
� ��
� 	�	� ����� ��� � �	
�������
�� �� ���
���	������ ����� �� � �
���
���
	����� ��� � �
�	��� ����� ���
��� �� 	�
���
� ���
���� ����� ��� �
���
���	�����
� ���� ���������
�� � �
��� ��� ���
���� ����
� ����
��� ��� ���
��� 	�
�� ��
����� ����
�� ��
� �
�	���� ���� 	�
#���
��
� �	��
������ ���
���� ��
���	����� ��� �����
����� �� ���� ���� ���� 	�
���

� ��
���� �������	� �	�
�
�������
	

%
��� � ��� �� ������� �
��
����� 	�
���
� � ���� ��� � � � � ��� �
�� �����
���� ����� ���
��� ���� ��� � � � � ���
���	����� � ����� �+�, �� ���
�
��� 	��
�
�� � �
��
� ��� ������ ���� �� � � *�
�
���
�� ���� �+��, � ���
 � (� � � � � � ���� ��
� ���
	��
�
�� ����� �����
���� �
�� 	�
�� ���

��� � �� � �����
�
�� �
�	��� ����� ���
��� ��
	�
���
� � ��� ���� ���� � �����
�� ��� 	�
�� ��
*� ����
� � �
�������
�� �����
���� �
�� ��� ����
���� 	�
��� � ���� ��
� ��� �� ������� �� ��� ���
��
��� �
�	��� �����
�
�� �� *� �� �
�������
�� ���
���� ������" � �����
�
�� �
�	��� ��� �� ����������
�� �����
�� ������ ��� 	�
�� ����� ���
� � ��
�����
��� �� ���
��� ��� ���� ������ *� �
��� ����" � ����
����� 	������ +���� ��� �� �� ����� ���� �������
'4), �
�� ������ ��� ������� 	�
�� � � � �� �� �����
�
+��� �, �
�� ���� � � ���� � � *� � �
�������
��
�� � ��� ���� ������ ����
�
� 	���
��� �� ��� ���
�����
�
�� �
�	���
� �� ���
�
���� +(, �
��� *� ��
� ������ �
�������
�� �� ��� ������ ���� �� �
� �
���
���� ��� ��� ��� ����� � �
������
�� �� � " � 	���
��� ����
� ���������
� ��� ��� � �� ���� 	�
���
�
��� ��� ����� *� � � ���� �
� �������� ���� ��� ���
����� �� 	��
�
��� �� ��
��
���	������ ������ ��
������
� ����
���� �����"
� ��� �� 	������� �� ��
��� � �����
�
�� �
�	��� �� ����
���	������ 	��
�
��
� �� � �
�� ��		
�� 	�������

���

�+�, � ����+�, 5 �+�, +(,

���� ����+�,
� ���
���	����� ����
��� �� � �
��� ��
������ ��� ���
��� �� ��� �����
�
�� �
�	��� � � ���
�����
�� �+�,
� � �
��� ��� ���
���� �� ��� ��
������� ��� ��� �����
�� ����� ��� ��� �
���
���
	������ ��
� ���
����
� ����
��� ��� � ����� ������
�� ������ ��� ������ ��
����� ����� ��� 	�
�� ���
� � ���
���	����
�� ��� �� ��
�� ��� �� ��
��

�� �
�� ���� $������� ����
��
�� �� ��� ��
���
���

� ��� ���������" ����� �� ��� ���������
�� 	���
���
��
���� ���� ��� ���
�
�� ����� �� ����������

� ����
���
� 	���
���

�� ������ �����������

����
��
�� ��� ��� 	���� ����" ��� ��� �����
�
��
�
����� � �� ������ �� ��� ���
��� ��� ��� �� � �
��� ��� � �� ��� 	�
�� �
�� ����
����� +�� �, �� ��
��
��
���	������ ����� �+�� �,
� ���
��� ��� �� ����
����
����� +�� � ��,� � � (� �� � ��� ����� ��� �
�
�� ���
� �����
��� ��� ��� �� ���� ���� ��+�� � ��, �
Æ�� �
� � � (� �� � ���� Æ��
� ��� 6����-� �����

Æ�� �

�
(�
 � �
7�
 �� �

+�,

��� ���
� �����
��� ����	��� �� ��� �������
�
����
����� �����
���� �
�� ��� �
����� � � ����
��+�� �, � ���� ���� +��� ���� (, ��
� ��� ���
�� �
����� �����" �
�� �� ��� �� ������
� � �
�

�� ���" ��� � � �� 5 �� 5 ��
� ��� ��� �� �
�����
������� ��� �
���
���	�����
� ���� �
��� ��

����+�� �, � ����+�� �, 5 ����+�� �, 5 ����+�� �, +�,

8
��� ��� �
���
���	����� ���� �� �����
� �+�� �,
�
� ��������"
� ������� ����

��+�� �, 5 ��+�� �, 5 ��+�� �, � (+.,

8
�
����" ��� ���
����� ���� �+�� �, � � ���
�+�� �, � � �� �	������� ������� �� ��� �
���
�
��	����� ����� �� ��� �����
���

����+�� �, 5 ����+�� �, 5 ����+�� �, � � +/,

���

����+�� �, 5 ����+�� �, 5 ����+�� �, � � +0,

*� ������� ���� ��	�
�
� ��	���
��� �� ��� ���
� ����
�
��� ��� �� �����
��� ��
����
�� ��� ������ ��
�����
����

(((
�� �� ��
�� �� ��

��
��
��
��

�
�

�
(
�
�

�
+1,

��� �����
���� �� ��� ����� ���
� ������ ��
�� ���
��� �� �
����� ������� ����" ��� ���
� �����
���
�� ���� ������ 	��
��� ��� ��� �� ��� �
�����
�
���3���

R R
1 2

R

AA

A

X

1
2

3

3

������ �� ��������� �� 	
�	� ��� �� 	�� �� 	����	���
���� ��� ����� ��

� ���������� �� � �!����" ����� �����

*� ��� �� ���
���	����� �� ���
� ����� �� ���
���
��� �� � "
�
� �������� �� ����
� �� ���
���� ��

��� ������
� �� �+�� �, ����
� 3�� �� ���� �����
�� � +���� ���� ���� �+�� � ��, � 7� � � (� �� �,� ��
�
��� �� ���
����
� ���� �� ��� �
��� ���
� �����
���
�� �	�����
�� ��� �� ��

�+�� �, � ����� 5 ����� 5 ����� +2,

8
��� ���� ���
� �����
��
� � �
��� �����
�� �� � ��� �

� ������� ���� ��� 	����� �� ��� ���
� �����
��� ����
�� � ������
� �����
�� �� � ��� �� ��� ���� 	�
� ��
���
� �����
��� ���� �		��
� �����
�� +2, �	�����
��� ���� �
��
��� 	�
� ��
�� ��
����
����� 3�� ��
���� ����� �� � � �� ��� ��
�" ���� ���� �� � 7 ��
��� �������� ���� ���� ��
�� �� � 7 �� ��� ��������
���� ���� �� ���� ����
� 3�� �� ���� ����� �� � � *�
� �
�
�� ���"
� ��� �� ���� ���� ���� ��� ���� ��
3�� �� ���� ����� �� � � *� ������� ���� �+�� � ��, �
7� � � (� �� ��

9�� ��� �� � � ����� ��� ���� � � (� � � � �� �� ���
���� � ���� ���� 	�
��� ���� �� ������� �� �� ���
��+�, �	����� ��� ����� �� �� �� ��� ���� 	�
�� �� �
8
�
����" ��� �+�," ��	���
���� ����+�," �� ��� ������
�� ��� ����" ��	���
���� �
���
���	�����" �� ��� ����
	�
��� �� � � � (� � � � ��� ����� ��� ���
�

� �

�
���

��+(,��+(, ��+(,��+(, ��+(,��+(,
��+�,��+�, ��+�,��+�, ��+�,��+�,

���
���

���
��+�,��+�, ��+�,��+�, ��+�,��+�,

�
���

+4,
��� ���Æ�
���� �� �� � �� �����
��� �� ���	��
��
��� ����� ������ �		��
���
�� �� ��� �� ���� ��
��� � ���� 	�
���� ����" ��� ���Æ�
���� �� �����
��
����
�� ��� � � � ������ '(7)

���� � ��
� +(7,

���� � � +�� �� �,� ���

� �

�
���

�+(,�����+(,
�+�,�����+�,

���
�+�,�����+�,

�
��� +((,

���
���	����
�� 	������ ������
3��
� � ���
���
����� ����� �� ��� *� ��
� ����"

�+�� �� , � ����+�� �� , 5 �+�� �� , +(�,

���

����+�� �� , � ����+�� �� , 5 ����+�� �� ,
5����+�� �� , 5 ����+�� �� ,

+(�,

���� ��+�� �� ,�
 � (� �� �� . �� ��� �
��� ���
� ����
�
��� �����
���� �
�� ��� ��������� � ���� �����
��
��� 	�
�� �� *� �� ��������� �����" ��	�
�
� ��	��
�
��� �� ����� ��� �
��� ���
� �����
��� ��� �� �����

��
����
�� ��� ������ �� �����
����
��

((((
�� �� �� ��
�� �� �� ��
 � � � �

�
��
�
��

��
��
��
��

�
�� �

�
��

(
�
�

�
�� +(.,

��� ������
� ��
� ��� �	������� ��

�+�� �� , � ����� 5 ����� 5 �����
5����� 5 !���� 5 �����

+(/,

:� � �
�
�� ������� �� ���� �
��� ���
�"
� ��� ��
���� ���� ��� �
� 	�
� �� ���
� �����
��� �		��
��
�
�����
�� +(/, �� ��� 3�� �� ���� �� ��� ��� ���
��� ��
��� ��������� � � ��� ����� ������ �		��
���
��
����� �� ��� ������"

"�"� � "�
� +(0,

���� "
� �� � � 0 ���
�" ���� �� ����� ���
�
����� ��� ��� �
� �
��
��� 	������ �� ��� ���
� ����
�
��� ��������� �� ��� �� ��� � 	�
��� �� � ��� �����
�
� ��� ������ ����� �����
�
�� ��� 0 ���Æ�
����
�� �� �� �� !� � ��� �
� ������ �� ������ *����
�� ��
��� 0� 0 ���
� "�"
� ���
�� �� ����
� ��� ���Æ
�
�����

�# $�%&��
�!�� ������������

��� 	������ ������
3��
� � ������ ��� �� 	��
�
���
� ��� �
��� ��� ���
���
�� �� ��� �� �����
*� ��� 	���� ����" ��� �� �	 �� ���
�����
�� ��
�
��� ����
� �
��� ��

�+�� �, �
����

�
� 5 ����

�
� 5 ����

�
� 5 ����

�
�

5!���
�
� 5 ����

�
� 5 �������

+(1,

���� ��� ����� �
	�� 	������ �� ���
� �����
��� ��
��� ��� �� �
��
��� 	������ ���� �� ���
�
� � ��� �
��� ��
����
����� 3�� �� ��� ���
��� �� ��� �
�����
� � �����
���
�� �� ��� ���Æ�
���� �� ����� ������
����� �� � 1 � 1 ������ �� �����
��� ��
����� *� �
�
�
�� ��� ��� ��� ���
���� ��� �� ���� �	 ��
����� ��� ������� �
�� �� ��	���
�� �� �+�� �,
����
� ����� �� � �
��� ����
���
�� �� ��� (� �
��
���
�����	�� 	������ �� ��� ���
� �����
��� ���� �� 3��
�� ���� ����� �� � � *� �������
� ��
� ���� ���� ����
�� (� ���Æ�
���� �� �� ���	���� �� ����
�� � (��(�
������ �� �����
���� ��
� ��� ��� ����� ���
�������
� �� ���
�� ���
����
�� �� � (0� (0 ���
� �(� �(������ ��	���
�����

#� ��'�
� �
�	� ��
��

��� ����� � �� ���� 	�
��� �� � � � (� � � � �� ����
�� ���� �� �����
�� ��� ����� ������ ���
���� ������
��� �� ��� ����
� ��� �� ��
���
� � ���	��� ��	
	�� �� ��� �������
�� �� ��� �� ���� ��� ���

	�
���" �� ��� ���� ����" �
�� �����
� � ����

���� ���
� ��� +� "�"
� ��, ����
� �
���
��� $������� ��� ����� ������ ������ �� �����
���

� ����
����� ��� ������� ������ ��� � �����
��" �
��� �
����� ����
���� ���
� ������ ���� ��� �����
������ �����
��
� ��
����

*� 	
��
	��" ��� ����� ������ ��� �
����� ���� ��
�����
�� ��� �
�
��� ������ �����
��" � ��
��
�
���
������" �� ��-
�� ��� 	�����
����� � � ���

'(()� ;�
������" � ������ �� ���� ���� � � ���� �
�� ���� ��� 	�����
����� ������ �� ����
� ��� 	�
��
��� �
� �������� ����� ��� ���
�"
� �!���" ��
�� ��

���	����� ������ ��
���Æ�
����� ���� ��� �� ����
	�
���� *� ������" ������" ��� �
3� �� � �
�� ��� ��
� �
�
���
�� ��� ��� ����� � �� ���� 	�
��� ����
�
��� ����� ������ �� ������ �� ������ �� �� ��Æ�
�����
���� �� �����
����
�
�
�� �� ��� ����
���� ���
��

*� ��� �� �����
�� ����
�
��� ���� ��
�� ��� ��
��
���� ���
� ��� �
�� �� �
�����
� ������ ���
�� ����� ���� ��� ��� ��� ���� ���� �	��� �� � '(7)�
��
� ������� ��� ��� �������
�� ��� �����	��� �� �

� �����
���
� ��� �����	��� �� ��� ��� ��	� ���
��
<
�� �� � � � ���� � � � #+�, � #+���,�
���������" ���� � � � ������ � 7 �� ����
����� � 7 � �� � �� =���� #+���, � #+�,
��� ����� ���
�����
��� ���� ���� #+���, � #+�,�

*� ������� ���� ���$ ��� � ���$ � ��� ��� ����� ��
�
�����
���	������ ������� �� ���
� ������� ���
���� �� ��� ����� �� �
�����
���	������ �������
�� �� <� ��� 	���� ���� �
�� ������
� �� ���
��
�
��" ��� ���
� �
� �
��� �� �����
�� +4, ��� �����

����
�
�
�� �� ��� ���
�� � 	 ���$� � ��

#�� ���!����� ��� � ���%���� ��(�����"�
�����)

$� ����	�� �� ��
�� � � �
� ��Æ�
���
� �����
�
���� �� ��� 	�
�� �� �
�� �� ��� �������� ���� ����

�� ���� ��+(, � 7� 8
�
����" ��+�, � 7 �
��� �� �
�� ��
��� �������� ���� ���� ��� ��+�, � 7 �
��� �� �
��
�� ��� �������� ���� ����� =����

� �

�
��+(,��+(, 7 7

7 ��+�,��+�, 7
7 7 ��+�,��+�,

�

+(2,
���

��� �

�
���+(,�

�
�+(, 7 7

7 ���+�,�
�
�+�, 7

7 7 ���+�,�
�
�+�,

�

+(4,
*� ��
� 	��
���� ���� ��� ���
� ��� �
�� �� �
��
����" � 	�	��� ���� ���� ��� ���� ������ ��� ����
���� ���� 	�
��� ��� ��� �� ��� �
� �� �������� �����
�� ��� �����
�
�� �
����� � � >�� ��������"
� ���

	�
�� �� � � � (� � � � �� �
�� �� ��� �������� ���� ��
��� �����
�
�� �
����� � �		��
�� ����� �� ����

� (" � � � ���� ��+�, � 7� =���� ���� �� �� � ���
��� 3�� ���
�� ��� #��� ��� ��� 3�� ����� *� �������
���� ��� ������� �� � �� ��������� �� ���� ��� �
��
�� �
�������

������ �? *� ���� 	�
�� �� � � � (� � � � �� �
�� ��
�� �������� ���� �� ��� �����
�
�� �
����� � ����
��� �
�� �� �
������� *�"
� ���
�
��" ����
� �� �����
��� 	�
�� �� �� ���� �� ��� ���� �������� ����� ����
��� �
�� ��
����
����

X

R SS

SR

R

φ = 0
φ = 0

φ = 0

1

2

3 2

1
2

3

3
1

������ �� � 	�� ���� ��
�� ������ ��Æ� ��
 ����
������
����

#� � ���!����� *&�� �&��� �)��� ������
�� ��� Æ"����

��� ���
������
�� �
����
��" � �� ����� ��� �
���
�
�� �� ����� ������"
� �����
���� �
�� ��� ��
��
�
������ <
��� �
��������� � �
����
�� ���� ����
���� 	�
��� ��� ��� �� �� ��� ��Æ�
��� �� ��-� �
��� ����� ��� ����
������ *� ��� ���� 	�
���" ���
�� ��� ��" �
� �� ��� ���� �������� �
��" ��� ����"
���� ��+(, � 7 ��� ��+�, � 7� *� ������� ����

� �

�
��+(,��+(, 7 7
��+�,��+�, 7 7
��+�,��+�, ��+�,��+�, ��+�,��+�,

�

+�7,
=���� � ��� ������� ��� ���� ��- �� ��� ���
�
����
� ��- ����� �� � ����� �� ��� ���� ���� ���
�
��� ���
� �����
�� ��
� 3�� �� ��� �������� ����
�� � ����
� �		��
�� ����� ���

*� ������"
� ���� �� � ���� ���� 	�
��� �� ��
��
��� ��� ��(�
� �� �� �������� ���� �� � " ��� ����

�� ���� ��+�, � 7� � � (� � � � ��� (����

� �

�
�����

��+(,��+(, 7 7
��+�,��+�, 7 7

���
���

���
��+�� (,��+�� (, 7 7

��+�,��+�, ��+�,��+�, ��+�,��+�,

�
�����

+�(,
���

��� �
	
�� �� ��

+��,

���� ��� ������� �� �
��� ��

�� �

� �
����

�
�

��+�,��+�,���+�,
��+�,���+�,��+�,

�
+��,

�� �

�
��+�,��+�,���+�,

��+�,���+�,�

��+�,��+�,��+�,�

�
+�.,

�� �

�
��+�,���+�,��+�,
��+�,��+�,��+�,�

��+�,���+�,�

�
+�/,

$� ��	����� ��� ����
���� ���
� ��� ��� ��- �
�
��� ������� � ��� � �� �
����� ��	�������

S1

R

X

R

R

S

φ = 0

φ = 0

φ = 0

2

1

S

3

2

2

3

1

3

������ �� � ��	���� ���� ��
�� ������ �� ��� ��Æ�
��
 ����
���������

@� �����
3� ��
� ����� ��

������ �? ��� ����
���� ���
� ��� �
�� �� �
�
����
� ��� ���� � � � �� ��� � ���� ���� 	�
���
�� � � � (� � � � �� �
� �� ��� �������� ���� ! �� ��� ���
��
�
�� �
����� � �

#�# � ���!����� ��� �����) � �� &�(� ���+
����, !����!��� "�� ���

*�
� ���� 	���
��� �� � ��� ����� ��� �� �� �
�����

� ��� ��� ������� �� � �� �
����� ��	������� ��
�

��� ���� �
��
� ��� � 	�
��� �
� �� � �
�� ������ �
����� �� ��� �����
�
�� �
����� � � ��
� 	���
�
�
��
�

���������
� ���� .� 8�		���" �� ����	��" ���� ���
���� ���� 	�
��� ��� �
� �� � ���
��� �
�� % ������ �
����� �� ��� �����
�
�� �
����� � � *� 	��
����" ��
�����
� ���� ." ��� �� �� ��� ����� ������ ��
��
% 	������ ����"
� �
� ��� ���� 	�
�� �� %"
� �������
����

��+�, �
��

�
� ��+�, �

��

�
+�0,

�
��

�� �
(

�
����� �� �

(

�
���� +�1,

=��" ��
� ��� ��� �� �
����� �����" ��
� ��� ���
�� �
����� �����" ��
� ��� ������ �� ���� ����" ��

� ��� ������ �� ���� ���� ��� ��" ��	���
���� ��"
�
��� ������ �� ��� 	�	���
���� ��� � �� ��� ��������
���� ����" ��	���
���� ����� 9�� ��� & �� ��� �����
������� �
�� % ��� ��� �������� ���� ���� ��� ��� '
�� ��� ����� ������� % ��� ��� �������� ���� �����
*� ������� ����

�� � � (
�' ��� �� � � (
�& +�2,

=����

��+�, �)��+�, ����) �
��(
�&

��(
�'
+�4,

8
���) ���� ��� ��	��� �� ��� �
������ � �� � ���
��� ����� ��" ��
� ����
�� ���� �� ��� �� ��� 	�
�
�
�� � �� %� *� ������� ���� ��� ������ ��� ��
�
������� �� � �� �
����� ��	������ �� ���� ��� �
��
�� �
������

h

θ
ψ

l

3

L

S

2

1h
d

R1

l2

1

R

R2

������ 	� ������	
��� �������� ��
 	
	�� ������� �	�
�
���

������ �? ��� ���
� ��� �
�� �� �
�����
� ��� �
	�
��� �� � � � (� � � � � � �� ���
��� ��� �
� �� � �
��
	���
�� ������ � ����� �� ��� �����
�
�� �
����� � �

<� � ������ ��������� �� 	�
���
�
� ���
-��� ����
����� 	�������
��� �
����
��� �
�� �
��� *�
� 	���

���" ������" ���� ��� ����
���� ���
� ��� �
�� ��
����� ����
�
����
� ��� ����� � �� ���� ���� 	�
���

� ����� ��� ��� ��������� �� ���� ���� 	�
���
��� � ����
�� ����
3��
�� ��
���������
� ���� 4� *�
	���
��" � ���� ����
�
���� ����
���� ���
�
� ���
���� ������ �� ��-
�� � ����� �� ��
�� ��� ����� ��
�������
� ��� ���
� �� 8
��� ��� ������ �� �����
�����
��� +����� +(7, � +(0,,
� ��� �����
�� ����
��"

����
�� ��� �� �����	�
���� �� � ������-� �����	�
�
�
�� ��� ��� �����
���� ���A� ����
�
�� �����
�� ��� ���
���� �� ������ �
����� �����
�� *� ��
�
���� ����" ����� ���� 	�
��� ��� �� ����
�� ���
�
��� ������ �� �����
��� ���� ������ ���� ����
�
�����

X

R

RR

SS

S

S S S

y

x

4 1 3

23
6

5 21

������
� ���� ��
 ��� ���� ����� ���� ��	�����

-� ��������� �	����
��	�� �
�
� 	�	� �
�	� ���$

��� ���� �����
� ���� / �����
�� �
�� 	�
���"
�
��� 	����� ����� ��� 	�
���� �� � ����� �� �
��
������ �� ��� ���
�
�� 	�
�� �� �
�� �� ��� �����
�� ��� ����� ��
��
� ��-�� �� �� ��� �
�
�� ���
� ��-� ��� ����� (�� ��� �
�
� ��� ��� ����� 3��
�� ���� �� ��� �
��� 	�
���� 	�
���� <� ���
���
	����
�� 	��
�
�� � ��� �����
�
�� �
����� ��� ��
�
��� ��+7� 7,� ��+(� 7, ��� ��+(� (, �
�� ��� ���� ���
��� �� � (� �� � �� � 7� ��� ���
� �����
��� ��

��+�� �, � (��� ��+�� �, � ���� ��+�� �, � � +�7,

������
����+�� �, � (� � +�(,

��� �
���
���	����� ��� ��� ���� ����� �
������
�
���
�� ����
��� ���
� �
�	����� �� ��� ���
� ����
�
���� 0�

*� ��� ������ ���� ���� 	�
��� ��� �� ��� �� �� ����
�� ����
� ��� ������
� �����
�� �� ��� ����

�� � � +��,

����

� �

� �(�((
7 �� 7
(�(�(

�
� � �

� �(
7
�(

�
+��,

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.5

1

������ �� ����	
 ����
���	�� ��
 ���� ����� ���� ��	�����

*� ��
� ���� ���$ � � � �� ���� ��� ������ �� �����
�����
��� +(7,
� �
������ B�
�� =��������� ����
�����
��� '(() �� ����
�

�� � � +�.,

���� � � *�+ ��� � ��� ��� ���

� �

�
��� 7
7 7

+�/,

���� ���
� � �� � �		� �
������ ���
�� * ���
+ �� ��������� ���
��� ��� � � +� �" � � *��
<� ��
� 	��
���� ����	��

��� �

�
�� 7

7

0

� � �

�
� 7

�
��
�

� ��
�

�
� +�0,

���

+ �

�
� � ��

�
7 ��

�

7 (7
��
�

7 ��
�

�
� +�1,

��� �� � +��� ��� ��,� 8���
�� ��� �������
�� 7

7

0

�
��
��

�

�
7
�
��
�

+�2,

�
��� �� � 7� �� � �

�
� �� ����
� ��� 	�����
����� ��

��� �� � 7 ��� ���� ���	��� � � +� �� �
��

� � � � 7� � �
(

�
+�4,

8����
���
�� ��� ������ �� ����� ���Æ�
����
��� ����
�
�� +2, ��� ��
�� ��� �
��� ���
� �����
��� �
���
�
�����
��� +�7, �� ��� ���� ��� ������
� �����
��
����� �� ��� ���� ������ ���� 	�
���
�

��+�� �, �
(

�
�+�� �, +.7,

��� ��� ����	���
�� ������ ���
���	�����
�

��+�� �, � (� � 5
(

�
�+�� �, +.(,

��� ����	���
��
���	������ �� ��� ���
�
��
����� �
������ ��� �� ���
�� ����� �� ������� ���
�
����
���� <
��� 1 ����� ��
�
���	����� �� ���
���
� �����

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

������ �� ��	�
	�� ����
���	�� ���� ��
�� ���
	 ������
	�� ��� �����������
���

@��� ��� ���� 	�
��� ��� ��� �� ��� �� �� ���� ��
��� ����

� �

�
��

�(�((
7 �� 7
(�(�(
�. �� �

�
�� +.�,

��
�� ��� ��- � �� ���� ���
�
����
���� *� ��
�
���� �� ����

� � � �
�

�
� � �

(

�
+.�,

����
�� �� ��� ������
�
���	����� ��� �
�����
������ �
��� ��

��+�� �, � (� � 5
�

�
�+(� �, 5

(

�
�+�� �, +..,

��� ����	���
��
���	����� ��+�� �, ����� �� ���
���� 	�
��� ��� ��� ���Æ�
����

� �
(�

(.
� � �

�

1
� � �

(/

(.
+./,

��
�� ���
���	����� ��+�� �, ����� �� ��� �
� ����
	�
��� ��� ��� ���Æ�
����

� �
.2

/�
� � �

(/

/�
� � �

/.

/�
+.0,

���
���	����� ��+�� �, ����� �� ��� ���� 	�
���
�
�
�	����� �� ��� ���
� ����
� ���� 2�

−1

−0.5

0

0.5

1

−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1

0

0.2

0.4

0.6

0.8

1

������ � ��	�
	�� ����
���	�� ���� ���
 ���
	 ������
��
 ��� ��	�� �!	
�� ���

1

10

Data points

Interpolation pointsy

x

h

������ �� "���� ��� � #����� �� �
���$ 	�� ����
���	����
��������� #���� �
���$�

.� � ��

�$�/ 0��/�	1 ���� ����

$ �
�	�� ���� ����" ��
�� � �������� ���
�� ����
�
�� �� ����� ��� ���� ������"
��������� ��� �Æ����
�� ��� 	������ �� �
!���� ���� ��
���	����
���
$ ���� ���� +��� ���� 4, ��� ������ �� � ���
�� ����
�� �� 	�
��� ����
�� � ����� ����� �
��� ����
��
� ������� ��� �
�
��� �	��
��" � ����
�� �
���" �
������� ���� 	�
��� ��� ��
��
� ��� ��
�����
����
��� ���� ��� ������� �� ���
���	����
�� �������
�
	���� �� � ��� ������
� �
3�� ��� ���� ������ ��
�
���� �� ��� ���� 	�
��� ��� �
��� ��

�+�� �, � +(
�
,

�
�(
�

,

�
�,� +.1,

� �����
�� ���� ��
�� �������� ������� 7 ��� (�

*���	������ ������ ��� ����
��� �� � ��
�� �� 	�
���
����� � �
�� ���� �� ����� ��� ���� ��� ���� ����
���
���	���
�� 	��
�
��� ��� �� �� �� 	���
��� ���
��� ���� ���� 	�
���� ���
���	������ ������ ���
���	��� �
�� ��� ����� ������ �� �����
�� ���
���
	����
�� �� �� ���� ���	�� 	�
�� ��� ��� ��� ����

1e
-1

2

1e
-1

1

1e
-1

0

1e
-0

9

1e
-0

8

1e
-0

7

1e
-0

6

1e
-0

5

0.
00

01

0.
00

1

0.
010.

1 0.
00

1
0.

01
0.

1
1

Error

La
tti

ce
 w

id
th

 h

1s
t,

2n
d,

 3
rd

 a
nd

 4
th

 o
rd

er
 r

m
s

er
ro

r
fo

r
2D

 T
es

t C
as

e

������ ��� %

�
 ��
��� ���� ����� � ��
 ��� &� ����
	���

����� +��, ����� �� ��� �� �� ��� ���	�� 	�
��� ���
���	����� <
��� (7 ����� ��� �� �� ����� ����
�
��� � �� ��� �
���
���	����
�� �� ���� �� �� ���
��� ���" ��
� ��� ��� ����� ���
���	����
���
��� ��� �� ��
�� ��� �� �
�
�
���� �� � �������
������ ����� ������ ��� ��� �
��� ���
���	���
�
�� ������� 	��
�� ��	�
� 	�������� ����
� ��
���

�� ���
����
�� �� ���� ���
� ������� ����
��� ���� ��� ��������

$ �
�
�� ���	�
���
� �� ��� ���� �� � ���� �

����
���� ����
�� �� 	�
��� �� ��� ��
� ���� ����� ����
������ ��� �
��� ��

�+�� �, � +(
�
,

�
�(
�

,

�
� (
�

,

�
 ,� +.2,

��� ��� ���� ����� �� ����� ���� �
��� � ��
��� �
���
���	����
�� �� ���� �� �� ������ ���"
��
� ��� ��� ����� ���
���	����
��
� �����
�
���� ((� ��� ���� �� �� �����
�� ����� ����
��
�	��
�� �
� �
�
�� �� ���� ����������� �� ��� ��
����
� ���� (7�

2� �	����
����
	 �$�
�1$ �
���� ��	���
	

$ ��� ����� ����
� 	��
��� �� ���� ������ ��
��
�	����� � �
�����
����� #��	� *� ��� �� ���� ���

1e
-1

0

1e
-0

9

1e
-0

8

1e
-0

7

1e
-0

6

1e
-0

5

0.
00

01

0.
00

1

0.
010.

1 0.
01

0.
1

1

Error

La
tti

ce
 w

id
th

 h

1s
t,

2n
d,

 3
rd

 a
nd

 4
th

 o
rd

er
 r

m
s

er
ro

r
fo

r
3D

 T
es

t C
as

e

������ ��� %

�
 ��
��� ���� ����� � ��
 ��� '� ����
	���

������
�� ���	 �����
�� ��� ������� ���� �� ����� ���
���� ������ � �� ���� ����
�� 	�
�� �� ��� ��
� ������

�+�� �, �

�
(
� � - �

�

7
� � 	 �

�

+.4,

$ ��� ������ ���
���	����
�� ������ ����� ��� �
��
� � 7�/
� �����
� ���� (� ��� 	�� �� ��� � ��
�
�� ���� ������ �� ��� ���� ���� �� � ����
�� �	��
��
�� � � 7�7�/� ��� �
���
���	����� �������� ��� �
����� �� (�� � � 7�.1/ �� 3�� �� � � 7�/� ��� ���
��� ���
���	����� �
�	���� �� �������� ����� ��
��� ���	 #��	 ��� �� ��������� ���� ��� ���	 #��	
����� ����
����
� ����� (7C �� ��� ���	 ��
����
��� ��������� ������ ������ ��� ���� �� ��� ����
��
�	��
�� � �� �
��� �
�� �� ��� �
�����
��
��� +9���
���� ��� ������� ����� �� ��� �����
� ����� (�
��� (� �� ��� �	����� ������ ���� 	��
�
��� ��
��
�� ���� ��� �
���� �	���� ��� �� ��
�� ��� ����
�
�� ������ �+���, ��" �� �����"
���	������ �������,�
��� ���
�
���	�����
� ������� �
�� �� ��������
��� ��������� ����
� ����� ���� ��� ��	�
���� ��
���� �� ��� ������
�
���	����� ��� ��
�� �������
����� ��
�� �� �� +���� � ����� ����
�� �	��
�� � �����
��� ���� ��� �
�����
��
��,� <
��� (� ����� ��� ��
��	���
�� ����� �� � ����
�� �
��� � � 7�770�/� ���
������" �� ��� ����� ��	���" �� �
�
�� �� ��� 	��

��� ���	�
��� ����
�� ��������� ��� ����������

-0.5

0

0.5

1

1.5

0.44 0.46 0.48 0.5 0.52 0.54

������ ��� (���
���	��� ������� �	���� �� �+�� �, 	� � �
7�/ ��
 	 �	���� ����� �� � � 7�7�/

-0.5

0

0.5

1

1.5

0.46 0.48 0.5 0.52 0.54

������ ��� (���
���	��� ������� �	���� �� �+�� �, 	� � �
7�/ ��
 	 �	���� ����� �� � � 7�770�/

�� ���	����� ����
���� ��� ������
�� ��� ���� �
�
����� ���� ������ �� ��� ����
�� �	��
���

3� ��4	
5���1��	�

D�� �� ��
� ������ ��� ��
�� ���
� ��� ����� ��
�������
�� ���
�
�� �� �������
�� E������ ��� <���
����������" *��� ��� ��� ������ �� ��� $
 <��� E�
����� ��������" @
��� D������� $<:" F= ����
������� <��0(/ 7� � ��(/" D���� ** 8:*E +�����

��� ���
��� <��- @
�3���� ��� >������ %
���,�
��� ��		��
� ��������� ��-����������

�������"��

'() ���� ����� ��	
�� ����� *���	����
��
8������ �� ���� �
����
���� G����
�� <
����
��� 8������� ���� B�
�� ����� ;�	���
���" ��
���� ���
�" ��(�.�" (44/�

'�)
� ����������� �� �������� �� �����

�� ������� ��	 �� ���� >������� �������?

$� ����
�� ��� ����� ������	�����" ������
������
 ����� ��	�� ������" ���" � .1" (440�

'�) ���� ����� ��	 �
�� �	�� = 	 ������
�� � 	 >������� >�����" �����	�� ������
 ���
������� ����������� ��������
" (�." (440�

'.)
� � !������ ������� ����� ��	

"�"�
#���	�� �� >������� ����� ������"
������ ������
 ����� ��	�� ������" ���"
�0� �22" (440�

'/) �� �������� $�
����� ��	 �� %����� %��
���
3
�� ��� <
�
�� ;������ >�����? �
!��� $	
	��
���
�� ��� �
!��� ;�������" �������

������ ��	����	
" �71 �(2" (44��

'0) �� &�������'� �� %������ (��)�*������ ��	

��)��+ 8����� E�����
�� �� ����� =��
��
�
!��� *���	����
��" ���� �� ��� ����� ����"
�(.4" �777�

'1) �� !������� ��	 ��)��������� 8������
%������� �� >��
�� ����� 8����� >������"
����� ����" ��" (.((/2" (42(�

'2)
� !����� $� *���	����
�� >����� �� �� *��
��� 9�� �� 9����" ���� �� ��� ����� ����" ��"
(/44 (0(�" (42.�

'4)
� � ���� $������
� >��� %�����
�� ��
���	��� ���� �
����
���� E��
��� ��
�� �
������
��� �������� �
�������
��� ���������

��� ��� �������
�" �" (0((1/" (424

'(7) $�)���� �
��� $����� ���
�� $		�
���
����
	��� =����� :��� H������
��" (422�

'(() ��!� !�#��� ��	 &� � ,����� !������ "��
�

!�����
 ���#��
" 	��� D���
�� =���" (41.�

Session 1B
Mesh Refinement

MESH REFINEMENT BASED ON THE 8-TETRAHEDRA
LONGEST-EDGE PARTITION

Ángel Plaza1 Maŕıa-Cecilia Rivara2

1University of Las Palmas de Gran Canaria, Spain, aplaza@dmat.ulpgc.es
2DCC, University of Chile, Santiago de Chile, Chile, mcrivara@dcc.uchile.cl

ABSTRACT

The 8-tetrahedra longest-edge (8T-LE) partition of any tetrahedron is defined in terms of three consecutive edge
bisections, the first one performed by the longest-edge. The associated local refinement algorithm can be described
in terms of the polyhedron skeleton concept using either a set of precomputed partition patterns or by a simple edge-
midpoint tetrahedron bisection procedure. An effective 3D derefinement algorithm can be also simply stated. In this
paper we discuss the 8-tetrahedra partition, the refinement algorithm and its properties, including a non-degeneracy
fractal property. Empirical experiments show that the 3D partition has analogous behavior to the 2D case in the
sense that after the first refinement level, a clear monotonic improvement behavior holds. For some tetrahedra a
limited decreasing of the tetrahedron quality can be observed in the first partition due to the introduction of a new
face which reflects a local feature size related with the tetrahedron thickness.

Keywords: mesh refinement, longest-edge bisection, longest-edge algorithms, tetrahedral meshes

1. INTRODUCTION

Skeleton algorithms for local mesh refinement /dere-
finement of triangular and tetrahedral meshes have
been proposed by Plaza and Carey [10, 11, 12]. In two
dimensions, the algorithm is an alternative formula-
tion of the 4-triangles longest-edge algorithm [14, 15].
The 2-dimensional skeleton algorithm [10, 11] works
over the edges wireframe mesh affected by the refine-
ment (target triangles and some neighbors to assure
the construction of a conforming mesh) by perform-
ing midpoint bisection of the involved edges. Then
this information is used to select the appropriate tri-
angle partition pattern (between a set of three pat-
terns) to refine each individual triangle. This idea
was then generalized to 3-dimensions [11, 12] by in-
troducing an 8-tetrahedra partition which induces the
4-triangles partition of its faces.

The 3-dimensional skeleton algorithm performs: (1)
the refinement of the 3-dimensional edges wireframe
mesh affected, (2) the refinement of the faces surface

mesh (by using the 4-triangles partition and associated
partial partitions), and (3) the volume refinement of
each tetrahedron either by using a simple edge bisec-
tion procedure or according to an appropriate pattern,
selected between a set of precomputed partition pat-
terns.

In this paper we study the properties of the 8-
tetrahedra partition showing that each full partition
pattern is equivalent to a sequence of seven tetrahe-
dron edge bisections by the midpoint of the tetrahe-
dron edges, the first one being performed by the tetra-
hedron longest-edge. Then we take advantage from the
improvement and fractal properties of the 4-triangles
longest-edge partition to show some non-degeneracy
properties in 3-dimensions. We also show that for the
meshes globally refined by using the 8-tetrahedra par-
tition, the asymptotic average number of tetrahedra
sharing a fixed vertex is equal to 24.

An empirical study about the behavior of the 8-
tetrahedra partition is also included. This shows that
consistently, from the second refinement level, both

the distribution of quality tetrahedra, and the volume
percentage covered by better tetrahedra tend to be
improved as the 8T-LE partition proceeds.

1.1 Previous and related work

Refinement algorithms based on longest-edge parti-
tions, including Lepp based algorithms, have been ex-
tensively discussed [14, 15, 18, 17, 16], as well as skele-
ton based algorithms [10, 11, 12, 13].

In two-dimensions it has been shown that these al-
gorithms improve the point distribution by maintain-
ing some small-angled triangles which depend on the
quality of the initial mesh, in the following senses: the
iterative global refinement of any triangle produces tri-
angles whose minimum angle is bounded as a function
of the quality of the initial triangle, the process pro-
duces a finite number of similarly distinct triangles,
and both the percentage of good-quality triangles and
the area covered by these triangles increases as the
refinement proceeds.

In [18] a pure three dimensional longest-edge refine-
ment method was considered. Empirical experimenta-
tion showing that the solid angle decreases slowly with
the refinement iterations and that a quality-element
improvement behavior, analogous to the 2-dimensional
case holds in practice, were provided. However, there
has not been mathematical results available guarantee-
ing the non-degeneracy properties of the 3-dimensional
mesh.

In the last 12 years other triangle-bisection and
tetrahedron-bisection refinement algorithms have been
proposed. Between them we can cite the newest-vertex
insertion method of Michell [9] in two dimensions, the
tetrahedron-bisection algorithm of Bänsch [2] and the
8-tetrahedra bisection algorithm of Liu and Joe [7].
These algorithms essentially consist on performing
edge based partitions in such a way that triangles or
tetrahedra similar to those of the first refinement lev-
els are obtained throughout the process. In particu-
lar, Liu and Joe have obtained a bound on the mesh
quality as a function of the initial geometry for their
algorithm [6].

Other studies report somewhat equivalent algorithms.
A recursive approach which imposes certain restric-
tions and pre-processing in the initial mesh is proposed
by Kossaczký [4]. Maubach [8] has developed and al-
gorithm for n-simplicial grids generated by reflection.
Although the algorithm is valid in any dimension and
the number of similarity classes is bounded, this can-
not be applied to a general tetrahedral grid, since an
additional closure refinement is needed to avoid in-
compatibilities. Arnold et al. [1] have presented an
algorithm equivalent to those discussed in [2, 4] prov-

ing its equivalence with [8].

All these algorithms however, do not take practical ad-
vantage of the element-quality improvement properties
of longest-edge and skeleton algorithms. These algo-
rithms, in exchange, can be applied to any valid initial
triangulation without any restriction on the shape of
the tetrahedra.

In what follows we specifically discuss the skeleton
algorithms of Plaza and Carey [10, 11, 12]. This
three dimensional approach is based on the ap-
plication of the 2-dimensional algorithm over the
skeleton of the 3D triangulation, that is to the set
of the triangular faces of the tetrahedra. Being
this a longest-edge based algorithm we expect for
it analogous behavior to that reported in [18] for
pure 3-dimensional longest-edge refinement algorithm.

2. THE 4-TRIANGLES ALGORITHM
AND PREVIOUS RESULTS

The 4-Triangles algorithm can be described in terms
of the three refinement patterns of Figure 1, where P
is the midpoint of the longest-edge. The algorithm
consists on two basic steps: (1) refinement of target
triangles by using the partition pattern (a) of Figure 1,
and (2) a local propagation step to assure a conforming
mesh which uses the partition patterns of (b) and (c)
of Figure 1.

(b) (c)

(a)

P

P P

Figure 1: 4-Triangles-refinement patterns.

4-Triangles-Refinement-Algorithm(τ, t)
/* Perform the 4-Triangles partition of t
for each edge e of t, of associated neighbor t∗ do

neighbor-refinement(t∗, e)
t← t∗

while t is non-conforming do
find the unique non-conforming edge e ∈ t

with associated neighbor t∗

neighbor-refinement(t∗, e)
t← t∗

end while
end for

neighbor-refinement(t∗, e)
if e is longest-edge of t∗ perform LE bisection of t∗

else perform 3-Triangles partition of t∗ by edge e

For an illustration see Figure 2. Note that in the gen-
eral case, the refinement should propagate to neighbor
triangles by the edges AC and CB.

t

C

A

(a) (b)

(d)(c)

B

Figure 2: Example of 4-Triangles-Refinement-Algorithm.

The 4-Triangles-Algorithm produces a subset of the
triangles obtained by longest-edge bisection and the
following theorem holds [14, 15]:

Theorem 2.1 Over any conforming triangulation
τ0, the iterative application of the 4-Triangles-
Algorithm: (1) produces nested triangulations in the
sense that each new triangle is embedded in its par-
ent; (2) every triangle t generated in the process has

smallest angle greater or equal to
α0

2
, where α0 is the

smallest angle of the triangle t0 in τ which embeds
t; (3) produces a finite number of similarity distinct
triangles; (4) the triangulations obtained tend to be
improved in the sense that both the percentage of the
good-quality triangles and the area covered by these tri-
angles increases as the refinement proceeds.

Furthermore, for obtuse triangles the following mono-
tone improvement behavior holds [17]:

Theorem 2.2 For any obtuse triangle t0 of smallest
angle α0 and largest angle γ0, the 4-Triangles parti-
tion of t0 produces a unique similarly distinct triangle
t1, whose 4-Triangles partition in turn produces a new
similarly distinct triangle t2, and so on, until a last

non-obtuse triangle tn is obtained. Furthermore, the
smallest angles αi and the largest angles γi of each
triangle ti satisfy the following improvement relations:

α0 < α1 < α2 < . . . < αn

γ0 > γ1 > γ2 > . . . > γn

where γi = γi−1 − αi.

For the 4T-LE algorithm, a fractal property analogous
to that proved for the LE-bisection algorithm [17] also
holds:

Theorem 2.3 After a finite number of iterative (lo-
cal) applications of the 4-triangles algorithm around
any vertex P of any conforming triangulation τ , a sta-
ble molecule around P is obtained, in the sense that the
next iteration of the algorithm do not divide the angles
of vertex P , but only introduce new vertices along the
edges of the stable molecule. Furthermore, each new
triangle of vertex P produced throughout the next iter-
ations will be similarly equal to a preceding triangle.

P

t t

(b)

P

(a)

t t

t1 t1

P

(c)

Figure 3: Fractal behavior of 4-triangles partition and
stable molecule.

2.1 The skeleton algorithms in two and
three dimensions

The skeleton version of the 4-Triangles refinement al-
gorithm performs the refinement task by using two se-
quential steps: (1) Identifying and bisecting the edges
(not the triangles) involved throughout the overall re-
finement process; and (2) partitioning each individual
triangle involved in the refinement process by using
the triangles partitions of Figure 1 according to its
bisected edges.

The 3D-skeleton algorithm in exchange generalizes the
4-Triangles refinement algorithm to 3-dimensions by

t

(a) (b)

Figure 4: Example of the use of the 2D-skeleton algo-
rithm.

making use of the skeleton concept which in turn gen-
eralizes the graph usually associated with the polygo-
nal faces of any polyhedron [10, 11, 3]:

Definition 2.4 For any conforming 3D triangular
mesh τ (tetrahedral mesh), the 2D-Skeleton of τ is
the conforming surface mesh defined by the triangu-
lar faces of the elements of τ . In addition, the 1D-
Skeleton of τ is the conforming wire mesh defined by
the edges of the elements of τ .

By using the preceding concepts the algorithm can be
schematically described as follows:

3D-Skeleton Refinement-Algorithm(τ, t)
Find and Partition involved Edges over
1-skeleton mesh
Partition involved Faces over 2-skeleton mesh
Partition involved Tetrahedra according
appropriate partition patterns

Note that with minor changes, both procedures (over
the 1-skeleton mesh and the 2-skeleton mesh) together
correspond to the application of the 4-Triangles-
Skeleton-Refinement Algorithm to the surface triangu-
lation formed by the faces of the tetrahedra of the ini-
tial 3-dimensional triangulation. The Partition Tetra-
hedra procedure in exchange performs the volume par-
tition of the set of tetrahedra whose faces were refined
by the preceding procedures.

In the next Section we shall introduce and discuss
the 8-Tetrahedra-LE partition, proving the following
properties: the 8-tetrahedra LE partition of every
tetrahedron t in the mesh produces both a conforming
volume mesh and a conforming surface mesh where
the surface mesh is obtained by the 4-Triangles
partition of the faces of t.

3. THE 8-TETRAHEDRA PARTITION
AND PROPERTIES

At this point, some definitions are in order:

Definition 3.1 For any tetrahedron t of unique
longest-edge, the primary faces of t are the two faces
of t that share the longest-edge of t. In addition, the
two remaining faces of t are called secondary faces of t.
Furthermore, the secondary edges of t are the longest
edges of the secondary faces of t (1 or 2 secondary
longest edges). In addition, the 3 or 4 remaining edges
of t are called third-class edges of t.

Note that for any tetrahedron t of unique longest-edge,
the primary faces of t have a common longest-edge
equal to the longest-edge of t. In order to avoid am-
biguousness in the general case, we always suppose
that for each tetrahedron t having either a non-unique
longest-edge, or non-unique secondary edges, a unique
selection for each of such edges is performed a priori
in such a way that the longest-edge of the tetrahe-
dron coincides with the longest-edge of the primary
faces of t, and this selection is consistently maintained
throughout the overall refinement process.

The 8-Tetrahedra longest-edge partition can be de-
fined as follows:

Definition 3.2 For any tetrahedron t of unique
longest-edge and unique secondary edges, the 8-
Tetrahedra Longest-Edge (8T-LE) partition of t is de-
fined as follows:

(1) LE-bisection of t producing tetrahedra t1, t2;

(2) bisection of ti by the midpoint of the unique edge
of ti which is also a secondary edge of t, producing
tetrahedra tij for i, j = 1, 2.

(3) bisection of each tij by the midpoint of the unique
edge equal to a third-class edge of t, for i, j = 1, 2.

In order to study the 8-tetrahedra partition, we need
to consider an intermediate 4-tetrahedra partition
characterized by the following proposition:

Proposition 3.3 Let t be any tetrahedron of unique
longest-edge AB and associated midpoint P (see Fig-
ure 5. Then the 4-tetrahedra partition described by
the two ordered steps (1) and (2) of Definition (3.2)
produces a 4-tetrahedra volume triangulation of t sat-
isfying the following properties:

a) The volume triangulation induces the longestedge
bisection of each triangular face of t.

b) The volume triangulation of t will be a conform-
ing triangulation if and only if the distribution
of the longest-edge and secondary edges of t cor-
responds to either the cases (a), (b), or (c) in
Figure 5.

c) The volume triangulation will not be a conform-
ing triangulation if and only if the secondary
edges share a vertex and one of these edges is op-
posite to the longest-edge of t (Figure 5 (d)).

(a)

A B

(c) (d)

A B A
B

(b)

A B
1

2 1

2

1

2 2

1

2

2

2

D

C

D

C

C

D D

C

Figure 5: Relative position of the longest-edge (num-
bered 1) and secondary longest-edges (numbered 2) for
t.

The proof of part a) follows directly from the defini-
tion of the 4-tetrahedra partition, while the proof of
parts b) and c) are based on the study of the possi-
ble relative positions of the longest-edge of t and the
secondary edges of t. Clearly, only 4 relative configura-
tions, invariant under translation, rotation, reflection
and uniform scaling are possible:

i) longest-edge of t opposite to the unique (com-
mon) secondary edge of the two secondary faces
of t (Figure 5 (a)).

ii) the secondary longest-edges and longest-edge of t
form a triangular face of t (Figure 5 (b)).

iii) opposite secondary edges, where each of such
edges shares a vertex with the longest-edge of t
(Figure 5 (c)).

iv) the secondary edges share a vertex and one of the
secondary edges is opposite to the longest-edge of
t (Figure 5 (d)).

Corollary 3.4 The 4-tetrahedra partition of Theo-
rem 3.3 produces four tetrahedra tij for i, j = 1, 2 such
that each tij has a unique edge equal to a third-class
edge of t.

The next proposition proves that, for the 4 cases of
Proposition 3.3 (Figure 6), the midpoint edge bisection
of the new tetrahedra (by the non-bisected edge of t)
produces a conforming volume triangulation of t.

Proposition 3.5 Let t be any tetrahedron having a
unique longest-edge and unique secondary edges. Then
if after applying the 4-tetrahedra partition defined in
Proposition 3.3, each of the tetrahedra tij produced by

(a)

A B

(c) (d)

A B A
B

(b)

A B
1

2 1

2

2
2

2

2

1 1

2

D

C

D

C

C

D

C

D

Figure 6: 4-Tetrahedron partition obtained according to
the relative positions of the longest-edge and secondary
longest-edges of t.

this partition is in turn bisected by the midpoint of the
(unique) edge equal to a third-class edge of t, a con-
forming volume triangulation is obtained having the
following properties:

a) The volume triangulation induces the 4-triangles
partition of each face of t.

b) Only an interior edge P ∗P is produced, where
P and P ∗ are respectively the midpoint of the
longest-edge of t, and the midpoint of the edge
opposite to the longest-edge of t.

c) Eight new internal faces appear inside the tetra-
hedron t.

The results of previous proposition allow us to state
Theorem 3.6:

Theorem 3.6 The 8-tetrahedra longest-edge parti-
tion of any tetrahedron t produces both a conforming
volume triangulation of t and a conforming surface tri-
angulation of t such that:

(1) The conforming surface triangulation of t is iden-
tical to the surface triangulation obtained by the
4-triangles partition of the faces of t.

(2) Four different triangulation patterns are obtained
(Figure 7) according with the relative position of
the longest-edge and the secondary edges of t.
Each one of these 4 patterns produces only one
new internal edge P ∗P (where P is the midpoint
of the longest-edge of t, and P ∗ is the midpoint of
the edge opposite to the longest-edge) and 8 new
internal faces.

Note that under the assumption that the longest-edge
and the secondary edges are unique, there is a univo-
cal correspondence between the four volume partition

D

(a)

A B

(c) (d)

A B A
B

(b)

A B1

C

D

C

C

D

C

D

(a)

A B

(c) (d)

A B A
B

(b)

A B

Figure 7: Different possible 8-Tetrahedra Longest-Edge
partitions.

patterns produced by the 8-tetrahedra partition of any
tetrahedron t and the four surface partition patterns
obtained by the 4-triangles partition of the faces of t.

The careful study of the possible n-point partition
patterns produced for the different relative positions
of the longest-edge and secondary edges of t, for
n = 1, 2, . . . , 6 (which includes the four global
8-tetrahedra partition patterns) allows us to obtain
the set of partial partition patterns involved in the
mesh refinement algorithm. It can be proved that the
are exactly 30 different partition patterns (invariant
under translation, rotation, reflection, and uniform
scaling) associated to the 8-tetrahedra partition of
any tetrahedron.

4. THE 3D-SKELETON
REFINEMENT/DEREFINEMENT

ALGORITHM

The refinement algorithm for refining any tetrahedron
t in any conforming tetrahedral mesh τ can be formu-
lated as follows:

3D-Skeleton-Refinement-Algorithm(τ, t)
/* Find involved edges, faces, and tetrahedra */
Initialize SE , SF , and ST , respectively sets of
involved edges, faces, and tetrahedra
Initialize PE set of processing edges
for each edge E of t do

add edge E to set SE

add edge E to set PE

endfor
While PE �= ∅, do

pick E from PE

for each tetrahedron t� sharing edge E do

for each face F of t� having an edge in SE do
find longest-edge E� of F
if E� is not in SE do

add E� to SE

add E� to PE

add F to SF

endif
endfor
add t� to ST

endfor
Endwhile
/* Partition involved edges */
for each edge E in SE do

create vertex P midpoint of E
bisect E

endfor
/* Partition involved faces */
for each edge F in SF do

partition F according its bisected edges
endfor
/* Partition involved tetrahedra */
for each tetrahedron T in ST do

partition T according to the partition of its faces
end for

The 3-dimensional skeleton refinement algorithm gen-
eralizes the 2-dimensional 4T-LE algorithm in the fol-
lowing sense:

Theorem 4.1 The refined volume mesh obtained by
the use of the 3D-Skeleton-Refinement-Algorithm in-
duces the surface refinement of the associated 2D-
Skeleton mesh and viceversa. Furthermore, the sur-
face refined mesh is identical to the mesh obtained by
applying the 4-triangles mesh refinement to the faces
of t.

Corollary 4.2 The 3-dimensional skeleton refine-
ment algorithm is finite.

Note that the tetrahedra partition step can be im-
plemented either by successive application of a basic
tetrahedron bisection operation by an edge midpoint,
or by precomputing a set of partition patterns. Also,
an alternative algorithm working directly with the vol-
ume mesh (without using the mesh-skeleton concept)
can be developed.

The derefinement algorithm works on the finite
sequence of nested meshes obtained by the refinement
algorithm application T = {τ1 < . . . < τn} to
obtain another sequence of meshes. The algorithm
essentially comprises two main steps: the application
of the 4T-LE derefinement algorithm to the skeleton
(working firstly both over the wireframe mesh and
the triangular surface mesh), then followed by the

redefinition of the interior of the tetrahedra, for which
a slight variation of the 3D refinement algorithm
is used. For a further discussion see Plaza et al. in [12].

5. ON THE NON-DEGENERACY
PROPERTIES OF THE 8T-LE
REFINEMENT ALGORITHMS

Theorem 5.1 Let τ0 be any initial conforming tetra-
hedral mesh having a number of vertices, edges, faces,
and tetrahedra respectively equal to N0, E0, F0, and
T0; and consider the global use of the 3D-Skeleton
Mesh Refinement algorithm producing a sequence of
globally refined meshes τ1, τ2, . . . , τn, . . . Then the av-
erage number of tetrahedra sharing a vertex in the
mesh is asymptotically equal to 24, the average num-
ber of faces sharing a vertex is asymptotically equal to
24, and the average number of edges per vertex tends
to 14.

The proof is based on the resolution of the recurrence
equations associated to the 8-tetrahedra longest-edge
partition. Note that the global refinement of each
mesh τn−1 reduces to the 8-tetrahedra longest-edge
partition of all the tetrahedra of τn−1 which directly
produces a conforming mesh τn. By Theorem 3.6, the
number of vertices, edges, faces, and tetrahedra of the
mesh τn, respectively equal to Nn, En, Fn, and Tn,
satisfy the following recurrence relations as a function
of the values Nn−1, En−1, Fn−1, and Tn−1 of the pre-
vious mesh:

Nn = Nn−1 + En−1 + Tn−1

En = 2 · En−1 + 3 · Fn−1 + Tn−1

Fn = 4 · Fn−1 + 8 · Tn−1

Tn = 8 · Tn−1

(1)

where N0, E0, F0, and T0 are given from the initial
mesh τ0.

Furthermore, since each tetrahedron has exactly four
vertices, the average number of tetrahedra sharing a
given vertex in the mesh τn reduces to:

Av#(tetrahedra per node) =
4 · Tn

Nn

And, in a similar way, the rest of the non-constant
adjacency relations are:

Av#(tet per edge) =
6 · Tn

En

Av#(faces per edge) =
3 · Fn

En

Av#(faces per node) =
3 · Fn

Nn

Av#(edges per node) =
2 · En

Nn
.

Once the recurrence relations (1) are solved, the
asymptotic values are obtained taking limits when n
tends to infinity. See reference [13] for details.

The following theorem summarizes geometrical and
fractal properties of the 8T-LE refinement algorithm.

Theorem 5.2 Both for the 8T-LE partition and for
the 3D-Skeleton Refinement algorithm the following
mesh quality properties hold:

a) The 8T-LE partition of any tetrahedron t always
partitions the largest planar angles of the two
faces sharing the longest-edge of t.

b) The 8T-LE partition never partitions a solid an-
gle such that, each one of the three associated pla-
nar angles is non-obtuse and different from the
largest angle of the corresponding triangular face.

c) Over each triangular obtuse face F of any tetrahe-
dron t, the iterative 8T-LE partition of t produces
a finite number of different faces, such that each
new face produced is better than the preceding one
in the sense that the smallest angle and the largest
angle of the new face are respectively greater than
and less than those corresponding to the preceding
face generated in the preceding iteration.

d) Property c) extends to each new obtuse face pro-
duced throughout the 8T-LE refinement process
(self corrective behavior).

The theorem proof is essentially based on the 2-
dimensional properties of the 4T-LE refinement (The-
orem 2.2).

Theorem 5.3 (Fractal behavior) For any conform-
ing tetrahedral mesh τ0, after a finite number of local
3D-Skeleton refinements around any vertex P , a fi-
nite number of tetrahedra sharing vertex P is obtained
whose associated solid angles are never refined again
as the refinement around P proceeds.

At this point some remarks are in order:

1. Part (b) of Theorem 5.2 implies that whenever a
solid angle having non-obtuse planar angles (each
one not opposite to the longest-edge of the corre-
sponding triangular face) is obtained throughout
the process, this solid angle remains untouched
forever in the mesh. In other words, only new
vertices along the edges of this solid angle are
added as the refinement proceeds.

2. Parts (c) and (d) of Theorem 5.2 together state
that the strong quality improvement properties of
the 2-dimensional 4-Triangles partition hold over
each triangular face of the 2D-Skeleton mesh, in-
cluding the new faces.

3. Theorems 5.2 and 5.3 together do not certainly
guarantee that the size of the molecules (set of
tetrahedra sharing a given vertex of the mesh)
do not increase as new vertices are added in the
refinement process. However, empirical experi-
mentation shows that a rather constant standard
deviation around the average size of the molecules
is obtained through the refinement steps, while
the maximum size of them remains rather con-
stant (equal to 64) in the last three levels.

6. EMPIRICAL RESULTS

In this section we report empirical evidence that sup-
ports the conjecture on the non-degeneracy property
of both the 8T-LE partition and the mesh refinement
algorithms based on this partition.

Here three numerical examples are presented. In ev-
ery case the 8T-LE partition has been applied 7 times
to an initial tetrahedron and its descendants, so the
last level of division (τ8) contains 366, 145 vertices and
2, 097, 152 tetrahedra. For each test tetrahedron a set
of 3 tables have been produced: the first one contains
the coordinates of the vertices, while that the second
and third ones summarize statistical information for
the meshes obtained. The values ΦT , Φmin and Φmax

expressed in sexagesimal degrees, refer to the solid an-
gle measure (ΦP = sin−1{(1 − cos2 αP − cos2 βP −
cos2 γP +2 cos αP cos βP cos γP)1/2}, where αP , βP , γP

are the planar angles associated to vertx P) used by
Rivara and Levin [18], where ΦT is the minimum Φ-
value for the solid angles of tetrahedron T , and Φmin

and Φmax are respectively equal to the minimum and
maximum Φ-values attained for the mesh at level n.
Note that 0 � ΦT � 45◦ and Φ = 0 implies a totally
degenerate tetrahedron. For a discussion on tetrahe-
dron shape measures see [5].

It should be pointed out here that the improvement
behavior of any tetrahedron T will be in general stud-
ied relative to the quality of the tetrahedra of the first
volume partition of T . This is due to the fact that the
quality measures ΦTi associated to the tetrahedra Ti

(i = 1, . . . , 8), of the first partition of a tetrahedron
T , in general describe better the local feature sizes of
T than the ΦT measure itself. Consider for instance a
cap (very flat) tetrahedron having four quality accept-
able faces which clearly do not reflect well the tetra-
hedron quality; the first 8-tetrahedra partition of T in

exchange, introduces at least a bad quality face that
describe well the thickness of T .

Table 1: Right-tetrahedron vertices

0.0 0.0 0.0
4.0 0.0 0.0
0.0 4.0 0.0
0.0 0.0 4.0

In the first test problem the initial tetrahedron is a
right-tetrahedron, with a vertex in the origin of the
coordinate system, and three vertices over the axes
of the coordinate system to equal distance from the
origin. The evolution of the shape for the tetrahedra
as the partition proceeds is shown in Table 5. Note
that, as expected, the minimum solid angle remains
constant since the second global partition, while the
percentage of volume covered by bad-shaped elements
decreases monotonically from the third global parti-
tion. Figures 8, 9, and 10 show the evolution of the
average number of tetrahedra per vertex as the global
refinement (partition) proceeds. Note that the distri-
bution seems to tend to a bimodal distribution, with
concentrations between 15 and 20, and between 45 and
50, with average around 24, which is the asymptotic
average number for this partition. Also the maximum
number of tetrahedra per vertex is included in the fig-
ures.

The second example considers a needle tetrahedron.
Table 6 shows the evolution of the minimum and max-
imum angles, and the % of volume covered by bad-
shaped elements, while Figure 9 shows the evolution of
tetrahedra per node for this needle tetrahedron where
the distribution also approaches the mean value 24.
Note that in this case, since the faces of T reflect well
the local feature sizes of this needle tetrahedron, the
worst solid angle remains constant throughout the pro-
cess.

Table 2: Needle tetrahedron vertices

-0.5 0.0 0.0
0.5 0.0 0.0
0.0 0.2 0.0
0.0 0.0 7.0

The third example corresponds to a flat tetrahedron.
Table 7 shows for this example the evolution of the
shape of the elements and meshes obtained at global
partitioning. Note that the minimum solid angle re-
mains constant from the second global refinement,
while the percentage of volume covered by bad-shaped
tetrahedra improves when the partitioning proceeds.

Table 3: Flat tetrahedron vertices

-2.0 0.0 0.0
4.0 0.0 0.0
1.3 3.5 0.0
1.0 1.3 0.5

Finally, Table 4 shows the evolution of the average
number of tetrahedra per vertex in the first 10 steps
of global iterative application of the 8T-LE partition
to any initial tetrahedron.

It should be pointed out here that the 3D partition
seems to have similar behavior to the 2D case in the
sense that for needle tetrahedra (equivalent to one
small-angled triangle), a clear monotonic improvement
behavior holds, while that for quality tetrahedra and
cap tetrahedra a limited decreasing of the tetrahedron
quality can be observed in the first partition. Note
that in 2-dimensions, the 4-triangles partition of an
equilateral triangle produces some 30 degrees trian-
gles, and this is the only case where the bound in part
(2) of Theorem 2.1 is attained. For the cap tetrahe-
dron in exchange, the first 3D partition introduces an
acute face that captures the thickness of this tetra-
hedron (a local feature size not described by its four
faces). Note that this is not the case of a needle tetra-
hedron where its faces fully describe its local feature
sizes.

Table 4: Statistical Measures

Level Num. Tets. Av#(tets per node)

4 512 12.41
5 4, 096 16.90
6 32, 768 20.03
7 262, 144 21.88
8 2, 097, 152 22.91
9 16, 777, 216 23.45
10 134, 217, 728 23.72
11 1, 073, 741, 824 23.86
12 8, 589, 934, 592 23.93
13 68, 719, 476, 736 23.96

7. CONCLUDING REMARKS

Although in the last 15 years the longest-edge refine-
ment algorithms have become well-known and useful
techniques which guarantee the construction of qual-
ity refined meshes in 2-dimensions, equivalent non-
degeneracy properties had not been proved yet in 3-
dimensions. The question was essentially centered be-
fore either on finding a lower bound on the minimum

solid angle or on looking for results on the number of
similarly distinct tetrahedra produced. This last ap-
proach is a rather difficult path to follow because of
the combinatorial issues involved in 3-dimensions.

In this paper we see that stronger improvement and
fractal properties proved for 2-dimensional longest-
edge based algorithms [17], also hold over the triangu-
lar faces of the volume meshes. The use of these prop-
erties seems to be a fruitful path for obtaining math-
ematical results on the 3-dimensional longest-edge al-
gorithms.

This paper include theoretical and empirical results on
this direction: We have discussed a longest-edge based
volume algorithm which induces the 4-Triangles parti-
tion of the faces of the tetrahedra. The improvement
and fractal properties of the 4-Triangles longest-edge
partition have been in turn used to prove statistical
and fractal properties over the 8-Tetrahedra longest-
edge refinement algorithm: (1) the asymptotic aver-
age number of tetrahedra surrounding each vertex is
equal to 24; (2) the number of tetrahedra surrounding
each fixed vertex remains constant, after a few local
iterative refinement around such a vertex; and (3) the
algorithm improves each triangular face produced as
the refinement proceeds.

Empirical study carried out here not only supports
these results but also shows that, consistently through-
out the refinement levels the distribution of quality
tetrahedra improve and the volume percentage cov-
ered by better tetrahedra increase as the refinement
proceeds.

Table 5: Shape evolution for a right-tetrahedron

Level Num. of Num. of Φmin Planar angles Φmax % bad elems.
Nodes Elems. associated to Φmin (ΦT < 10)

1 4 1 30.00 45.00 # 60.00 # 45.00 90 0.00
2 10 8 9.59 19.47 #35.26 # 30.00 90 25.00
3 35 64 9.59 30.00 #35.26 # 19.47 90 25.00
4 165 512 9.59 30.00 #35.26 # 19.47 90 20.31
5 969 4096 9.59 30.00 #35.26 # 19.47 90 15.62
6 6545 32768 9.59 30.00 #35.26 # 19.47 90 11.82
7 47905 262144 9.59 30.00 #35.26 # 19.47 90 8.89
8 366145 2097152 9.59 30.00 #35.26 # 19.47 90 6.67

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

N
um

be
r

of
 V

er
tic

es
 %

Number of Tetrahedra per vertex

6th mesh-level: 32,768 tets. Av = 23.54, SD = 12.38
7th mesh-level: 262,144 tets. Av = 23.77, SD = 12.86

8th mesh-level: 2,097,152 tets. Av = 23.88, SD = 13.20

64

Maximum values

60

Figure 8: Distribution of vertices versus number of tetrahedra per vertex. Right-Shaped Tetrahedron.

Table 6: Shape evolution for a needle tetrahedron.

Level Num. of Num. of Φmin Planar angles Φmax % bad elems.
Nodes Elems. associated to Φmin (ΦT < 0.24)

1 4 1 0.23 8.00 # 4.36 # 4.28 43.58 100.00
2 10 8 0.23 8.00 # 4.26 # 4.28 67.84 75.00
3 35 64 0.22 4.26 # 4.36 # 8.00 68.14 68.75
4 165 512 0.22 4.28 # 4.36 # 8.01 68.14 67.19
5 969 4096 0.22 4.23 # 4.35 # 7.96 68.14 66.80
6 6545 32768 0.22 4.23 # 4.35 # 7.96 68.14 66.71
7 47905 262144 0.22 7.96 # 4.23 # 4.35 68.14 66.63
8 366145 2097152 0.22 7.96 # 4.23 # 4.35 68.14 66.63

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

N
um

be
r

of
 V

er
tic

es
 %

Number of Tetrahedra per vertex

6th mesh-level: 32,768 tets. Av = 23.54, SD = 12.38
7th mesh-level: 262,144 tets. Av = 23.77, SD = 12.86

8th mesh-level: 2,097,152 tets. Av = 23.88, SD = 13.20

64

Maximum values

Figure 9: Distribution of vertices versus number of tetrahedra per vertex. Needle Tetrahedron.

Table 7: Shape evolution for a flat tetrahedron.

Level Num. of Num. of Φmin Planar angles Φmax % bad elems.
Nodes Elems. associated to Φmin (ΦT < 10)

1 4 1 6.31 24.90 # 24.74 # 46.78 24.94 100.00
2 10 8 3.68 40.11 # 6.08 # 38.42 33.30 62.50
3 35 64 3.12 46.68 # 27.74 # 19.70 75.29 45.31
4 165 512 3.12 46.68 # 27.74 # 19.70 75.29 37.50
5 969 4096 3.12 46.68 # 27.74 # 19.70 75.29 30.03
6 6545 32768 3.12 46.68 #27.74 #19.70 75.29 22.97
7 47905 262144 3.12 46.68 # 27.74# 19.70 75.29 17.13
8 366145 2097152 3.12 19.70#46.78# 27.74 74.85 12.57

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

N
um

be
r

of
 V

er
tic

es
 %

Number of Tetrahedra per vertex

6th mesh-level: 32,768 tets. Av = 22.72, SD = 11.72
7th mesh-level: 262,144 tets. Av = 23.33, SD = 12.46

8th mesh-level: 2,097,152 tets. Av = 23.66, SD = 12.89

64

Maximum values

Figure 10: Distribution of vertices versus number of tetrahedra per vertex. Flat Tetrahedron.

References

[1] Arnold D.N., Mukherjee A., Pouly L. “Locally a-
dapted tetrahedra meshes using bisection.” SIAM
J. Sci. Comp., vol. 22 (2), 431–448, 2001

[2] Bänsch E. “Local Mesh Refinement in 2 and 3
Dimensions.” IMPACT Comp. Sci. Eng., vol. 3,
181–191, 1991

[3] Berger M. Geometry. Springer-Verlag, Berlin,
1987

[4] Kosaczký I. “A recursive approach to local mesh
refinement in two and three dimensions.” J.
Compt. Appl. Math., vol. 55, 275–288, 1994

[5] Liu A., Joe B. “Relationship between tetrahedron
shape measures.” BIT, vol. 34, 268–287, 1994

[6] Liu A., Joe B. “On the shape of tetrahedra from
bisection.” Mathematics of Computation, vol. 63,
no. 207, 141–154, 1994

[7] Liu A., Joe B. “Quality local refinement of tetra-
hedral meshes based on bisection.” SIAM J. Sci.
Compt., vol. 16, 1269–1291, 1995

[8] Maubach J.M. “Local bisection refinement for n-
simplicial grids generated by reflection.” SIAM
J. Sci. Compt., vol. 16, 210–227, 1995

[9] Mitchell W.F. “Optimal multilevel iterative me-
thods for adaptive grids.” SIAM J. Sci. Stat.
Comput., vol. 13, 146–167, 1992

[10] Plaza A., Carey G.F. “About local refinement of
tetrahedral grids based on bisection.” Proceedings
5th Int. Meshing Roundtable, pp. 123–136. 1996

[11] Plaza A., Carey G.F. “Refinement of simpli-
cial grids based on the skeleton.” Appl. Numer.
Math., vol. 32 (2), 195–218, 2000

[12] Plaza A., Padrón M.A., Carey G.F. “A 3D refi-
nement/derefinement algorithm for solving evolu-
tion problems.” Appl. Numer. Math., vol. 32 (4),
401–418, 2000

[13] Plaza A., Rivara M.C. “On the adjacencies for
triangular meshes based on skeleton-regular par-
titions.” J. Compt. Appl. Math., vol. 140 (1-2),
673–693, 2002

[14] Rivara M.C. “Algorithms for Refining Triangular
Grids Suitable for Adaptive and Multigrid Tech-
niques.” Int. J. Num. Meth. Eng., vol. 20, 745–
756, 1984

[15] Rivara M.C. “Selective Refinement/Derefinement
Algorithms for Sequences Nested Triangula-
tions.” Int. J. Num. Meth. Eng., vol. 28, 2889–
2906, 1989

[16] Rivara M.C. “New longest-edge algorithm for the
refinement and/or improvement of unstructured
triangulations.” Int. J. Num. Meth. Eng., vol. 40,
3313–3324, 1997

[17] Rivara M.C., Iribarren G. “The 4-Triangles
Longest-Side Partition and Linear Refinement Al-
gorithms.” Math. Comp., vol. 65, 1485–1502,
1996

[18] Rivara M.C., Levin C. “A 3D Refinement Algo-
rithm Suitable for Adaptive and Multigrid Tech-
niques.” Comm. Appl. Num. Meth., vol. 8, 281–
290, 1992

PROPAGATION PATH PROPERTIES IN ITERATIVE

LONGEST-EDGE REFINEMENT

J.P. Suárez1 A. Plaza1 G.F. Carey2

1University of Las Palmas de Gran Canaria, Canary Islands, Spain,
jsuarez@dcegi.ulpgc.es, aplaza@dma.ulpgc.es

2University of Texas at Austin, Austin, Texas, U.S.A. carey@cfdlab.ae.utexas.edu

ABSTRACT

In this work we investigate the refinement propagation process in longest-edge based local refinement algorithms
for unstructured meshes of triangles. The conformity neighborhood of a triangle, the set of additional triangles
that is needed to be refined to ensure mesh conformity is introduced to define the propagation path. We prove
that asymptotically the propagation path extends on average to a few neighbor adjacent triangles. We also include
numerical evidence which is in complete agreement with the theoretical study reported.

Keywords: mesh refinement, longest edge bisection, propagation path

1. INTRODUCTION

Mesh Generation plays a central role in the Finite
Element Method [1, 2, 3], and is a basic tool in many
other fields such as Computational Geometry and
Computer Graphics. A related problem that is also
of considerable interest is refinement of a mesh. The
refinement problem can be described as any technique
involving the insertion of additional vertices in order
to produce meshes with desired features: well shaped
triangles, mesh conformity and smoothness. The
presence of thin triangles can lead to undesirable
behavior affecting numerical stability and accuracy.
Mesh conformity refers to the requirement that the
intersection of adjacent triangles is either a common
vertex or an entire side. Mesh smoothness implies
that the transition between small and large elements
should be gradual.

Certain longest-edge refinement algorithms [4, 5, 6]
guarantee the construction of non-degenerate and
smooth unstructured triangulations. In these schemes
the longest edges are progressively bisected and hence
all angles in subsequent refined triangulations are

greater than or equal to half the smallest angle in
the initial triangulation [7]. However, the extent
of secondary refinements induced in neighboring1 el-
ements by the initiating element edge bisection is
not known [6, 8]. One can construct pathological
cases where refinement of a single element propagates
through the entire mesh (Figure 1). However expe-
rience indicates that this is an exception and that in
practice the refinement propagates through only a few
neighbors on average. Our goal here is to address
this question. We provide both theoretical results and
empirical evidence showing that successive application
of refinement to an arbitrary unstructured triangular
mesh produces meshes in which the average propa-
gation path is reduced in each refinement stage, and
asymptotically approaches the constant 5.

2. PRELIMINARIES. THE REFINEMENT
AND THE PROPAGATION PROBLEM

The refinement of triangular meshes involves two
main tasks. The first is the partition of the target

1Throughout this work, neighbor triangles are triangles
sharing an edge

t

. . .

Figure 1: Longest edge refinement propagation. The
dependencies in the propagation when refining t are in-
dicated by arrows.

triangles and the second is the propagation to
successive neighbor triangles to preserve conformity.
Several approaches for partitioning triangles have
been studied. The simplest is Bisection into two
subtriangles by connecting the midpoint of one of
the edges to the opposite vertex. If the Longest
Edge (LE) is chosen for the bisection, then this is
called Longest Edge Bisection, see Figure 2 (a). The
Four Triangles Longest Edge Partition, (4T-LE)
bisects a triangle into four subtriangles where the
original triangle is first subdivided by its longest edge
as before and then the two resulting triangles are
bisected by joining the new midpoint of the longest
edge to the midpoints of the remaining two edges of
the original triangle, as in Figure 2 (d), [5].

(a) (b)

(c) (d)

Figure 2: The four possible patterns in the 4T-LE re-
finement: (a) Bisection in two triangles, (b)-(c) Division
in three triangles and (d) Division in four triangles.

In order to ensure the conformity of the arising
mesh, the refinement must be extended to additional
triangles. This is made for the 4T-LE partition by
the use of partial division patterns given in Figure 2
(a)-(c).

Definition 1 (Longest Edge Neighbor triangle) The
longest edge neighbor of a triangle t is the neighbor
triangle t∗ which shares with t the longest edge of t.

In the case of an isosceles or equilateral triangle,
we may assume a ‘roundoff level’ perturbation to
yield a single longest edge. This can be random
and hence uniqueness is not implied. However, in
the cases in which one of the longest edges has been
already identified for bisection in a neighbor triangle,
this edge is chosen as the longest edge to get the
refinement as local as possible.

Definition 2 (LE Propagation Path [5, 9]) The
Longest Edge Propagation Path (LEPP) of a triangle
t0 is the ordered finite list of all adjacent triangles
LEPP (t0) = {t0, t1, . . . , tn} such that ti is the longest
edge neighbor triangle of ti−1.

Throughout this work τ denotes a 2D conforming tri-
angulation. If longest edge bisection is used to refine
a given triangle t ∈ τ , then the LEPP (t) provides the
list of triangles to be refined, (see Figure 3). Note that
if the 4T-LE partition is used to refine a given triangle
t, then the LEPP ’s of the neighbor triangles of t in
the mesh τ∗ = τ − t provide the lists of triangles to be
refined (see Figure 4 and Table 1). As a consequence,
the LEPP ’s provide the main adjacency lists used by
the algorithms.

t

ta
tb

tc

(a) (b)

Figure 3: (a) LEPP (t) = {t, ta, tb, tc} (b) LE bisection
of t and refinement propagation.

Table 1: Triangles and associated LEPP’s of mesh in
Figure 4 (a).

Triangle LEPP LEPP on τ∗ = τ − t

t {t, tc, td} -
ta {ta, t, tc, td} {ta}
tb {tb, te} {tb, te}
tc {tc, td} {tc, td}

Definition 3 (Boundary and Interior triangle) Let τ

be a two dimensional triangulation for a bounded do-
main Ω. A triangle t ∈ τ is said to be a boundary
triangle if t has an edge coincident with the boundary
∂Ω of Ω. Otherwise, t is an interior triangle of τ .

ta
tb

et

tc

td

tb

td

tc

(a) (b)

(c)

t
ta et

Figure 4: (a) Edge bisection for refining triangle t (b)
4T-LE refinement of t, (c) refinement of triangles.

Definition 4 (Pair of Terminal triangles) Two
neighbor triangles (t, t∗) will be called a ‘pair’ of
terminal triangles if they share a common longest
edge. If a triangle t does not belong to a pair of
terminal triangles, t is said to be a ‘single’ triangle.

For any triangle t0, if LEPP (t0) = {t0, . . . , tn−1, tn}
then for triangle tn either: (i) tn has its longest edge
coincident with the boundary or (ii) tn−1 and tn are
a pair of terminal triangles that share a common
longest edge, [9].

If all the triangles in a mesh are pairs of terminal tri-
angles, then all the LEPP lists are comprised only of
two triangles.

Definition 5 (LEPP-balanced mesh) Triangulation
τ is said to be LEPP-balanced if it is comprised of
pairs of terminal triangles. Otherwise, it is said to be
a non LEPP-balanced mesh.

Remark: In [10] the terminology ‘balanced’ is applied
to angles and areas. This is relevant to triangle shape
but not directly related to our LEPP study here.

Definition 6 (LEPP-balancing degree) Let τ con-
tain N triangles of which T triangles are in pairs of
terminal triangles. Then, the LEPP-balancing degree
of τ , noted as B(τ), is defined as follows:

B(τ) =
T

N
(1)

Note that 0 ≤ B(τ) ≤ 1 and in the case B(τ) = 1, the
mesh is LEPP-balanced.

Remark: If τ is such that the LEPP-balancing degree
is 0, then the conformity process when refining any
triangle t0 ∈ τ extends to the boundary of τ .

Figure 5 shows a LEPP-balanced mesh in (a) and a
non balanced mesh in (b). Here and in subsequent fig-
ures we represent the longest-edges with a dashed line.

A simple example of a LEPP-balanced mesh is any
mesh comprised entirely of pairs of right triangles shar-
ing the longest-edges. In such a mesh, if one applies
uniform 4T-LE refinement, then all triangles are pairs
of terminal triangles and they are similar to the origi-
nal right triangles.

3. PROPAGATION PROPERTIES OF
RECURSIVE 4T-LE REFINEMENT

We are particulary interested in the average and
maximum lengths of the propagation paths generated
by longest-edge refinement since they are important
in assessing algorithm efficiency.

First we introduce the Conformity Neighborhood
associated with the application of 4T-LE local
refinement. This concept will be useful in the study
of the propagation properties.

Definition 7 (Conformity Neighborhood Vc) When
refining a triangle t ∈ τ , the Conformity Neighborhood
Vc(t) of t, is the set of triangles in τ ∗ = τ − t that
need to be refined due to the conformity process for t.

Definition 8 (M1) When refining a triangle t ∈ τ ,
M1(t) is said to be the size of Vc(t): M1(t) = |Vc(t)|.

Note that M1(t) measures the extent of the propaga-
tion refinement zone for triangle t, in number of trian-
gles.

(a)					 (b)

Figure 5: (a) LEPP-Balanced mesh, (b) Non balanced
LEPP mesh.

Proposition 1 For each t ∈ τ , M1(t) is the sum of
the lengths of the LEPP ′s of the neighbors of t in the
mesh τ∗ = τ − t. 2

Figure 1 shows that it always is possible to construct
meshes in which M1(t) is O(N), where N is the num-
ber of elements. Here, the average of M1 is µ(M1) =
∑

t
M1(t)

N
=

∑N−1

k=0
k

N
=

N−1

2
· N

N
=

N − 1

2
. On

the other hand, if B(τ) = 1 as in Figure 5 (a), then
M1(t) ≤ 5 ∀t ∈ τ .

Definition 9 (M2) For each t ∈ τ , M2(t) is the max-
imum length of the LEPP ′s of the neighbor triangles
of t in the mesh τ∗ = τ − t: M2 = max{|Vc(t) ∩
LEPP (ta)|, ta neighbor to t}.

Since the conformity process extends at most by the
three edges of t the propagation defines at most three
lists of ordered triangles. M2(t) is the maximum
number of triangles of the three resulting lists.
For example, in Figure 4, M2(t) = 2 because the
maximum number of triangles among {tb, te}, {tc, td},
{ta} is 2, see Table 1.

Proposition 2 Let τ be LEPP-balanced. Then, for
each interior triangle t ∈ τ , M1(t) = 5 and M2(t) =
2.

Proof:
Let t be an interior triangle of τ . Since τ is a LEPP-
balanced mesh, t is adjacent to another triangle t1
by their common longest edge. Let t2 and t3 be the
two other adjacent triangles to t. Again, since τ is
a LEPP-balanced mesh, t2 and t3 are adjacent to
other triangles t′2 and t′3 by their respective common
longest edges, and t′2 6= t 6= t′3. Considering the
mesh τ∗ = τ − t we have that LEPP (t1) = {t1},
LEPP (t2) = {t2, t

′

2} and LEPP (t3) = {t3, t
′

3}.
Hence Vc(t) = {t1, t2, t3, t

′

2, t
′

3} so M1(t) = 5 and
M2(t) = 2. 2

Our next goal is to prove that the uniform applica-
tion of the 4T-LE partition will produce a sequence
of meshes with increasing LEPP-balancing degree ap-
proaching 1. We shall also prove that the mean of M1
and the mean of M2 tend to 5 and 2 respectively, when
the number of refinements applied tends to infinity.

Proposition 3 [4] (a) The first application of the
4T-LE partition to a given triangle t0 introduces two
new triangles that are similar to the original triangle

t0. Moreover, these two triangles have their longest
edges coincident with the longest edge of the original
triangle. The remaining two new triangles t1, are sim-
ilar to each other but not necessarily to the original
triangle t0. Triangles t1 may be a terminal pair or
not.
(b) The iterative application of the 4T-LE partition to
a given triangle t0 introduces at most one new distinct
(up to similarity) triangle in each iteration.

Proof:
The proof follows from the angle properties of similar
subtriangles obtained by 4T-LE quadrisection as seen
in Figures 6 and 7 for the acute and obtuse triangles
respectively. 2

Proposition 4 If the 4T-LE partition to an initial
triangle t0 introduces a pair of terminal triangles t1,
then the iterative application of the 4T-LE partition in-
troduces pairs of terminal triangles excepting the trian-
gles located at the longest edge of t0. Moreover, in this
case only two classes of similar triangles are generated,
corresponding to t0 and t1 respectively (see Figure 6).

Proof:
The hypothesis of Proposition 4 is depicted in Fig-
ure 6 (b). The proof follows trivially from the angle
properties of parallel lines in the nested triangles. 2

To demonstrate that recursive uniform 4T-LE refine-
ment introduces meshes with relatively more pairs of
terminal triangles for any arbitrary triangular mesh we
consider right, acute and obtuse triangles respectively.
We begin in the next Proposition with the right and
acute triangle cases:

Proposition 5 (Right and acute triangle cases) The
application of the 4T-LE partition to an initial right
or acute triangle t0 produces two new single triangles
similar to the original one (located at the longest edge
of t0) and a pair of terminal triangles t1. These tri-
angles t1 are also similar to the original one t0 in the
case of right triangle t0, and they are similar to each
other but non-similar to the initial one in the case of
acute triangle t0. (See Figure 6). 2

The obtuse triangle case offers a different situation:

Proposition 6 (Obtuse triangle case) The applica-
tion of the 4T-LE partition to an initial obtuse triangle
t0, produces two new single subtriangles similar to the
original one (located at the longest edge of t0) and a
pair of subtriangles t1. These subtriangles t1 either

t0
t0 t0

t1 t1

0t 0t 0t
0t

1t 1t
1t 1t

0t
1t

1t

1t
1t

0t

0t 0t

(a) (b)

(c)

Figure 6: 4T-LE partition. Acute triangle.

1. are a pair of similar terminal triangles, as in Fig-
ure 6 (b) (t0 is said to be a Type 1 obtuse triangle), or
2. a pair of similar single triangles, as in Figure 7 (b)
(t0 is said to be a Type 2 obtuse triangle).

α0

γ 0

0β

ε

σ

(b)

C

M

δt
t

t
1

0

1 t

0

(a)

ba

c

C

B

t0

A

N
σ

Figure 7: (a) Type 2 obtuse triangle t0 (b) 4T-LE par-
tition of t0.

Proof:
Let α0 ≤ β0 ≤ γ0 be the angles of the initial obtuse
triangle t0 and let a, b, c be the sides of t0 respectively
opposite to α0, β0 and γ0. For the new non-similar
subtriangles generated, we denote by ε the opposite
angle to MN and σ the opposite angle to CN . Since
MN ≤ CN and ε ≤ σ the longest edge of t1 is either
the new edge CM or CN . In the first situation
(point 1 of the Proposition), triangles t1 are a pair
of terminal triangles sharing edge CM as the longest
edge.
In the second case, the largest angle of t1 is σ

(see triangles t1 in Figure 7). The new triangles t1
are not a pair of terminal triangles (point 2 of the
Proposition). 2

It should be noted that the 4T-LE partition always
produces two new single triangles similar to the
original one (located at the longest edge of t0) and
excepting for Type 2 obtuse triangles, a pair of
terminal triangles (similar or non similar to the
original one). Moreover, in this scenario, the single
triangles generated by the iterative 4T-LE partition
are those located at the longest edge of the initial
triangle, Proposition 4 (see Figure 6).

The following Proposition states the recursive im-
provement property of the 4T-LE partition for obtuse
triangles [4]:

Proposition 7 If the 4T-LE partition of an obtuse
triangle t0 introduces a pair of similar single triangles
t1 of largest angle γ1, then

1. γ1 = σ

2. γ1 = γ0 − ε ≤ γ0 − α0

hold for the new angles of the new triangle t1, see Fig-
ure 7. 2

It is worth noting, in relation to Proposition 7 above,
that after a finite number of applications of the 4T-LE
partition to triangle t0 and its successors a non-obtuse
triangle is obtained. This is a straightforward conse-
quence of statement 2 in Proposition 7. Furthermore,
after a first non-obtuse triangle is obtained then the
successive application of the 4T-LE partition does not
generate new non-similar triangles.

In view of the previous properties, we have:

Proposition 8 Let Γ = {τ0, τ1, . . . , τn} be a sequence
of nested meshes obtained by repeated application of
4T-LE partition to the previous mesh. Then, the
LEPP-balancing degree of the meshes tends to 1 as
n→ ∞.

Proof:
It suffices to prove the result for the case in which the
initial mesh τ0 only contains a single triangle t0. Then,
the number of generated triangles associated with the
4T-LE partition at stage n of refinement is:

Nn = 4n (2)

First, we prove the proposition for initial right, acute,
and the Type 1 obtuse triangles. In this situation,
the number of triangles in pairs of terminal triangles

Tn generated at stage n of uniform 4T-LE partition
satisfies (see Proposition 4 and Figure 6):

Tn = 4Tn−1 +2(Nn−1−Tn−1) = 2(Tn−1 +Nn−1) (3)

with N0 = 1 and T0 = 0.

Solving the recurrence relations 2, 3 we get:

Tn = 4n − 2n (4)

Therefore,

lim
n→∞

B(τn) = lim
n→∞

Tn

Nn

= 1

To complete the proof, we now consider the case of
an initial Type 2 obtuse triangle t0. Table 2 presents
the number of distinct types of triangles generated by
the 4T-LE iterative refinement of t0. We denote by
tn
j the number of triangles of similarity class tj , j =

0, 1, 2, · · · , k at stage n of refinement. For example,
after the second refinement 4 triangles are similar to
t0, 8 triangles similar to t1 and 4 new triangles similar
to t2.

From Proposition 6 (2) and Figure 7 we derive Table 2,
in which the following relation holds:

t
n
j = 2(tn−1

j + t
n−1

j−1), j = 1, 2, 3, · · · , k (5)

The solution to Equation (5) with initial condition
t00 = 1 can be easly expressed in terms of binomial
coefficients as follows:

t
n
j = 2n

(

n

j

)

(6)

On the other hand, from Proposition 7, the iterative
4T-LE partition of any obtuse triangle t0 produces a
finite number of distinct (up to similarity) triangles,
ti
j , 0 < j ≤ k. After k refinement stages there will

no longer be distinct new generated triangles different
from those already generated, (see proof of Proposi-
tion 6). Therefore, the number of triangles in pairs of
terminal triangles Tn after the k refinement stage with
n > k satisfy:

Tn ≥ 2n

n
∑

m=k

(

n

m

)

It follows that:

1 ≥ B(τn) ≥
2n

∑n

m=k

(

n

m

)

2n
∑n

m=0

(

n

m

) =

∑n

m=k

(

n

m

)

2n

Table 2: Triangle evolution in the 4T-LE partition.

Ref. 0 1 2 3 4 · · · k · · · n

t0 1 2 4 8 16 · · · tk
0 · · · tn

0

t1 2 8 24 64 · · · tk
1 · · · tn

1

t2 4 24 96 · · · tk
2 · · · tn

2

t3 8 64 · · · tk
3 · · · tn

3

t4 16 · · · tk
4 · · · tn

4

· · · · · · · · · · · · · · ·

tk · · · tk
k · · · tn

k

Taking limits:

1 ≥ lim
n→∞

B(τn) ≥ lim
n→∞

2n
∑n

m=k

(

n

m

)

2n
∑n

m=0

(

n

m

)

Since

n
∑

m=k

(

n

m

)

= 2n −

k−1
∑

m=0

(

n

m

)

≥ 2n −

(

n

k − 1

)

k

we have

1 ≥ lim
n→∞

B(τn) ≥ lim
n→∞

2n −
(

n

k−1

)

k

2n
= 1

So, lim
n→∞

B(τn) = 1. 2

Proposition 9 For iterative application of 4T-LE
uniform refinement to an initial triangular mesh τ0,
the means of M1 and of M2 tend to 5 and 2 respec-
tively, as the number of refinements tend to infinity.

Proof:
If the initial mesh is LEPP-balanced the result is triv-
ial. Let us suppose that the initial mesh contains non-
terminal triangle.

In any subsequent mesh we have pairs of terminal tri-
angles and non terminal triangles. First, we prove the
proposition for any right, acute, or Type 1 obtuse non
terminal triangles arranged in such a way that M1 and
M2 are the largest. That is, all the non-terminal tri-
angles constitute a unique LEPP. Figure 8 (a) repro-
duces a possible situation within a mesh. After a few
refinement steps it is observed that new non terminal
triangles are located at the longest edges of the initial
triangles. We represent in bold the longest edges of
non terminal triangles as shown in Figure 8 (d) and
call here polyline.

Non terminal triangles have their longest edges on the
polyline, see Figure 8 (d). Among them, those having

. . .

.

(a) (b)

(c) (d)

Figure 8: (a) Non terminal triangles forming a LEPP.
(b)-(c) 4T-LE refinement of triangulation in (a). (d)
longest edges of triangles in (a).

a vertex at the polyline show M1 = 7 and M2 = 3.
For a terminal triangle we get either 5 ≤ M1 ≤ 6 or
2 ≤ M2 ≤ 3 if it has a vertex on the polyline, or M1=5
and M2=2 otherwise. After n refinement steps, the
number of non terminal triangles is Xn = 2nX0 and
the number of total triangles is Nn = 4nN0. Hence,
upper and lower bounds for the average of M1 are as
follows:

6Xn + 5(Nn − Xn)

Nn

≤ M1 ≤
7 · 2Xn + 5(Nn − 2Xn)

Nn

Similarly for M2:

2Xn + 2(Nn − Xn)

Nn

≤ M2 ≤
3 · 2Xn + 2(Nn − 2Xn)

Nn

Taking limits we find that the means of M1 and of
M2 tend to 5 and 2 respectively, as the number of
refinements n tends to infinity.

To complete the proof, we should also consider the
case of Type 2 obtuse triangles. As pointed out after
Proposition 7, in repeated 4T-LE refinement, largest
angles of Type 2 obtuse triangles clearly decrease, and
after a finite number k of 4T-LE partitions the new
generated triangles will be no longer obtuse. Hence,
the first part of the proof for right or acute triangle
cases then applies. 2

4. NUMERICAL EXPERIMENTS

In this section we present numerical results showing
that the practical behavior of the 4T-LE partition is
in concordance with the reported theory in this work,

mainly Propositions 8 and 9.

We next consider a Delaunay mesh in a rectangle
(Figure 9 (a)) and an irregular mesh in a pentagon
(Figure 12 (a)) with five stages of uniform refinement.
It should be noted that the triangles in the Delaunay
mesh are almost regular in terms of the angles
moreover, the mean of the minimum angles and of
the maximum angles are 48.91 and 72.91 degrees
respectively. The initial value of B(τ0) is 0.4833. On
the other hand, for the irregular mesh in the pentagon
the mean of the minimum angles and of the maximum
angles are 9.18 and 120.41 degrees respectively, and
B(τ0) = 0.

The refined meshes for the initial Delaunay mesh
are presented in Figures 9 (b)-(d). The light shad-
ing in Figures 9 and 12 illustrate the triangles in
terminal pairs. In Table 3 it can be noted that the
number of triangles in terminal pairs increase as the
refinement stage grows, and as result, so does the
LEPP-balancing degree. Table 4 reports the means
and standard deviations of M1 and M2 and respective
histograms are graphed in Figure 11. It is observed
that both means tend to 5 and 2 respectively, as the
refinement continues. The asymptotic behavior is
graphed in Figure 10.

Similarly, the refined meshes for the ‘pentagonal’
domain are shown in Figure 12 and the asymptotic
behavior for the means µ(M1), µ(M2) graphed in
Figure 13. The evolution of the LEPP-balancing
degree is summarized in Table 5 and a comparison
graphed in Figure 15. Note that in both meshes the
LEPP-balancing degree tends to 1 when the number
of refinements increases, even in the Pentagonal mesh,
which exhibits an initial LEPP-balancing degree
B(τ0) = 0 (see Figure 15). Table 6 reports the
means and standard deviations of M1 and M2 and
respective histograms are graphed in Figure 14.

These results are also applicable to local refinement.
In order to empirically demonstrate this we consider
application of 4T-LE local refinement on a domain cor-
responding to the Gran Canaria Island (Figure 16).
The initial mesh is a Delaunay mesh and one refine-
ment step is applied on respective disjoint subregions
S1, S2 and S3 with S = S1 ∪ S2 ∪ S3, for innermost
region S3, intermediate region S2 and outermost re-
gion S1. Table 7 and Figure 17 confirm similar be-
havior to that observed for uniform refinement with
µ(M1) and µ(M2) approaching 5 and 2 respectively
and the LEPP-balancing degree approaching 1. Fig-
ure 18 graphs M1 and M2 histograms for the initial
mesh and refinement steps 3 and 6.

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(a) Initial mesh, 120 triangles, 58 pairs of terminal
triangles (lighter shade triangles).The propagation
paths of some triangles have been drawn with arrows.

(b) Refinement step 1, 480 triangles, 356 pairs of
terminal triangles (lighter shade triangles).

(c) Refinement step 2, 1920 triangles, 1672 pairs of
 terminal triangles (lighter shade triangles).

(d) Refinement step 3, 7680 triangles, 7184 pairs of
terminal triangles (lighter shade triangles).

Figure 9: Delaunay mesh. Uniform 4T-LE refinement.

Table 3: Statistics for the refinement of the Delaunay
mesh (Figure 9). R=Refinement step, T=Triangles in
Terminal Pairs, N=Triangles, B=LEPP-Balancing De-
gree.

R T N B

0 58 120 0.48333
1 356 480 0.74166
2 1672 1920 0.87083
3 7184 7680 0.93541
4 29728 30720 0.96770
5 121447 122880 0.98821

Table 4: M1 and M2 statistics for the refinement of the
Delaunay mesh (Figure 9). Average (µ) and Standard
Deviation (σ).

R N µ(M1) µ(M2) σ(M1) σ(M2)

0 120 5.233 2.625 1.873 0.888
1 480 5.112 2.381 1.135 0.582
2 1920 5.057 2.195 0.772 0.421
3 7680 5.028 2.096 0.535 0.303
4 30720 5.014 2.048 0.374 0.216
5 122880 5.007 2.028 0.275 0.040

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

4.2 4.4 4.6 4.8 5 5.2

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

(a) Initial mesh, 0 terminal triangles, 125 triangles. (b) Refinement step 1, 246 terminal triangles (lighter
shade triangles), 500 triangles.

(d) Refinement step 3, 4778 terminal triangles (lighter
shade triangles), 8000 triangles (interior zoom).

(c) Refinement step 2, 1088 terminal triangles (lighter
shade triangles), 2000 total triangles.

Figure 12: Pentagonal mesh. Uniform 4T-LE refinement.

0 2 4 6 8 10 12 14

x 104

0

1

2

3

4

5

6

Triangles

 M
1

M
ea

n

0 2 4 6 8 10 12 14

x 104

0

0.5

1

1.5

2

2.5

3

Triangles

 M
2

M
ea

n

Figure 10: Evolution of µ(M1) and µ(M2) for the re-
finement of the Delaunay mesh (Figure 9).

2 4 6 8 10
0

10

20

30

40

In
iti

al
 m

es
h.

12
0

t.

M1

1 2 3 4 5
0

20

40

60

80
M2

2 4 6 8 10
0

500

1000

1500

S
te

p
3.

 7
68

0
t.

0 1 2 3 4
0

500

1000

1500

2000

2 4 6 8 10
0

5

10

15
x 104

S
te

p
5.

 1
22

89
6

t.

0 1 2 3 4
0

5

10

15
x 104

Figure 11: M1 and M2 histograms for the refinement of
the Delaunay mesh (Figure 9).

Table 5: Statistics for the refinement of the Pentago-
nal mesh (Figure 12). R=Refinement step, T=Triangles
in Terminal Pairs, N=Triangles, B=LEPP-Balancing De-
gree.

R T N B

0 0 125 0
1 246 500 0.49200
2 1088 2000 0.54400
3 4778 8000 0.59725
4 21240 32000 0.66375
5 103970 128000 0.81230

Table 6: M1 and M2 statistics for the refinement of the
Pentagonal mesh (Figure 12). Average (µ) and Standard
Deviation (σ).

R N µ(M1) µ(M2) σ(M1) σ(M2)

0 125 26.544 14.392 16.569 7.156
1 500 6.910 3.800 2.204 1.668
2 2000 6.200 3.048 1.699 1.103
3 8000 5.997 2.831 1.553 0.883
4 32000 5.482 2.412 1.122 0.800
5 128000 5.370 2.204 0.947 0.757

0 2 4 6 8 10 12 14

x 104

0

5

10

15

20

25

30

Triangles

M
ea

n
M

1

0 2 4 6 8 10 12 14

x 104

0

2

4

6

8

10

12

14

Triangles

M
ea

n
M

2

Figure 13: Evolution of µ(M1) and µ(M2) for the re-
finement of the Pentagonal mesh (Figure 12).

0 20 40 60 80
0

5

10

15

20
M1

In
iti

al
 m

es
h.

 1
25

 t.

0 5 10 15 20 25
0

5

10

15

20
M2

0 5 10 15 0 5
0

1000

2000

3000

S
te

p
3.

 8
00

0
t.

2 4 6 8
0

1000

2000

3000

4000

2 4 6 8 10 12
0

2

4

6

8
x 104

S
te

p
5.

 1
28

00
0

t.

2 3 4 5 6 7
0

2

4

6

8
x 104

Figure 14: M1 and M2 histograms for the refinement of
the Pentagonal mesh (Figure 12).

0 2 4 6 8 10 12 14

x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Triangles

B
al

an
ci

ng
 D

eg
re

e

Delaunay Mesh

Pentagonal mesh

Figure 15: LEPP-balancing degree evolution for the re-
finement of Delaunay and Pentagonal meshes.

Table 7: M1 and M2 statistics for the refinement of
the Gran Canaria mesh (Figure 16). Average (µ) and
Standard Deviation (σ).

R N µ(M1) µ(M2) σ(M1) σ(M2)

0 592 6.619 3.451 2.764 1.660
1 736 6.690 3.539 2.577 1.663
2 1230 6.505 3.383 2.265 1.601
3 2624 6.019 2.918 1.679 1.051
4 9258 5.513 2.426 1.162 0.601
5 30730 5.247 2.367 0.681 0.509
6 41448 5.212 2.189 0.564 0.328

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Refinement step 1, 326 terminal triangles
(lighter shade triangles), 736 total triangles.

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Refinement step 3, 1588 terminal triangles
(lighter shade triangles), 2624 total triangles.

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) Refinement step 4, 7020 terminal triangles
(lighter shade triangles), 9258 total triangles.

Figure 16: Gran Canaria mesh. Local 4T-LE refinement.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 104

2

3

4

5

6

7
Gran Canaria Mesh. M1&M2.

M
e
a
n

M1

M2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

0.5

1

1.5

2

2.5

3

Elements

S
t
d
.

M1

M2

Figure 17: M1 and M2 evolution for the refinement of
the Gran Canaria mesh (Figure 16).

0 5 10 15 20
0

50

100

150

200

In
iti

al
 m

es
h.

 5
92

 t.

M1

0 2 4 6 8 10
0

50

100

150

200
M2

2 4 6 8 10 12
0

500

1000

1500

S
te

p
3.

 2
62

4
t.

0 2 4 6 8
0

500

1000

1500

2000

2 4 6 8 10 12
0

1

2

3
x 104

S
te

p
6.

 4
14

48
 t.

0 2 4 6 8
0

1

2

3

4
x 104

Figure 18: M1 and M2 histograms for the refinement of
the Gran Canaria mesh (Figure 16).

Table 8: Statistics for the refinement of the Gran Canaria
mesh (Figure 16). R=Refinement step, T=Triangles in
Terminal Pairs, N=Triangles, B=LEPP-Balancing De-
gree.

R T N B

0 248 592 0.41891
1 326 736 0.44293
2 672 1230 0.54634
3 1588 2624 0.60518
4 7020 9258 0.75826
5 26282 30730 0.85525
6 35746 41448 0.86243

5. CONCLUSIONS

In this work we have studied the propagation prob-
lem associated with longest edge based refinement
algorithms in 2D. We have theoretically proved in
the paper that the propagation path asymptotically
extends on average to a few neighbor adjacent
triangles. This result has also been numerically
demonstrated for repeated local refinement. The
extent of refinement for triangle t defines a Confor-
mity Neighborhood characterized by two parameters
(M1(t) and M2(t)).

When repeated uniform refinement is applied to an
initial arbitrary triangular mesh, the average of the
parameters M1(t) tends to 5 and the average of
M2(t) tends to 2. This implies for local refinement
of practical applications that on average the propa-
gation of secondary refinements induced by specified
refinements will be limited to a proportionally small
number of elements with a confined limit. In view
of this, an asymptotic estimate of the cost is easily
determined: since the cost of refinement of a single
triangle is bounded by a small constant c and the
number of triangles in the conformity neighborhood
of any such triangle is 5 on average, the asymptotic
estimate of the cost to refine a triangle is obviously 6c.

We also have introduced the concept of LEPP-
balancing degree (ratio between triangles in terminal
pairs and total triangles in a mesh) for longest
edge refinement of meshes and have proved that
the LEPP-balancing degree asymptotically tends to
1. These results are also a global measure of the
improvement of the generated meshes on the size of
the conformity neighborhood.

The counterpart 3D propagation problem needs a
more complex study because the number of connec-
tivity patterns are considerably higher than in 2D.
It should be noted that the 4T-LE refinement uses
three partial division patterns while the extension to
three dimensions, the 8T-LE partition may involve
more than fifty partial divisions for the sake of confor-
mity [11]. We have made some exploratory numerical
studies of LEPP behavior for refinement of tetrahedral
meshes and this topic is the subject of our continuing
work

Acknowledgements

This research has been partially supported by Sandia
grant #56522 and ULPGC grant UNI2002/22.

References

[1] Bern M., Plassmann P. ”Mesh Generation”,
Handbook of Computational Geometry, pp. 291–
332, 2000

[2] Canann S., Saigal S., Owen S., Eds. “Special Edi-
tion on Unstructured Mesh Generation.” Inter-
national Journal for Numerical Methods in Engi-
neering, vol. 1, no. 49, 2000

[3] Carey G. Computational Grids: generation,
adaptation and solution strategies. Taylor & Fran-
cis, 1997

[4] Rivara M., Iribarren G. “The 4-triangles longest-
side partition of triangles and linear refine-
ment algorithms.” Mathematics of Computation,
vol. 65, no. 216, 1485–1502, 1997

[5] Rivara M. “Mesh refinement based on the gen-
eralized bisection of simplices.” SIAM Journal of
Numerical Analysis, vol. 2, 604–613, 1984

[6] Rivara M., Venere M. “Cost analysis of the
longest-side (triangle bisection) refinement algo-
rithm for triangulation.” Engineering with Com-
puters, vol. 12, 224–234, 1996

[7] Rosenberg I., Stenger F. “A lower bound on
the angles of triangles constructed by bisecting
the longest side.” Mathematics of Computation,
vol. 29, 390–395, 1975

[8] Jones M., Plassmann P. “Parallel algorithms for
adaptive mesh refinement.” SIAM Journal in Sci-
entific Computing., vol. 18, 686–708, 1997

[9] Rivara M. “New mathematical tools and tech-
niques for the refinement and/or improvement of
unstructured triangulations.” Proceeding 5th In-
ternational Meshing Roundtable’96. SANDIA Re-
port SAND 96-2301, pp. 77–86. 1984

[10] Dai Y., Katoh N., Cheng S.W. “LMT-skeleton
heuristics for several new classes of optimal tri-
angulations.” Computational Geometry, vol. 17,
51–68, 2000

[11] Plaza A., Padrón M., Carey G. “A 3D refine-
ment/derefinement combination to solve evolu-
tion problems.” Applied Numerical Mathematics,
vol. 32, no. 4, 285–302, 2000

WHEN AND WHY RUPPERT’S ALGORITHM WORKS

Gary L. Miller1 Steven E. Pav2 Noel J. Walkington2

1Carnegie Mellon University, Pittsburgh, PA 15213 glmiller@cs.cmu.edu
2Carnegie Mellon University, Pittsburgh, PA 15213 [spav |noelw]@andrew.cmu.edu

ABSTRACT

An “adaptive” variant of Ruppert’s Algorithm for producing quality triangular planar meshes is introduced. The
algorithm terminates for arbitrary Planar Straight Line Graph (PSLG) input. The algorithm outputs a Delaunay
mesh where no triangle has minimum angle smaller than 26.45◦ except “across” from small angles of the input. No
angle of the output mesh is smaller than arctan [(sin θ∗)/(2 − cos θ∗)] where θ∗ is the minimum input angle. Moreover
no angle of the mesh is larger than 137.1◦. The adaptive variant is unnecessary when θ∗ is larger than 36.53◦, and
thus Ruppert’s Algorithm (with concentric shell splitting) can accept input with minimum angle as small as 36.53◦.
An argument is made for why Ruppert’s Algorithm can terminate when the minimum output angle is as large as 30◦.

Keywords: mesh generation, Ruppert’s Algorithm, computational geometry, triangular

1. INTRODUCTION

The Delaunay Refinement Algorithm, first described
by Ruppert, accepts a set of points and a set of seg-
ments, augments the point set with Steiner points, and
returns the Delaunay Triangulation of the augmented
set. For suitable input, the triangulation conforms to
the input, has no angle smaller than some parameter-
izable κ (which is no larger than arcsin 1

2
√

2
≈ 20.7◦),

and exhibits “good grading,” i.e., short edges in the
triangulation are attributable to nearby input features
which are close together. The number of triangles in
the output is within a constant of optimal [1].

The algorithm has the advantage of being relatively
easy to state and implement, and has been the object
of great scrutiny and interest. Since its introduction,
the algorithm and the analysis of the algorithm have
been improved and modified: the class of known ac-
ceptable input has been expanded [2]; a variant algo-
rithm has been developed to handle small input angles
[3]; the algorithm has been adapted to accept curved

Support provided in part by National Science Foundation
Grants DMS–0208586 and CCR–9902091. This work was
also supported by the NSF through the Center for Nonlin-
ear Analysis.

input [4]; it also has been generalized to higher dimen-
sions [2, 5, 6, 7].

Ruppert’s original analysis required that no input seg-
ments meet at acute angles, and guaranteed that no
angle in the output was smaller than a parametrizable
κ < arcsin 1

2
√

2
. As κ ↗ arcsin 1

2
√

2
, the proved bound

on the number of Steiner Points approaches infinity
[1], though this behaviour is not seen experimentally;
rather, the Delaunay Refinement Algorithm is often
run with κ as great as π/6 or greater without diverg-
ing. The input condition has been relaxed to a π/3
lower bound on input angles [3, 5]. The algorithm has
been observed to terminate on some input with smaller
(in some cases much smaller) input angles.

Shewchuck demonstrated an alteration of the algo-
rithm, the so-called “Terminator,” which accepts in-
put with arbitrary minimum angle, θ∗, producing De-
launay meshes with no output angle smaller than

arcsin
�
sin � θ∗

2 � /
√

2 � . This variant is adaptive in the

sense that it leaves some small angles in the output
mesh, while most angles are larger than arcsin 1

2
√

2
.

The location of the small output angles cannot be de-
termined very much beyond the statement that they
are “near input angles less than . . . 60◦.” Moreover, the

analysis of this scheme comes without grading guaran-
tees, and thus no optimality claim [3].

We here demonstrate an alteration of the algorithm
which outputs meshes where all output angles are
greater than arcsin 2−7/6 ≈ 26.45◦, except those
whose shortest edge is “opposite” an input angle
θ < 36.53◦; in this case, the output angle is no less

than arctan � sin θ
2−cos θ � . Moreover, in spite of the po-

tential of arbitrarily small output angles, this algo-
rithm can guarantee that no output angle is larger

than around π − 2 arcsin
√

3−1

2
≈ 137.1◦. In this sense

the algorithm contrasts favorably with the Termina-
tor, which has no upper bound other than the näıve

one of π − 2 arcsin
�
sin � θ∗

2 � /
√

2 � , which deteriorates

when θ∗ is small. Moreover, our algorithm comes with
grading and optimality guarantees, and is fairly sim-
ple.

In the case where θ∗ ≥ 36.53◦, our analysis shows that
the variant algorithm is unnecessary, and that Rup-
pert’s original algorithm with circular shell splitting
comes with the same output and optimality guaran-
tees.

In this work we employ the strategy of Shewchuk [2],
i.e., termination is proved without showing good grad-
ing. This is done since a relatively accessible and com-
plete proof of the “termination-only” result may be
given in the limited amount of available space. The
proof of good-grading is quite a bit more involved [8].

2. THE MESHING PROBLEM

The meshing problem is described in terms of the input
to the algorithm and the expected conditions on the
output. The input to the mesher is defined as follows:

Assumption 2.1 (Input). The input to the meshing
problem consists of a finite set of points, � ⊆ � 2 , and
a set of segments � such that

(a) the two endpoints of any segment in � are in � ,
(b) any point of � intersects a segment of � only at

an endpoint,
(c) two segments of � meet only at their endpoints,

and
(d) the boundary of the convex hull of � is the union

of segments in � .

Let Ω denote the convex hull of the input, and let
0 < θ∗ ≤ π/3 be a lower bound on the angle between
any two intersecting segments of the input.

Items (a)-(c) characterize (� , �) as a Planar Straight
Line Graph (PSLG); item (d) can always be satisfied
by augmenting an arbitrary PSLG which does not sat-
isfy it with a bounding polygon (typically a rectangle).

The restriction that θ∗ ≤ π/3 is merely for conve-
nience; asserting a larger lower bound does not give
any better results.

Assumption 2.2 (Output). The algorithm outputs
sets of points, segments, triangles, � ′, � ′, � ′, respec-
tively, satisfying:

(a) Complex: The output collectively forms a sim-
plicial complex, i.e., {∅} ∪ � ′ ∪ � ′ ∪ � ′ is closed
under taking boundaries, and under intersection.

(b) Delaunay: Each triangle of � ′ has the Delaunay
property with respect to � ′.

(c) Conformality: � ⊆ � ′, and for every s ∈ � , s is
the union of segments in � ′.

(d) Quality: There are few or no “poor-quality” tri-
angles in � ′.

(e) Cardinality: Few Steiner points have been
added, i.e., | � ′ \ � | is small.

One passable definition of item (d) is that there are
some reasonably large constants 0 < α ≤ ω ≤ π+α

4

such that for every triangle t ∈ � ′, no angle of t is
smaller than α or larger than π − 2ω. However, such
a guarantee is not consistent with conformality of the
triangulation (item (c)) when the input contains an-
gles less than α. A weaker definition is that most tri-
angles satisfy the above condition, and those that do
not (a) are describably near an input angle of size θ,
(b) have no angle smaller than θ−O � θ2 � , and (c) have
no angle larger than π − 2ω.

3. THE ALGORITHM

We describe a whole class of algorithms, which we col-
lectively refer to as “the” Delaunay Refinement Algo-
rithm. This class contains Ruppert’s original formula-
tion [1], as well as the incremental version [5].

We suppose that the algorithm maintains a set of
“committed” points, initialized to be the set of input
points, � . The algorithm also maintains a set of “cur-
rent” segments, initialized as the input set, � . The al-
gorithm will “commit” points to the set of committed
points. At times the algorithm will choose to “split”
a current segment; this is achieved by removing the
segment from the set of current segments, adding the
two half-length subsegments which comprise the seg-
ment to the set of current segments, and committing
to the midpoint of the segment. The word “midpoint”
should be taken to mean one of these segment mid-
points for the remainder of this work, to distinguish
them from the other kind of Steiner Point, which will
be called “circumcenters.”

The algorithm has two high-level operations, and will
continue to perform these operations until it can no
longer do so, at which time it will output the com-
mitted points, the current segments and the Delaunay

Triangulation of the set of committed points. For con-
venience, we say that a segment is “encroached” by a
point p if p is inside the diametral circumball of the
segment. Then the two major operations are as fol-
lows:

(Conformality) If s is a current segment, and
there is a committed point that encroaches s,
then split s.
(Quality) If a, b, c are committed points, the cir-
cumcircle of the triangle ∆abc contains no com-
mitted point, triangle ∆abc has an angle smaller
than the global minimum output angle, κ, and the
triangle’s circumcenter, p is in Ω, then attempt to
commit p. If, however, the point p encroaches any
current segment, then do not commit to point p,
rather in this case split one, some, or all of the
current segments which are encroached by p.

It should be clear that if the algorithm terminates then
every segment of the set � has been decomposed into
current segments, none of which are encroached by
committed points, and thus have the Delaunay prop-
erty with respect to the final point set, and are thus
present in the output Delaunay Triangulation. The
algorithm clearly never adds any points outside Ω. It
is simple to show that if the algorithm terminates, no
triangle in the Delaunay Triangulation has an angle
smaller than the minimum output angle κ, though we
omit the proof [8].

The Adaptive Delaunay Refinement Algorithm substi-
tutes operation (Quality) with the following opera-
tion (Quality′):

(Quality′) If a, b, c are committed points, the
circumcircle of the triangle ∆abc contains no
committed point, � acb < κ̂, the circumcenter,
p, of the triangle is inside Ω and either (i) both
a, b are midpoints on distinct nondisjoint input
segments, sharing input endpoint x, and � axb >
π/3, or (ii) a, b are not midpoints on adjoining
input segments, then attempt to commit p. If,
however, the point p encroaches any current seg-
ment, then do not commit to point p, rather in
this case split one, some, or all of the current
segments which are encroached by p.

In summary, the algorithm removes angles smaller
than κ̂ except when the opposite edge spans a small
angle in the input, in which case the small output an-
gles are ignored. For this variant we call κ̂ the output
angle parameter ; the output mesh may well contain
angles smaller than κ̂. We will let α be the minimum
angle in the output mesh.

The heuristics involved with determining which op-
eration to perform when and on which segment or
poor-quality triangle are not relevant to our discus-
sion. This is not to say that they might not affect ease

of implementation, running time, cardinality of the fi-
nal set of committed points, parallelizability, etc. A
common heuristic (and the one chosen by Ruppert and
others) is to prefer conformality operations over qual-
ity operations, which likely results in a smaller output,
and which simplifies detecting that a circumcenter is
outside of Ω. A description of a member of this class
of algorithms would have to include some discussion
of how to figure out which current segments are en-
croached, which triangles are suitable for removal via
the quality operation, how to deal with degeneracy,
etc. We do not concern ourselves with these details
(though see [9, 10, 11, 5, 12, 2, 13]).

3.1 When is Adaptivity Necessary?

We here make the claim that the Delaunay Refinement
Algorithm is as good as its adaptive variant when the
latter is used with a small output angle parameter κ̂.
The claim is formalized as follows:

Claim 3.1. Suppose that we can guarantee that if the
Adaptive Delaunay Refinement Algorithm is run with
output angle parameter κ̂, on any appropriate input
with minimum input angle θ∗, that (a) the algorithm
terminates, (b) no angle of the output mesh is smaller
than κ̂, and (c) no angle is larger than π − 2ω.

Then if the Delaunay Refinement Algorithm is run on
any appropriate input with minimum input angle θ∗,
using output angle parameter κ = κ̂, then (a) the al-
gorithm terminates, (b) no angle of the output mesh is
smaller than κ, and (c) no angle is larger than π− 2ω.

Proof. The Adaptive Delaunay Refinement Algorithm
only attempts to remove a Delaunay triangle if it has
minimum angle smaller than κ̂. Moreover, it pro-
duces meshes with no angle smaller than κ̂. Then the
(Quality′) operation could be rewritten as follows:

(Quality′) If a, b, c are committed points, the
circumcircle of the triangle ∆abc contains no
committed point, � acb < κ̂, and the circumcen-
ter, p, of the triangle is inside Ω then attempt to
commit p. If, however, the point p encroaches any
current segment, then do not commit to point p,
rather in this case split one, some, or all of the
current segments which are encroached by p.

This is the same as the operation (Quality) of the
Delaunay Refinement Algorithm.

By “appropriate,” we refer to the fact that, as stated,
both algorithms require some added assumption about
edge lengths (cf. Assumption 4.2). The restriction can
be removed if splitting on concentric shells is used to
put input into the required form on an “as-needed”
basis, as argued in Section 9.

Thus we will first examine the adaptive variant, then
use the results to analyze the regular Delaunay Refine-
ment Algorithm.

The analysis that follows should be read with a tacit
understanding that it can be applied to the Delaunay
Refinement Algorithm as well, if κ is set propertly. For
example, it will be shown that if an input with θ∗ ≈
36.53◦ conforms to Assumption 4.2, then the Adaptive
Delaunay Refinement Algorithm with κ̂ = 26.45◦ will
terminate leaving no angle in the output mesh smaller
than κ̂, and no angle larger than π − 2κ̂. Then we can
immediately claim that the Delaunay Refinement Al-
gorithm (i.e., Ruppert’s Algorithm) with κ = 26.45◦

will also terminate on the same input, and with the
same grading guarantees.

So the adaptive variant is only necessary if θ∗ is small,
say smaller than about 36.53◦. When θ∗ is small, the
adaptive variant will remove small angles where this
is possible, i.e., away from small input angles.

4. PRELIMINARIES

Some preliminary definitions and results are essential
to the exposition. First there is the matter of terminol-
ogy: if p is a committed point that was the midpoint
of a segment, we say this segment is the “parent” seg-
ment (or parent subsegment) of p; the “radius” of a
segment is half its length, while the radius associated
with a midpoint is the radius of its parent segment;
any segment derived from a segment s ∈ � by splitting
is a “subsegment” of (or on) s; segments in � which
share an endpoint are nondisjoint; distinct nondisjoint
segments are said to be “adjoining.”

Throughout this work, we let |x − y| denote the Eu-
clidian distance between points x and y. For a segment
S, we let |S| denote the length of the segment. Local
feature size is defined in terms of the input, and is the
classical definition due to Ruppert:

Definition 4.1 (Local Feature Size). For a point
x ∈ � 2 , the local feature size at x, relative to an input
PSLG, (� , �), is the minimum r such that a closed ball
of radius r centered at x intersects at least two disjoint
features of � ∪ � . The local feature size is a Lipschitz
function, i.e., lfs (x) ≤ |x − y| + lfs (y) .

This definition is illustrated in Figure 1.

For the proof we require an extra condition on the
input:

Assumption 4.2. In addition to those of Assump-
tion 2.1 we make the following assumption:

(a) If S1, S2 are two adjoining input segments that
meet at angle other than π, then they have the

u

v

w
x

y

z

Figure 1: For a number of points in the plane, the local
feature size with respect to the given input is shown.
About each of the points u, v, w, x, y, z is a circle whose
radius is the local feature size of the center point. The
point u is an input point.

same length modulo a power of two, that is |S1|
|S2| =

2k for some integer k.

It is simple to show that this assumption can be satis-
fied by the addition of no more than 2 | � | augmenting
points, effectively redefining the input [8]. Later we
will argue that Ruppert’s strategy of splitting on con-
centric circular shells obviates this additional assump-
tion [1].

5. MIDPOINT-MIDPOINT
INTERACTIONS

Ruppert noted that one way his algorithm could fail
was due to infinite cascades of segment midpoints
each encroaching on an adjoining subsegment; the pre-
scribed cure was concentric shell splitting [1], which
puts input into a form which satisfies Assumption 4.2
on an as-needed basis. To simplify the proof, we as-
sume the input satisfies this assumption up-front, then
ease the restriction later. In this section we show how
this assumption can prevent infinite cascades of mid-
points.

The classic result on Ruppert’s Algorithm for input
satisfying a π/3 angle condition can be proven with
the following purely geometric lemma [8].

Lemma 5.1. Given two rays, R and R′ from a point
x with angle θ between them, suppose there is a ball of
radius r with center p on ray R such that the ball does
not contain x but does contain a point q of R′. Then
if π/4 ≤ θ < π/2,

|q − x|
|p − x| ≤

|q − x|
r

<
|q − x|
|p − q| ≤ 2 cos θ.

Given the π/3 angle condition, the right hand side
of the inequality in the lemma is no greater than
1. Roughly this guarantees that radii do not “dwin-
dle,” or in terms of Shewchuk’s dataflow diagrams, the
midpoint-midpoint loop does not admit a decrease in
insertion radius [2].

The following lemma makes the same guarantees, but
for input which satisfy Assumption 4.2. The lemma
explicitly states that the radii are non-dwindling,
though note these are actual segment radii, not
Shewchuk’s insertion radii, which is also known as
nearest neighbor distance. Using the non-dwindling
property of segment radii, we will prove termination
of the algorithm by demonstrating a lower bound on
a segment’s radius at time of splitting.

This lemma takes care of the case where a midpoint
encroaches a segment on a nondisjoint input feature.
In the following sections, we consider another way in
which a midpoint can trigger such a segment split,
namely via sequences of triangle circumcenters.

Lemma 5.2. Suppose that the input conforms to As-
sumption 4.2. Let p be the midpoint of a segment which
is encroached by a committed point, q, on an adjoining
input segment. Let rp be the radius associated with p,
and rq that of q. Then rq ≤ rp, and moreover,

|p − q| ≥ 2rq sin
θ

2
,

where θ is the angle between the two input segments.

Proof. Let (x, y) , (x, z) be the two input segments
containing, respectively, p, q. Let (a, b) be the subseg-
ment of which p is midpoint. Let (c, d) be that for
which q is midpoint. Assume that a is closer to x than
b is, and assume c is closer to x than d is. It may be
the case that x = a, or x = c.

It is easy to show that, log2

|x−y|
|a−b| , and log2

|x−z|
|c−d| are

nonnegative integers. By Assumption 4.2, and since
θ 6= π, log2

|x−y|
|x−z| is an integer. Thus log2

|a−b|
|c−d| =

log2

rp

rq
= j is also an integer. We wish to show that

it is nonnegative.

A geometric argument gives |x − a| < |x − q| <
|x − b|, so that |x − a| < |x − c| + rq < |x − a| + 2rp.

It then can be shown that k = |x−a|
|a−b| = |x−a|

2rp
is a non-

negative integer, as is, mutatis mutandis, l = |x−c|
2rq

.

Thus

2krp < (2l + 1)rq < 2(k + 1)rp, or

2j+1k < (2l + 1) < 2j+1(k + 1), and so

2l + 1

2j+1
− 1 < k <

2l + 1

2j+1
.

If j is a negative integer, then 2j+1 is a power of two no
greater than 1; in particular it divides any integer, thus

2l+1

2j+1 = m is an integer. This gives the contradiction
that m − 1 < k < m for integer m, k. Thus j is a
nonnegative integer, or rp ≥ rq.

For the second part, we first show that |p − q| ≥
2(|x − q| ∧ |x − p|) sin θ

2
. We consider the case where

|x − q| ≤ |x − p| ; the other case follows mutatis mu-
tandis.

Let L = |x−p|
|x−q| ≥ 1. Using the cosine rule on ∆xpq,

|p − q|2 = |x − p|2 + |x − q|2 − 2 |x − p| |x − q| cos θ.

= (1 + L2) |x − q|2 − 2L |x − q|2 cos θ

≥ 2L |x − q|2 − 2L |x − q|2 cos θ

= 2L |x − q|2 (1 − cos θ),

where we have used that 1+L2 ≥ 2L. Using L ≥ 1, we
obtain |p−q|

|x−p| ≥
�

2(1 − cos θ). It is a simple exercise

to show that 2 sin θ
2

=
�

2(1 − cos θ) for θ ∈ [0, π] .

Now, clearly |x − p| ≥ rp ≥ rq, and |x − q| ≥ rq, so
the result |p − q| ≥ 2rq sin θ

2
holds, as desired.

6. CIRCUMCENTER SEQUENCES

We now consider sequences of triangle circumcenter
additions.

Definition 6.1. A circumcenter sequence is a se-
quence of points, {bi}l−1

i=0
such that for i = 1, 2, . . . , l−

1, bi is the circumcenter of a triangle in which bi−1

is the more recently committed endpoint of an edge
opposite an angle less than κ̂. The point b0 may be an
input point or segment midpoint.

For i = 0, 1, . . . , l − 2, let ai be the other endpoint of
the short edge of which bi is the more recently commit-
ted endpoint. In the case where a0, b0 are both input
points, they are committed simultaneously; we imag-
ine a total order on input points which determines the
tie. Both a0, b0 may be midpoints on distinct, nondis-
joint input segments. In this case we assume that
the triangle with circumcenter b1 was removed by a
(Quality′) operation because of a small angle oppo-
site a0, b0. In particular this means that we assume
the angle subtended by the input segments containing
a0, b0 is at least π/3 in this case.

When talking about such sequences, for i =
1, 2, . . . , l − 1, let r̃i be the circumradius of the trian-
gle associated with bi. Note that r̃i = |bi − bi−1| =
|bi − ai−1| , and that |ai − bi| ≥ r̃i. We let r̃0 =
|b0 − a0| , i.e., the length of the first short edge.

Note that for a circumcenter sequence, {bi}l−1

i=0
, the

points b1, b2, . . . , bl−2 are circumcenters which have
been committed, bl−1 is a circumcenter, though it may
be rejected, and b0 may be any type of point. If b is a
triangle circumcenter, there is always a circumcenter

sequence ending with b, although it may be a trivial
sequence of two elements. Any circumcenter sequence
whose first element, b0, is a triangle circumcenter may
be extended to a maximal sequence whose first element
is either a segment midpoint or an input point.

The following geometric lemma is the key result which
allows us to make the arcsin 2−7/6 output guarantee.
It states that only circumcenter sequences longer than
a certain length can “turn” around a 180◦ feature.

Lemma 6.2. Let S1, S2 be two segments with dis-
joint interiors on a common line, L. Assume that
|S2| ≤ |S1| , i.e., S2 is no longer than S1. Let b0 be
the midpoint of S1, and let a0 be some other point.
Let {bi}l−1

i=1
be a circumcenter sequence such that bl−1

is inside the diametral circle of S2, and such that b1 is
the circumcenter of a triangle with edge (a0, b0) oppo-
site an angle smaller than κ̂. Then l ≥ 4.

Note that unlike in the regular terminology of circum-
center sequences, this lemma makes no assumptions
about which of a0, b0 was committed first. This is why
we have chosen to index the circumcenter sequence
from i = 1 instead of the usual i = 0.

Proof. The basic argument is sketched in Figure 2.
The point b1 is the circumcenter of a triangle whose
circumcircle does not contain the point x, which is the
endpoint of S1 closer to S2. However, this circumcircle
has b0 on it, so b1 must be in the closed halfspace
defined by the bisector of x and b0 and which does not
contain x, as shown in Figure 2(a). Thus b1 cannot
be in the diametral circle of S2, which is in the open
halfspace on the other side of this bisector. Now let
G be the bisector of points b1 and x. Point b2 is the
center of a circle which does not contain x, but has b1

on its boundary, since b1 is one of the vertices of the
triangle which b2 is added to remove. Thus b2 must be
either on the line G, or in the open halfspace defined
by G that is closer to the point b1. In Figure 2(b), this
is the halfspace to the upper right of G.

It then suffices to show that the closure of the diame-
tral ball of S2 is contained in the other open halfspace
defined by G, and thus b2 cannot encroach S2.

Let z be the intersection of L and G; take m to be
the midpoint of S2, and m′ is its projection onto G.
Let x′ be the projection of x onto G. Let y be the
projection of b1 onto L. See Figure 3. The point x is
clearly between m and z, otherwise x would be in the
halfspace closer to b1 than to x, a contradiction. Thus
|m − z| = |m − x| + |x − z| .
By congruency of the three triangles of Fig-

ure 3,
|m−m′|
|m−z| =

|x−x′|
|x−z| = |x−y|

|x−b1| .

Let r = |S2|
2

≤ |S1|
2

, by assumption. Since S1, S2 have

topleft

bottomright

b0

b1

b2

a0

a1

S1S2L

G
m

m′

z

x

(a) b1 does not encroach S2.

����� � ����� 	
����

� ���� ��� �

b0

b1

b2

a0

a1

S1S2L

G

m

m′

zx

(b) b2 does not encroach S2.

Figure 2: The head of a circumcenter sequence is shown;
the point b1 must be to the right of the bisector of b0 and
x, and so it cannot encroach S2, which is on the other
side of this bisector, as shown in (a). In (b) the bisector
of b1 and the point x is shown. Since b2 cannot be closer
to x than to b1, and since the diametral circle of S2 is on
the opposite side the bisector, b2 cannot encroach S2. In
this case, a0 is shown to be outside the diametral circle
of S1. This is not a necessary hypothesis for this lemma.

b1

m

m′

z
x

x′

y

Figure 3: The geometric heart of the argument is shown,
with three congruent triangles, ∆mm′z, ∆xx′z, ∆xyb1.

disjoint interiors, |m − x| ≥ r. Then |m − z| ≥ r +

|x − z| , so��m − m′ �� =
|x − x′| |m − z|

|x − z| ,

≥ |x − x′| (r + |x − z|)
|x − z| ,

≥ |x − x′|
|x − z| r +

�� x − x′ ��
=

|x − y|
|x − b1|

r +
�� x − x′ �� .

As noted above, b1 is to the right of the bisector of x
and b0, so |x − y| ≥ |x−b0|

2
= |S1|

4
≥ r

2
. Note also that

|x − b1| = 2 |x − x′| . Then��m − m′ �� ≥ r2

4 |x − x′| +
�� x − x′ �� .

The right hand side is minimized when |x − x′| = r
2
,

where the right hand side has value r. Note, however,
that |x − x′| ≥ r̃1

2
≥ 1

2 sin κ̂
|S1|
4

> r
2
, so the right hand

side will be strictly larger than r.

That is, |m − m′| > r, and thus the distance from m
to G, which is |m − m′| , is greater than the radius of
the diametral circle of S2. Then the closed diametral
circle of S2 is contained in the open halfspace opposite
b1, as desired.

This lemma allows us to prove a better output an-
gle for the Delaunay Refinement Algorithm. Previous
proofs required 2 sin κ̂ ≤ 1√

2
; by the lemma, the follow-

ing proof only requires that (2 sin κ̂)3 ≤ 1√
2
. A better

output angle could be guaranteed if the lemma could
be improved; this would have to be via some alter-
nation of the algorithm, as the example of Figure 4
shows the lemma cannot be extended in the näıve set-
ting. We return to this matter later.

Since κ̂ < π/6, we can establish a geometric series
which gives the following lemma and its corollary. The
corollary describes how a segment midpoint which is
not caused by a midpoint encroaching the segment is
caused by some other midpoint or input point.

Lemma 6.3. Suppose {bi}l−1

i=0
is a circumcenter se-

quence. For i > 0, let r̃i be the circumradius associated
with bi. Then for i = 1, 2, . . . , l − 1,

• r̃i−1 < 2r̃i sin κ̂ and therefore r̃i <
(2 sin κ̂)l−1−ir̃l−1, and

• |bl−1 − bi| <
r̃l−1

1−2 sin κ̂
, and |bl−1 − ai| <

r̃l−1

1−2 sin κ̂
.

Proof. By definition, bi is the circumcenter of a tri-
angle of radius r̃i, which has a short edge no shorter
than r̃i−1 opposite an angle less than κ̂. By the sine
rule, then 2r̃i sin κ̂ > r̃i−1.

���

� ����� 	�
 �

S1S2L b0

a0

b1

a1

b2

a2

b3

Figure 4: A circumcenter sequence, {bi}3

i=0
, is dis-

played, which shows that Lemma 6.2 cannot be extended.
The segments S1, S2 are shown, with their diametral cir-
cles. The points b1, b2, b3 are circumcenters of triangles
(shown) with an angle smaller than π/6. The point b3

encroaches S2.

Using this repeatedly gives r̃i < (2 sin κ̂)l−ir̃l−1. Since
2 sin κ̂ < 1, we may bound the distance from bi to bl−1

by the geometric series, as follows:

|bl−1 − bi| ≤ |bl−1 − bl−2| + |bl−2 − bl−3| + . . .

+ |bi+1 − bi| ,
≤ r̃l−1 + r̃l−2 + . . . + r̃i+1,

< r̃l−1 + (2 sin κ̂)r̃l−1 + . . .

+(2 sin κ̂)l−i−2r̃l−1,

<
1

1 − 2 sin κ̂
r̃l−1.

The bound for |bl−1 − ai| follows since |bi+1 − ai| =
|bi+1 − bi| = r̃i+1, and the above analysis suffices.

Corollary 6.4. Suppose that segment sp with mid-
point p and radius r was split, but the segment was not
encroached by a committed point. Then there is some
maximal circumcenter sequence {bi}l−1

i=0
such that bl−1

“yielded” to p, causing it to be committed. Moreover,
r̃i < (2 sin κ̂)l−1−i

√
2rp, |p − bi| ≤ ηrp, and |p − ai| ≤

ηrp, for i = 0, 1, . . . , l − 1, with η = 1 +
√

2

1−2 sin κ̂
.

Proof. Since bl−1 was the center of an empty circum-
circle, but encroached sp, then r̃l−1 ≤

√
2rp. Using the

lemma gives the desired bound on r̃i. By the lemma,
and since κ̂ < π/6, r̃i ≤ r̃l−1. Then

|p − bi| ≤ |p − bl−1| + |bl−1 − bi| ≤ rp +
r̃l−1

1 − 2 sin κ̂

≤
�
1 +

√
2

1 − 2 sin κ̂ rp = ηrp.

The bound on |p − ai| follows, mutatis mutandis.

7. PROVING TERMINATION

We prove termination not by showing that output
mesh edges are well-graded, rather by showing that
the algorithm can create no mesh edge smaller than
dictated by the minimum local feature size of the in-
put. Towards this end we define

lfsmin = min {lfs (x) | x ∈ Ω} .

Theorem 7.1 (Radius Bounds). Suppose that the
input to the Adaptive Delaunay Refinement Algorithm
conforms to Assumption 4.2. Suppose that κ̂ ≤
arcsin 2−7/6. Then there is a constant, µ, depending on
θ∗ and κ̂ such that if p is the midpoint of a segment,
s, of radius r that is committed by the algorithm, then
lfsmin ≤ µr.

Proof. We consider why the segment was split. If
there was an input point or a point on a disjoint input
sequence that encroached s, then clearly lfs (p) ≤ r, so
it suffices to take µ ≥ 1.

Suppose a midpoint q on a nondisjoint input sequence
encroached s. Using this result inductively we know
that lfsmin ≤ µrq, where rq is the radius associated
with q. By Lemma 5.2, rq ≤ r, which suffices.

Suppose that s was not encroached by an input point
or midpoint, rather it was split when a circumcenter
“yielded” to the segment split. Consider a maximal
circumcenter sequence, {bi}l−1

i=0
ending in the circum-

center bl−1 which yielded to the split of s. By maxi-
mality, b0 is not a circumcenter. Consider its identity.

If b0 is an input point or a midpoint on an input feature
disjoint from the segment containing s, then lfs (p) ≤
|p − b0| ≤ ηr, by Corollary 6.4. Thus it suffices to take
η ≤ µ.

The only remaining possibility is that b0 is a midpoint
on an input feature nondisjoint from the one contain-
ing s. Let rb be the radius associated with b0. This
radius may be larger or smaller than r̃0 = |b0 − a0| .
We consider the possibilities:

• Suppose rb ≤ r̃0. Using this result inductively
we have lfsmin ≤ µrb. By Corollary 6.4, r̃0 ≤
(2 sin κ̂)l−1

√
2r. If b0 is a midpoint on the same

input segment as p or on a distinct input seg-
ment subtending an angle other than π, then by
Assumption 4.2, log2

r
rb

is an integer. But since

rb ≤
√

2r, it must be a nonnegative one, thus
r ≥ rb, so lfsmin ≤ µr. The only alternative is b0 is
a midpoint on a distinct input segment subtend-
ing angle π with the one containing p. Then either
rb ≤ r, in which case immediately lfsmin ≤ µr, or
r < rb, in which case by Lemma 6.2, l ≥ 4, so
rb ≤ (2 sin κ̂)3

√
2r. This yields a contradiction

when κ̂ ≤ arcsin 2−7/6, as assumed.

• Suppose rb > r̃0. This means that a0 encroached
the diametral circle of the subsegment associated
with b0, and thus, since b0 was committed after
a0, a0 is not a circumcenter.
If a0 is an input point or on an input segment
disjoint from the one containing b0, then lfsmin ≤
|a0 − b0| = r̃0, so it suffices to take µ ≥ 1.
The alternative is that a0 is a midpoint on an
input segment adjoining the one containing b0. By
the definition of the (Quality′) operation and
circumcenter sequences, it must be the case that
θ, the angle between the two input segments is as
least π/3. Using Lemma 5.2, we know that r̃0 =
|a0 − b0| ≥ ra, where ra is the radius associated
with a0.
If the input segment containing a0 is disjoint from
the one containing p, then using Corollary 6.4
again it suffices to take η ≤ µ.
Otherwise arguments as above show that r ≥ ra,
and using this result inductively suffices.

In all it suffices to take µ = η = 1 +
√

2

1−2 sin κ̂
.

The following corollary gives termination:

Corollary 7.2. Suppose the Adaptive Delaunay Re-
finement Algorithm considers committing point p. Let
q be the closest point that has already been committed.
Then lfsmin ≤ µ

2 sin θ∗

2

|p − q| .

Proof. Consider the identity of p.

• Suppose p is a midpoint, and let r be the associ-
ated radius. If r ≤ |p − q| , then the theorem gives
lfsmin ≤ µ |p − q| . If, however, r > |p − q| , then
q encroaches the subsegment of p, so it cannot be
a circumcenter (which would have yielded). If q is
an input point or on a disjoint input feature then
lfsmin ≤ |p − q| , which suffices. Otherwise q is a
midpoint on a nondisjoint input segment. Then,
using, Lemma 5.2, |p − q| ≥ 2rq sin θ∗

2
, where rq

is the radius associated with q. Using the theo-
rem on q, we have lfsmin ≤ µrq, which gives the
desired result.

• Suppose p is a circumcenter with associated ra-
dius r. Then r = |p − q| , since the triangle is
Delaunay. Then p can be considered the last
circumcenter in a circumcenter sequence, and by
Lemma 6.3 r > r̃0. Then using this corollary in-
ductively on the point b0, the first point of the
circumcenter sequence, gives the desired result.

Note that this proof entirely ignores the issue of grad-
ing. The skeptic might object that all the edges in the

final mesh could have size Θ (lfsmin). However, the al-
gorithm actually does exhibit good grading; the proof
is too involved for presentation in this forum [8].

The uniform grading constant does not diverge as κ̂
reaches its limit value of arcsin 2−7/6, but does di-
verge as κ̂ approaches π/6. Note that the limitation
κ̂ < arcsin 2−7/6 comes from the case of collinear sub-
segments connected by a circumcenter sequence; in
this situation Lemma 6.2 gives a lower bound on the
length of the circumcenter sequence. A greater lower
bound would relax the restriction on κ̂, but this is not
theoretically possible without changing the algorithm,
as shown by the counterexample of Figure 4.

This does illustrate, however, why the Adaptive De-
launay Refinement Algorithm might work with κ̂ as
large as 30◦ on a given input: constructing a coun-
terexample such as Figure 4 where collinear subseg-
ments are connected by a circumcenter sequence is dif-
ficult work. Moreover, such counterexamples require
a few committed points noncollinear with the subseg-
ments, points which have to be perfectly aligned to
make the counterexample work. Thus it seems unlikely
that one could construct a counterexample where set-
ting κ̂ = 30◦ could cause the algorithm to fall into an
infinite loop; such a counterexample would likely have
to exhibit a structure which is scaled and repeated
by repeated action of circumcenter sequences between
collinear subsegments.

8. OUTPUT QUALITY

Recall that the Adaptive Delaunay Refinement Algo-
rithm ignores angles smaller than the parameter κ̂. We
will show that small output angles are not too much
smaller than a nearby small input angle. The following
simple geometric claim gives the output quality guar-
antee; the idea is to use it with facts about midpoints,
the definition of (Quality′), and the Delaunay prop-
erty to get the bound on output angles. We omit the
proofs due to space constraints.

Lemma 8.1. Let x, s, q be three distinct noncollinear
points. Let p be a point on the open line segment from
x to s. Suppose that |p − s| ≤ |x − p| ≤ |x − q| . Let
θ = � pxq, and φ = � psq. Then

φ ≥ arctan

�
sin θ

2 − cos θ .

Claim 8.2 (Edge-Apex Rule). Given a triangle ∆pqr
in the Delaunay Triangulation of a set of points, � ,
with L the line through p, q, then � prq ≥ � pr′q for
every r′ ∈ � that is on the same side of L as p, with
equality only holding in the case of degeneracy.

We can now state the output guarantee.

Lemma 8.3. Suppose the Adaptive Delaunay Refine-
ment Algorithm terminates for a given input. Let
∆pqr be a triangle in the output triangulation. Then
either

(a) The angle � prq > κ̂, or
(b) the points p and q are midpoints on adjoining in-

put segments which meet at angle θ < π/3 and

� prq ≥ arctan

�
sin θ

2 − cos θ .

Consequently no angle in the output mesh is smaller

than min � κ̂, arctan � sin θ∗

2−cos θ∗ ��� .

Proof. Supposing that � prq ≤ κ̂, by the definition of
the Adaptive Delaunay Refinement Algorithm, it must
be that p, q are midpoints on an adjoining input seg-
ment, meeting at an angle, θ, less than π/3. Let x
be the input point common to these segments. With-
out loss of generality, assume that |x − p| ≤ |x − q| .
The midpoint p is the endpoint of two subsegments
of this input segment; let the one farther from x
be (p, s). By Claim ??, |p − s| ≤ |p − x| . Then by

Lemma 8.1, � psq ≥ arctan � sin θ
2−cos θ � . Letting L be

the line through p, q, consider the location of r:

• Suppose r is on the same side of L as x. By

Claim 8.2, � prq ≥ � pxq = θ > arctan � sin θ
2−cos θ � .

• If r is on the same side of L as s, by Claim 8.2,

� prq ≥ � psq ≥ arctan � sin θ
2−cos θ � .

We note briefly that arctan [(sin θ)/(2 − cos θ)] = θ +
O � θ2 � , which makes this lower bound much bet-

ter than that of arcsin � sin � θ
2

� /
√

2 � = θ

2
√

2
+ O � θ2 �

achieved by Shewchuk’s Terminator [3].

The following corollary gives an upper bound on out-
put angles that depends on the output angle parame-
ter, κ̂, but not on the minimum output angle. Given
κ̂ = arcsin 2−7/6 ≈ 26.45◦, it guarantees no output an-

gle is bigger than about π − 2 arcsin
√

3−1

2
≈ 137.1◦.

The (omitted) proof relies on the location of small out-
put angles and uses the fact that diametral circles of
subsegments are not encroached in the final mesh.

Corollary 8.4. If ∆pqr is a triangle in the output
triangulation produced by the Adaptive Delaunay Re-
finement Algorithm, then

� pqr ≤ max � π − 2κ̂, π − 2 arcsin

√
3 − 1

2 � .

9. ADAPTIVE MIDPOINT SPLITTING

Our analysis so far has required that input meet As-
sumption 4.2. This assumption can be satisfied by
first adding no more than 2 | � | augmenting points, ef-
fectively redefining the input. While this can be done
while only suffering a constant increase in the cardinal-
ity of the final point set, this increase may be unaccept-
ably large [8]. Ruppert’s original heuristic for dealing
with midpoint-midpoint interactions can remove the
additional restriction on input while still giving good
point set sizes in practice.

Ruppert’s strategy of splitting on concentric circular
shells [1] proceeds as follows: The first time an input
segment is split, it is split by a point at its midpoint,
creating two subsegments each with one input point
associated. When one of these subsegments is split,
it is split by a point p closest to the midpoint of the
subsegment such that |p − x| is a power of two (in
some global unit), where x is the input point asso-
ciated with the subsegment. All further subsegment
splits are committed at midpoints.

We will refer to these first three points on any seg-
ment as “off-center” points, even though they could
be at the midpoint of the involved subsegment. It is
simple to show that lfsmin is no greater than three
times the length of the shortest subsegment created
by an off-center split under this strategy. This follows
since lfsmin is no greater than half the length of any
input segment, and the fact that the off-center split
must occur in the middle third of the subsegment.

Then Theorem 7.1 can be reproven for the Adaptive
Delaunay Refinement Algorithm with concentric shell
splitting for arbitrary input satisfying Assumption 2.1.
The basic strategy is that if any of the midpoints in-
volved in the proof are actually off-center points, they
can be shown to be not far away by Corollary 6.4, and
then the Lipschitz property of local feature size suf-
fices; in the end game none of the involved midpoints
are off-center, and the input locally conforms to As-
sumption 4.2, so the previous arguments may be used.

For the analysis to be valid, it is necessary that the al-
gorithm treat off-center points as input points, not as
midpoints. This makes a difference because the adap-
tive variant of the Delaunay Refinement Algorithm
regards triangles differently if the shortest edge has
midpoints as endpoints.

In light of the discussion in Subsection 3.1, we can
make the following

Claim 9.1. Suppose an input conforming to As-
sumption 2.1 if given to Ruppert’s Algorithm with
concentric shell splitting. Then if κ < 26.45◦ ∨
arctan [(sin θ∗)/(2 − cos θ∗)] , the algorithm will termi-
nate with no output angle smaller than κ.

10. RESULTS

Figure 5: The Baltic Sea input data. The input consists
of 1401 points and 1301 line segments. There are a
number of small angles and small segments present. The
minimum angle, θ∗ is approximately 0.052◦.

The Adaptive Delaunay Refinement Algorithm with
splitting on concentric shells was implemented. The
code was tested on the Baltic Sea, as shown in Fig-
ure 5, with κ̂ ≈ arcsin 2−7/6. The input has a number
of small angles, the smallest being around 0.052◦.

The output is shown in Figure 7, and is a mesh on
21704 vertices. The minimum and maximum angle
histograms are shown in Figure 6. The minimum angle
histogram shows that a small number of triangles have
minimum angle less than 26.45◦; these are all small
input angles or “across” from small input angles, in
accordance with Lemma 8.3.

References

[1] Ruppert J. “A Delaunay refinement algorithm
for quality 2-dimensional mesh generation.” J.
Algorithms, vol. 18, no. 3, 548–585, 1995. Fourth
Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA) (Austin, TX, 1993)

[2] Shewchuk J.R. Delaunay Refinement Mesh Gen-
eration. Ph.D. thesis, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh,
Pennsylvania, May 1997. Available as Technical
Report CMU-CS-97-137

[3] Shewchuk J.R. “Delaunay refinement algorithms
for triangular mesh generation.” Comput. Geom.,
vol. 22, no. 1-3, 21–74, 2002. 16th ACM Sympo-
sium on Computational Geometry (Hong Kong,
2000)

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60

count

(a) Minimum Angle

0

100

200

300

400

500

600

700

60 70 80 90 100 110 120 130 140

count

(b) Maximum Angle

Figure 6: The minimum- and maximum angle his-
tograms are shown, respectively, in (a) and (b). In this
figure triangles are counted, not angles, thus the total
count is the number of triangles (in this case 43357),
and not three times that number. In (a), those triangles
with minimum angle smaller than κ̂ ≈ 26.45◦ are due to
small input angles, in accordance with Lemma 8.3. The
lack of large angles is guaranteed by Corollary 8.4.

[4] Boivin C., Ollivier-Gooch C.F. “Guaranteed-
Quality Triangular Mesh Generation For Do-
mains with Curved Boundaries.” International
Journal for Numerical Methods in Engineering,
vol. 55, no. 10, 1185–1213, 2002

[5] Miller G.L., Pav S.E., Walkington N.J. “An In-
cremental Delaunay Meshing Algorithm.” Tech.
Rep. 02-CNA-011, Center for Nonlinear Anal-
ysis, Carnegie Mellon University, 2002. URL
http://www.math.cmu.edu/cna

[6] Si H. “Tetgen. A 3D Delaunay Tetrahedral Mesh
Generator. v.1.2 Users Manual.”, Dec. 2002. URL
http://www.wias-berlin.de/publications/

technicalreports/4

[7] Cheng S.W., Poon S.H. “Graded conforming De-
launay tetrahedralization with bounded radius-
edge ratio.” Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms
(Baltimore, MD, 2003), pp. 295–304. ACM, New
York, 2003

[8] Pav S.E. Delaunay Refinement Algorithms.
Ph.D. thesis, Department of Mathemat-
ics, Carnegie Mellon University, Pitts-
burgh, Pennsylvania, May 2003. URL
http://www.andrew.cmu.edu/~spav/work

[9] de Berg M., van Kreveld M., Overmars
M., Schwarzkopf O. Computational geometry.
Springer-Verlag, Berlin, revised edn., 2000. Al-
gorithms and applications

[10] Teillaud M. Towards dynamic randomized al-
gorithms in computational geometry. Springer-
Verlag, Berlin, 1993

[11] Miller G.L. “A Timing Analysis of a Delaunay
Refinement Mesh Generation Algorithm.”, De-
cember 2002. In preparation

[12] Nanevski A., Blelloch G., Harper R. “Automatic
Generation of Staged Geometric Predicates.” In-
ternational Conference on Functional Program-
ming, pp. 217–228. Florence, Italy, September
2001

[13] Mücke E.P. “A robust implementation for three-
dimensional Delaunay triangulations.” Internat.
J. Comput. Geom. Appl., vol. 8, no. 2, 255–276,
1998

Figure 7: The output mesh of the Baltic Sea input (Figure 5) with κ̂ ≈ arcsin 2−7/6 is shown.

A CRYSTALLINE, RED GREEN STRATEGY FOR

MESHING HIGHLY DEFORMABLE OBJECTS WITH

TETRAHEDRA

Neil Molino1 Robert Bridson1 Joseph Teran1 Ronald Fedkiw2

1Stanford University, Stanford, CA, U.S.A. {npmolino, rbridson, jteran}@stanford.edu
2Stanford University, Stanford, CA, U.S.A. fedkiw@cs.stanford.edu

ABSTRACT

Motivated by Lagrangian simulation of elastic deformation, we propose a new tetrahedral mesh generation algorithm
that produces both high quality elements and a mesh that is well conditioned for subsequent large deformations. We
use a signed distance function defined on a Cartesian grid in order to represent the object geometry. After tiling space
with a uniform lattice based on crystallography, we use the signed distance function or other user defined criteria to
guide a red green mesh subdivision algorithm that results in a candidate mesh with the appropriate level of detail.
Then, we carefully select the final topology so that the connectivity is suitable for large deformation and the mesh
approximates the desired shape. Finally, we compress the mesh to tightly fit the object boundary using either masses
and springs, the finite element method or an optimization approach to relax the positions of the nodes. The resulting
mesh is well suited for simulation since it is highly structured, has robust topological connectivity in the face of large
deformations, and is readily refined if deemed necessary during subsequent simulation.

Keywords: tetrahedral mesh generation, level set methods, BCC lattice, red green refinement hierar-
chy, large deformations, muscle simulation

1. INTRODUCTION

We are particularly interested in simulating highly de-
formable bodies such as the muscle and fatty tissues
commonly encountered in biomechanics [1, 2], haptics
[3], and virtual surgery [4, 5]. The quality of the tetra-
hedral mesh has a profound influence on both the ac-
curacy and efficiency of these simulations, see e.g. [5].
Therefore, we propose a mesh generation algorithm
designed specifically for such high deformation simu-
lations.

Mesh generation is not only a broad field, but is in
some sense many fields, each concerned with the cre-
ation of meshes that conform to quality measures spe-
cific to the application at hand. The requirements for

fluid flow and heat transfer where the mesh is not de-

formed, and for small deformation solids where the

mesh is barely deformed, can be quite different from

those for simulating soft biological tissue that may un-

dergo large deformations. Simple examples show that
the specific requirements or measures of quality of a
mesh vary depending on the problem being solved, see
e.g. [6].

For example, an optimal mesh for an Eulerian fluid
flow simulation should include anisotropically com-
pressed elements in boundary layers, e.g. [7, 8, 9]. In
these calculations, the solution gradient in the direc-
tion of the fluid flow is typically not as large as in
the orthogonal directions. Obviously, it is desirable
to have the density of the elements be larger in direc-
tions where the gradient is large and lower in directions
where the gradient is small, i.e. elongated elements.
In contrast, however, highly stretched cells tend to be
ill-conditioned when a mesh deforms significantly as is
typical for soft bodies. Either the mesh is softer in the
thin direction and the cell has a tendency to invert, or

the mesh is stiffer in the thin direction and the simu-
lation becomes very costly since the explicit time step
restriction worsens with higher stiffness and smaller el-
ement cross-section. Thus, although our method has
been designed to provide a high degree of adaptivity
both to resolve the geometry and to guarantee qual-
ity simulation results, we neither consider nor desire
anisotropically stretched elements. Also, since highly
deformable bodies tend to be devoid of sharp features
such as edges and corners, we do not consider bound-
ary feature preservation.

Our main concern is to generate a mesh that will be ro-
bust when subsequently subject to large deformations.
For example, although we obviously want an adaptive
mesh with smaller elements in areas where more de-
tail is desired, it is even more important to have a
mesh that can be adapted during the simulation since
these regions will change. Motivated by crystallogra-
phy, we use a body-centered cubic (BCC) mesh (see
e.g. [10]) that is highly structured and produces sim-
ilar (in the precise geometric sense) tetrahedra under
regular refinement. This allows us to adaptively re-
fine both while generating the mesh and during the
subsequent simulation.

We start with a uniform tiling of space and use a
signed distance function representation of the geom-
etry to guide the creation of the adaptive mesh, the
deletion of elements that are not needed to represent
the object of interest, and the compression of the mesh
necessary to match the object boundaries [11]. This
compression stage can be carried out using either a
mass spring system, a finite element method or an op-
timization based approach. One advantage of using a
physically based compression algorithm is that it gives
an indication of how the mesh is likely to respond to
the deformations it will experience during simulation.
This is in contrast to many traditional methods that
may produce an initial mesh with good quality mea-
sures, but also with possible hidden deficiencies that
can be revealed during simulation leading to poor ac-
curacy or element collapse. Moreover, our novel topo-
logical considerations (discussed below) are specifically
designed to address these potential defects present in
other mesh generation schemes.

2. RELATED WORK

While Delaunay techniques have been quite success-
ful in two spatial dimensions, they have not been as
successful in three spatial dimensions (see e.g. [12] for
a discussion of implementation details). They admit
flat sliver tetrahedra of negligible volume. Shewchuk
provides a nice overview of these methods, including
a discussion of why some of the theoretical results are
not reassuring in practice [13]. Moreover, he discusses
how the worst slivers can often be removed. Cheng

et al. [14] also discuss sliver removal, but state that
their theorem gives an estimate that is “miserably
tiny”. Edelsbrunner and Guoy [15] showed that [14]
can be used to remove most of the slivers, but is not
as promising near boundaries. Another problem with
Delaunay methods is that the Delaunay tetrahedral-
ization of a set of points is convex whereas the domains
of many finite element calculations are not. Thus,
techniques such as the conforming Delaunay approach
which inserts additional vertices into the mesh to force
it to conform to the boundary of the domain must be
developed. The constrained Delaunay tetrahedraliza-
tion is another method used to enforce boundary re-
covery [16]. These approaches can be complicated and
can even produce an intractably large mesh which is
not polynomial in the complexity of the input domain.

Advancing front methods start with a boundary dis-
cretization and march a “front” inward forming new
elements attached to the existing ones [17]. Advanc-
ing front techniques conform well to the boundary.
This renders them a useful technique when the spe-
cific polygonal boundary representation of the geom-
etry must be matched precisely, for example, when
meshing a machine part. When the input geometry
is not a polygonal boundary, a triangulation of this
boundary must first be performed. The quality of this
surface triangulation has a large impact on the three
dimensional algorithm’s behavior. Poorly shaped sur-
face triangles will engender ill-shaped tetrahedra [18].
A central decision in an advancing front algorithm is
the placement of an interior point that marches the
front further into the interior of the object. Local ele-
ment control is possible because new nodes are created
at the same time that new elements are created. The
node and element creation is done as needed based
on local procedures. Authors have experimented with
various metrics and criteria to evaluate the placement
of the new node, see e.g. [19, 20, 21]. All advanc-
ing front techniques have difficulty when fronts merge,
however, which unfortunately can occur very near the
important boundary in regions of high curvature [8, 9].

Radovitzky and Ortiz [22] started with a face-centered
cubic (FCC) lattice defined on an octree and used an
advancing front approach to march inward, construct-
ing a mesh with the predetermined nodes of the FCC
lattice. They chose FCC over BCC because it gives
slightly better tetrahedra for their error bounds. How-
ever, after any significant deformation the two meshes
will usually have similar character. Moreover, since
we keep our BCC connectivity intact (as opposed to
[22]), we retain the ability to further refine our BCC
mesh during the calculation to obtain locally higher
resolution for improved accuracy and robustness. On
the other hand, their approach is better at resolving
boundary features and is thus likely superior for prob-
lems with little to no deformation.

Fuchs [23] begins with a BCC tiling of space which is
adaptively refined to obtain the desired nodal density.
Vertices outside the object are simply projected to the
boundary and then smoothing is applied to optimize
the position of the vertices. They emphasize that the
BCC connectivity is never used and instead apply De-
launay tesselation. That is, they only use the adaptive
BCC lattice to obtain an initial guess for their vertex
positions.

Shimada and Gossard [24] packed spheres (or ellip-
soids for anisotropic mesh generation [25]) into the
domain with mutual attraction and repulsion forces,
and generated tetrahedra using the sphere centers as
sample points via either a Delaunay or advancing front
method. However, ad hoc addition and deletion of
spheres is required in a search for a steady state, and
both local minima and “popping” can be problematic.
This led Li et al. [26] to propose the removal of the dy-
namics from the packing process, instead marching in
from the boundary removing spherical “bites” of vol-
ume one at a time. This biting was motivated by the
advancing front technique, but used here for sphere
packing rather than mesh generation. The final mesh
is computed with a Delaunay algorithm on the sphere
centers. Later, they extended the biting idea to ellip-
soids to generate anisotropic meshes [27].

Our compression phase moves the nodes on the bound-
ary of our candidate mesh to the implicit surface,
providing boundary conformity. In some sense, this
wrapping of our boundary around the level set is re-
lated to snakes [28] or GDMs [29] which have been
used to triangulate isosurfaces, see e.g. [30]. Neuge-
bauer and Klein started with a marching cubes mesh
and moved vertices to the centroid of their neighbors
before projecting them onto the zero level set in the
neighboring triangles’ average normal direction [31].
Grosskopf and Neugebauer improved this method us-
ing internodal springs instead of projection to the cen-
troid, incremental projection to the zero isocontour,
adaptive subdivision, edge collapse and edge swapping
[32]. Kobbelt et al. used related ideas to wrap a mesh
with subdivision connectivity around an arbitrary one,
but had difficulty projecting nodes in one step, empha-
sizing the need for slower evolution [33]. To improve
robustness, Wood et al. replaced the spring forces with
a modified Laplacian smoothing restricted to the tan-
gential direction [34]. Ohtake and Belyaev advocated
moving the triangle centroids to the zero isocontour in-
stead of the nodes, and matching the triangle normals
with the implicit surface normals [35].

Although we derive motivation from this work, we note
that our problem is significantly more difficult since
these authors move their mesh in a direction normal
to the surface, which is orthogonal to their measure
of mesh quality (shapes of triangles tangent to the

surface). When we move our mesh normal to the sur-
face, it directly conflicts with the quality of the surface
tetrahedra. In [36], de Figueiredo et al. evolved a vol-
umetric mass spring system in order to align it with
(but not compress it to) the zero isocontour, but the
measure of mesh quality was still perpendicular to the
evolution direction since the goal was to triangulate
the zero isocontour. Later, however, Velho et al. did

push in a direction conflicting with mesh quality. They
deformed a uniform-resolution Freudenthal lattice to
obtain tetrahedralizations using a mass spring model,
but were restricted to simple geometries, mostly due
to the inability to incorporate adaptivity [37].

In two spatial dimensions, Gloth and Vilsmeier also
moved the mesh in a direction that opposed the el-
ement quality [38]. They started with a uniform
Cartesian grid bisected into triangles, threw out el-
ements that intersected or were outside the domain,
and moved nodes to the boundary in the direction of
the gradient of the level set function using traditional
smoothing, edge swapping, insertion and deletion tech-
niques on the mesh as it deformed.

3. THE BCC LATTICE

We turn our attention to the physical world for in-
spiration and start our meshing process with a body-
centered cubic (BCC) tetrahedral lattice. This mesh
has numerous desirable properties and is an actual
crystal structure ubiquitous in nature, appearing in
vastly different materials such as soft lithium and hard
iron crystals, see e.g. [10]. Other spatial tilings are
possible. Üngör [39] provides a number of these in-
cluding tilings using acute tetrahedra.

The BCC lattice consists of nodes at every point of
a Cartesian grid along with the cell centers. These
node locations may be viewed as belonging to two in-
terlaced grids. Additional edge connections are made
between a node and its eight nearest neighbors in the
other grid. See figure 1 where these connections are de-
picted in red and the two interlaced grids are depicted
in blue and in green. The BCC lattice is the Delau-
nay complex of the interlaced grid nodes, and thus
possesses all properties of a Delaunay tetrahedraliza-
tion. Moreover, all the nodes are isomorphic to each
other (and in particular have uniform valence), every
tetrahedron is congruent to the others, and the mesh
is isotropic (so the mesh itself will not erroneously in-
duce any anisotropic bias into a subsequent calcula-
tion). The BCC lattice is structured, which may be
exploited in preconditioned iterative solvers, multigrid
algorithms, etc. and may allow reduced computational
and memory requirements.

A significant advantage of the BCC mesh is that it is
easily refined initially or during the calculation. Each

regular BCC tetrahedron can be refined into eight
tetrahedra, shown in red in figure 2, with a one to eight
(or 1:8) refinement. When the shortest of the three
possible choices for the edge internal to the tetrahe-
dron is taken, the newly formed tetrahedra are exactly

the BCC tetrahedra that result from a mesh with cells
one half the size. Thus, these eight new tetrahedra
are geometrically similar to the tetrahedra of the par-
ent mesh and element quality is guaranteed under this
regular 1:8 refinement.

4. A RED GREEN HIERARCHY

Many applications do not require and cannot afford
(due to computation time and memory restrictions) a
uniformly high resolution mesh. For example, many
phenomena such as contact and fracture show highly
concentrated stress patterns, often near high surface
curvature, outside of which larger tetrahedra are ac-
ceptable. In addition, many applications such as vir-
tual surgery can tolerate lower accuracy in the unseen
interior of a body. Thus, we require the ability to
generate adaptive meshes.

As the BCC lattice is built from cubes, one natural
approach to adaptivity is to build its analog based
on an octree. We implemented this by adding body
centers to the octree leaves, after ensuring the octree
was graded with no adjacent cells differing by more
than one level. The resulting BCC lattices at different
scales were then patched together with special case
tetrahedra. For more on octrees in mesh generation,
see e.g. [40, 41, 22] (none of which use our multilevel
BCC mesh).

However, we found that red green refinement is more
economical, simpler to implement, and more flexible,
see e.g. [42, 43, 44]. The initial BCC lattice tetra-
hedra are labelled red, as are any of their eight chil-
dren obtained with 1:8 subdivision. Performing a red
refinement on a tetrahedron creates T-junctions at
the newly-created edge midpoints where neighboring

Figure 1: A portion of the BCC lattice. The
blue and the green connections depict the two
interlaced grids, and the eight red connections
at each node lace these two grids together.

Figure 2: The standard red refinement (left)
produces eight children that reside on a BCC
lattice that is one half the size. Three green
refinements are allowed (depicted in green).

tetrahedra are not refined to the same level. To elim-
inate these, the red tetrahedra with T-junctions are
irregularly refined into fewer than eight children by in-
troducing some of the midpoints. These children are
labeled green, and are of lower quality than the red
tetrahedra that are part of the BCC mesh. Moreover,
since they are not BCC tetrahedra, we never refine
them. When higher resolution is desired in a region
occupied by a green tetrahedron, the entire family of
green tetrahedra is removed from its red parent, and
the red parent is refined regularly to obtain eight red
children that can undergo subsequent refinement.

A red tetrahedron that needs a green refinement can
have between one and five midpoints on its edges (in
the case of six we do red refinement). We reduce the
possibilities for green refinement to those shown in fig-
ure 2, adding extra edge midpoints if necessary. This
restriction (where all triangles are either bisected or
quadrisected) smooths the gradation further and guar-
antees higher quality green tetrahedra. While there
can, of course, be a cascading effect as the extra mid-
points may induce more red or green refinements, it is
a small price to pay for the superior mesh quality and
seems to be a minor issue in practice.

Any criteria may be used to drive refinement, and we
experimented with the geometric rules described in the
next section. A significant advantage of the red green
framework is the possibility for refinement during sim-
ulation based on a posteriori error estimates, with su-
perior quality guarantees based on the BCC lattice in-
stead of an arbitrary initial mesh. Note that the lower
quality green tetrahedra can be replaced by finer red
tetrahedra which admit further refinement. However,
one difficulty we foresee is in discarding portions of
green families near the boundary (see section 6), since
part of the red parent is missing. To further refine
this tetrahedron, the green family has to be replaced
with its red parent which can be regularly refined, then
some of the red children need to be discarded and the
others must be compressed to the boundary (see sec-
tions 7–8). A simpler but lower quality alternative is
to arbitrarily relabel those green boundary tetrahedra
that are missing siblings as red, allowing them to be
directly refined. We plan to address this issue in future
work.

5. LEVEL SET GEOMETRY

We represent the geometry with a signed distance
function defined on either a uniform grid [45] or an
octree grid [46, 47]. In the octree case, we constrain
values of fine grid nodes at gradation boundaries to
match the coarse grid interpolated values, see e.g.
[48]. When the signed distance function has a resolu-
tion much higher than that of our desired tetrahedral
mesh, we apply motion by mean curvature to smooth
the high frequency features and then reinitialize to a
signed distance function, see e.g. [45].

Medical data such as the National Library of
Medicine’s Visible Human data set often comes in the
form of volume data [49]. Thus, it is natural to devise a
mesh generation technique that generates a volumetric
mesh from this data. The data is first converted into a
level set using straightforward and efficient algorithms
such as a fast marching method [50, 51]. Level sets
arise naturally in other applications as well. They are
used as a design primitive in CAGD packages. They
are also used as a technique to generate a surface from
scattered point data [52].

At any point in space, we calculate the distance from
the implicitly defined surface as φ, which is negative
inside and positive outside the surface. To obtain
a finer mesh near the boundary, one simply refines
tetrahedra that include portions of the interface where
φ = 0. If a tetrahedron has nodes with positive values
of φ and nodes with negative values of φ, it obviously
contains the interface and can be refined. Otherwise,
the tetrahedron is guaranteed not to intersect the in-
terface if the minimum value of |φ| at a node is larger
than the longest edge length (tighter estimates are
available, of course). The remaining cases are checked
by sampling φ appropriately (at the level set grid size
4x), allowing refinement if any sample is close enough
to the interface (|φ| < 4x). Figure 3 shows a sphere
adaptively refined near its boundary. Note how the
interior mesh can still be rather coarse.

Figure 3: Tetrahedral mesh of a sphere (18K el-
ements). The cutaway view illustrates that the
interior mesh can be fairly coarse even if high
resolution is desired on the exterior boundary.

Figure 4: Tetrahedral mesh of a torus (8.5K
elements). Using the principal curvatures in-
creases the level of resolution in the inner ring.

The outward unit normal is defined as N = ∇φ and
the mean curvature is defined as κ = ∇ · N . One
may wish to adaptively refine in regions of high cur-
vature, but the mean curvature is a poor measure of
this since it is the average of the principal curvatures,
(k1 + k2)/2, and can be small at saddle points where
positive and negative curvatures cancel. Instead we
use |k1|+ |k2|. The principal curvatures are computed
by forming the Hessian, H, and projecting out the
components in the normal direction via the projec-
tion matrix P = I − NNT . Then the eigenvalues of
PHP/|∇φ| are computed, the zero eigenvalue is dis-
carded as corresponding to the eigenvector N , and the
remaining two eigenvalues are k1 and k2. See e.g. [53].
To detect whether a tetrahedron contains regions of
high curvature, we sample at a fine level and check
the curvature at each sample point. Figure 4 shows a
torus where the inner ring is refined to higher resolu-
tion even though the principal curvatures there differ
in sign.

6. TOPOLOGICAL CONSIDERATIONS

To obtain the final topology of the mesh, we first cover
an appropriately sized bounding box of the object with
a coarse BCC mesh. Then we use a conservative dis-
card process to remove tetrahedra that are guaranteed
to lie completely outside of the zero isocontour: tetra-
hedra with four positive φ values all larger than the
maximum edge length are removed.

In the next step, the remaining tetrahedra are refined
according to any user defined criteria, such as indi-
cator variables or geometric properties. We have ex-
perimented with using both the magnitude of φ and
various measures of curvature as discussed in the pre-
vious section. Using simply the magnitude of φ pro-
duces large tetrahedra deep inside the object and a
uniform level of refinement around the surface, which
can be useful since objects interact with each other
via surface tetrahedra. A more sophisticated method
uses the surface principal curvatures, better resolving
complex geometry and allowing for more robust and
efficient simulation when subject to large deformation.

We refine any tetrahedron near the interface if its max-
imum edge length is too large compared to a radius of
curvature measure, 1/(|k1| + |k2|), indicating an in-
ability to resolve the local geometry. We refine to a
user-specified number of levels, resolving T-junctions
in the red green framework as needed.

From the adaptively refined lattice we select a subset
of tetrahedra that closely matches the object. How-
ever, there are specific topological requirements nec-
essary to ensure a valid mesh that behaves well under
deformation: the boundary must be a manifold; no
tetrahedron may have all four nodes on the bound-
ary; and no interior edge may connect two boundary
nodes. Boundary forces can readily crush tetrahedra
with all nodes on the boundary, or that are trapped
between the boundary and an interior edge with both
endpoints on the boundary. To satisfy the conditions,
we select all the tetrahedra incident on a set of “en-
veloped” nodes sufficiently interior to the zero isocon-
tour. This guarantees that every tetrahedron is inci-
dent on at least one interior node, and also tends to
avoid the bad interior segments for reasonably convex
regions, i.e. regions where the geometry is adequately
resolved by the nodal samples. We specifically choose
the set of nodes where φ < 0 that have all their inci-
dent edges at least 25% inside the zero isocontour as
determined by linear interpolation of φ along the edge.

Additional processing is used to guarantee appropri-
ate topology even in regions where the mesh may be
under-resolved. Any remaining interior edges and all
edges incident on non-manifold nodes are bisected,
and the red green procedure is used to remove all T-
junctions. If any refinement is necessary, we recal-
culate the set of enveloped nodes and their incident
tetrahedra as above. As an option, we may add any
boundary node with surface degree three to the set of
enveloped nodes (if these nodes were to remain, the
final surface mesh would typically contain angles over
120◦). We also add any non-manifold node that re-
mains and the deeper of the two boundary nodes con-
nected by a bad interior edge. We check that these
additions do not create more problems, continuing to
add boundary nodes to the set of enveloped nodes un-
til we have achieved all requirements. This quickly
and effectively results in a mesh that approximates the
object fairly closely (from the viewpoint of an initial
guess for the compression phase of the algorithm) and
that has connectivity well suited for large deformation
simulations.

7. PHYSICS BASED COMPRESSION

We outfit our candidate mesh with a deformable model
based on either masses and springs or the finite ele-
ment method, and subsequently compress the bound-
ary nodes to conform to the zero isocontour of the

signed distance function. The compression is driven
using either a force or velocity boundary condition on
the surface nodes. Applying forces is more robust as it
allows the interior mesh to push back, resisting exces-
sive compression while it seeks an optimal state. How-
ever, if the internal resistance of the mesh becomes
larger than the boundary forces, the boundary will
not be matched exactly. Thus, instead of adjusting
forces, we switch from force to velocity boundary con-
ditions after an initial stage that carries out most of
the needed compression. At each boundary vertex, we
choose the direction of the force or constrained veloc-
ity component as the average of the incident triangles’
normals. No force (or velocity constraint) is applied
in other directions so the mesh is free to adjust itself
tangentially. The magnitude of the force or velocity
constraint is proportional to the signed distance from
the level set boundary.

To integrate the equations of motion forward in time,
we use a central difference scheme that treats the non-
linear elastic forces explicitly and the damping forces
implicitly. This circumvents stringent time step re-
strictions based on the damping forces. Moreover,
since all our damping forces are linear and symmet-
ric negative semi-definite, we can use a conjugate gra-
dient solver for the implicit step. We use a velocity
modification procedure to artificially limit the maxi-
mum strain of a tetrahedral altitude to 50%, and to
artificially limit the strain rate of a tetrahedral alti-
tude to 10% per time step [54]. Since altitudes do not
connect two mesh nodes together, all of these oper-
ations are carried out by constructing a virtual node
at the intersection point between an altitude and the
plane containing the base triangle. The velocity of
this point is calculated using the barycentric coordi-
nates and velocities of the triangle, and the mass is
the sum of the triangle’s nodal masses. The resulting
impulses on this virtual node are then redistributed to
the triangle nodes, conserving momentum.

7.1 Mass Spring Models

The use of springs to aid in mesh generation dates back
at least to Gnoffo, who used them to move nodes for
two dimensional fluid dynamics calculations [55, 56].
Löhner et al. solved the compressible Euler equations
using variable spring stiffnesses to distribute the er-
ror evenly over the solution domain [57]. Later, [58]
used variational principles analogous to the energy of
a system of springs to achieve the same goal. Other
authors also measured the error of a CFD calcula-
tion along edges of a mesh and then used a spring
network to equidistribute these errors over the edges
[59, 60, 61]. Bossen and Heckbert point out that inter-
nodal forces that both attract and repel (like springs
with nonzero rest lengths) are superior to Laplacian
smoothing where the nodes only attract each other

[62]. Thus, we use nonzero rest lengths in our springs,
i.e. simulating the mesh as if it were a real material.
All edges are assigned linear springs obeying Hooke’s
law, and the nodal masses are calculated by summing
one quarter of the mass of each incident tetrahedron.

Edge springs are not sufficient to prevent element col-
lapse. As a tetrahedron gets flatter, the edge springs
provide even less resistance to collapse. Various meth-
ods to prevent this have been introduced, e.g. [63]
proposed a pseudo-pressure term, [64] used an elas-
tic (only, i.e. no damping) force emanating from the
barycenter of the tetrahedron. [65] showed that these
barycentric springs do not prevent collapse as effec-
tively as altitude springs. In our model, every tetra-
hedron has four altitude springs each attaching a tetra-
hedron node to a fictitious node on the plane of its op-
posite face. Then, the elastic and damping forces are
calculated just as for a normal spring. These forces are
distributed among the three nodes on the opposite face
according to the barycentric weights of the fictitious
node. This model has damping forces that are linear
and symmetric negative semi-definite in the nodal ve-
locities allowing the damping terms to be integrated
using a fast conjugate gradient solver for implicit in-
tegration.

When simulating a deformable object with a mass
spring network, the material behavior should be inde-
pendent of mesh refinement. The frequency of a spring
scales as

√

k/mlo (note our “spring constant” is k/lo),

so the sound speed scales as lo
√

k/mlo =
√

klo/m.
Requiring the sound speed to be a material property
implies that k must scale as m/lo. Thus, we set the
spring stiffness for an edge spring using the harmonic
average of the masses of the two nodes at the ends
of the spring and its restlength. Similarly, for altitude
springs we use the harmonic average of the nodal mass
and the triangle mass.

7.2 Finite Element Method

While any number of constitutive models could be
used, an interesting strategy is to use the real con-
stitutive model of the material when generating its
mesh. In this sense, one might hope to predict how
well the mesh will react to subsequent deformation
during simulation, and possibly work to ensure simu-
lation robustness while constructing the mesh.

We use the nonlinear Green strain tensor, G =
1/2[(∂x/∂u)T (∂x/∂u) − I], where x(u) represents a
point’s position in world coordinates as a function of
its coordinates in object space. Isotropic, linearly-
elastic materials have a stress strain relationship of the
form Se = λtr(G)I+2µG where λ and µ are the Lamé
coefficients. Damping stress is modeled similarly with
Sd = αtr(ν)I + 2βν, where ν = ∂G/∂t is the strain
rate. The total stress tensor is then S = Se + Sd.

We use linear basis functions in each tetrahedron so
that the displacement of material is a linear function of
the tetrahedron’s four nodes. From the nodal locations
and velocities we obtain this linear mapping and its
derivative and use them to compute the strain and
the strain rate, which in turn are used to compute
the stress tensor. Finally, because the stress tensor
encodes the force distribution inside the material, we
can use it to calculate the force on the nodes.

In their finite element simulation, [66] added a force
in the same direction as our altitude springs. Since
that force was the same on all nodes and based on the
volume deviation from the rest state, it does not ad-
versely penalize overly compressed directions and can
even exacerbate the collapse. Instead, we artificially
damp the strain and strain rate of the altitudes of the
tetrahedra as discussed above.

8. OPTIMIZATION BASED
COMPRESSION

As an alternative to physical simulation, one can di-
rectly optimize mesh quality metrics such as aspect
ratios. This does not provide the same feedback on
potential problems for subsequent simulation, but can
give better quality measures since they are directly
pursued with each movement of a node. Coupled
with our robust connectivity (see section 6), this pro-
duces excellent results. Freitag and Ollivier-Gooch
[67] demonstrated that optimizing node positions in
a smoothing sweep, i.e. placing one node at a time at
a location that maximizes the quality of incident ele-
ments, is superior to Laplacian smoothing in three spa-
tial dimensions. We combine this optimization sweep-
ing with boundary constraints by first moving bound-
ary nodes in the incident triangles’ average normal di-
rection by an amount proportional to the local signed
distance value. Then the optimization is constrained
to only move boundary nodes in the tangential direc-
tion.

It is important to move boundary nodes gradually over
several sweeps just as with physical simulation, since
otherwise the optimization gets stuck in local extrema.
We also found it helpful to order the nodes in the sweep
with the boundary nodes first, their interior neighbors
next, and so on into the interior. Then we sweep in
the reverse order and repeat. This efficiently transfers
information from the boundary compression to the rest
of the mesh. Typically, we do five sweeps of moving
the boundary nodes 1/3 of the signed distance in the
mesh normal direction, then finish off with five to ten
sweeps moving boundary nodes the full signed distance
to ensure a tight boundary fit. To speed up the sweeps,
we do not bother moving nodes that are incident on
tetrahedra of sufficiently high quality relative to the
worst tetrahedron currently in the mesh. In the initial

sweeps we end up only optimizing roughly 10% of the
nodes, and in the final sweeps we optimize 30%-50%
of the nodes.

While more efficient gradient methods may be used
for the nodal optimization, we found a simple pattern
search (see e.g. [68]) to be attractive for its robust-
ness, simplicity of implementation, and flexibility in
easily accommodating any quality metric. For inte-
rior nodes we used seven well spread-out directions in
the pattern search. We implemented the normal direc-
tion constraint on boundary nodes simply by choosing
five equally spaced pattern directions orthogonal to
the average mesh normal at the node. The initial step
size of the pattern search was .05 times the minimum
distance to the opposite triangle in any tetrahedron
incident on the node (to avoid wasting time on steps
that crush elements). After four “strikes” (searches at
a given step size that yielded no improvement in qual-
ity, causing the step size to be halved) we move to the
next node. For interior nodes we use as a quality met-
ric the minimum of a

L
+ 1

4
cos(θM) over the incident

tetrahedra, where a is the minimum altitude length,
L is the maximum edge length, and θM is the maxi-
mum angle between face normals. For surface nodes
we add to this a measure of the quality of the incident
boundary triangles, the minimum of at

Lt
+ 1

ψM

where at
is the minimum triangle altitude, Lt is the maximum
triangle edge, and ψM is the maximum triangle angle.
We found that including the extra terms beyond the
tetrahedron aspect ratios helped guide the optimiza-
tion out of local minima and actually resulted in better
aspect ratios.

9. RESULTS

We demonstrate several examples of tetrahedral
meshes that were generated with our algorithm. The
results for all three compression techniques are compa-
rable, with the FEM simulations taking slightly longer

Figure 5: Tetrahedral mesh (left) and cutaway
view (right) of a cranium (80K elements).

Figure 6: Tetrahedral mesh (left) and cutaway
view (right) of a model Buddha (800K ele-
ments).

(ranging from a few minutes to a few hours on the
largest meshes) than the mass spring methods, but
producing a slightly higher quality mesh. For exam-
ple, the maximum aspect ratio of a tetrahedron in the
cranium generated with finite elements is 6.5, whereas
the same mesh has a maximum aspect ratio of 6.6
when the final compression is done using a mass spring
model. Mass spring networks have a long tradition in
mesh generation, but a finite element approach offers
greater flexibility and robustness that we anticipate
will allow better three-dimensional mesh generation in
the future. Currently the fastest method is the opti-
mization based compression, roughly faster by a factor
of ten.

We track a number of quality measures including the
maximum aspect ratio (defined as the tetrahedron’s
maximum edge length divided by its minimum alti-
tude), minimum dihedral angle, and maximum dihe-
dral angle during the compression phase. The max-
imum aspect ratios of our candidate mesh start at
about 3.5 regardless of the degree of adaptivity, em-
phasizing the desirability of our combined red green
adaptive BCC approach. This number comes from the
green tetrahedra (the red tetrahedra have aspect ra-
tios of

√
2). In the more complicated models, the worst

aspect ratio in the mesh tends to increase to around
6–8 for the physics based compression methods and to
around 5–6 for the optimization based compression.

For the cranium model, the physics based compression
methods gave a maximum aspect ratio of 6.5 and aver-

Figure 7: Tetrahedral mesh of a model dragon
(500K elements).

age aspect ratio of 2.1, with dihedral angles bounded
between 17◦ and 147◦. The dragon mesh has a max-
imum aspect ratio of 7.6 and an average aspect ratio
of 2.2, with dihedral angles bounded between 13◦ and
154◦. The buddha model was more challenging, giving
a worst aspect ratio of 8.1 and average of 2.3, and dihe-
dral angles between 13◦ and 156◦. Using optimization
on the same examples yielded better results, listed in
table 1, where we have also listed a measure of adap-
tivity, the ratio of the longest edge in the mesh to the
shortest. The aspect ratios all drop below 6, i.e. less
than twice the initial values.

Of course, these results are dependent on the types
and strengths of springs, the constitutive model used
in the FEM, and the quality measures used in the opti-
mization based technique. It is easier to achieve good
quality with the optimization technique since one sim-
ply optimizes based on the desired measure, as op-
posed to the physics based techniques where one has
to choose parameters that indirectly lead to a quality
mesh. However, we stress that the measure of mesh
quality is the measure of the worst element at any
point of dynamic simulation. It does little good to
have a perfect mesh that collapses immediately when
the simulation begins. For meshes that undergo little
to no deformation (fluid flow, heat flow, small strain,
etc.) this quality measure is either identical to or
very close to that of the initial mesh. However, for
large deformation problems this is not the case, and
the physics based compression techniques hold promise
in the sense that the resulting mesh may be better
conditioned for simulation. We believe an interesting
possibility for the future would be to consider hybrid
approaches that use the physics based compression al-
gorithms to guide an optimization procedure to avoid
local minima.

Example Cranium Dragon Buddha
max aspect ratio 4.5 5.3 5.9
avg aspect ratio 2.3 2.3 2.3
min dihedral 18◦ 16◦ 16◦

max dihedral 145◦ 150◦ 150◦

max/min edge 94 94 100

Table 1: Quality measures for the optimization
example meshes. The aspect ratio is defined
as the longest edge over the shortest altitude.
The max/min edge length ratio indicates the
degree of adaptivity.

10. EXAMPLE: MUSCLE SIMULATION

Musculoskeletal simulation is an active research area
in biomechanics. We demonstrate the robustness of
our meshing algorithm by simulating volumetric, de-
formable skeletal muscle. Our meshing algorithm al-
lows us to create high resolution muscle, tendon and
bone geometries from the Visible Human data set [49].
The data for these biological materials are originally in
the form of a segmented series of consecutive images
that can be used to create a level set description of
each tissue geometry. This level set can then be used
with either the dynamic or optimization based algo-
rithm. Figure 8 shows an adaptive resolution biceps
with tendon that was created using dynamic meshing
with a finite element constitutive model.

Figure 8: Adaptive resolution mesh of the right
biceps with proximal and distal tendons.

We simulate both isotonic and isometric contrac-
tion of the right biceps and triceps with a state-of-
the-art biomechanical model for hyperelastic mate-
rial response, neurological activation level and fiber
anatomy. Muscle is a fibrous structure composed of fa-
sicles embedded in a matrix of isotropic material [69],
and we use a nonlinear transversely-isotropic quasi-
incompressible constitutive model [70, 71] to repre-
sent this structure during simulation. The hyperelas-
tic strain energy associated with this model is a sum
of three terms: the first term represents the incom-
pressibility of biological tissues and penalizes volume

change; the second term represents the isotropic em-
bedding matrix; and the third term is the transversely-
isotropic component that models muscle fiber contrac-
tion and is based on the standard muscle force/length
curve [72]. This model can be used in both muscle
and tendon, however, tendon tends to be as much as
an order of magnitude stiffer and muscle has an addi-
tional contractile force added to the fiber component
that depends on the muscle activation level.

In addition to activation level, muscle (and tendon)
models need information about the local fiber direc-
tion. Muscle fiber arrangements vary in complexity
from being relatively parallel and uniform to exhibit-
ing several distinct regions of fiber directions. We use
a B-spline solid as in [73, 74] to represent more intri-
cate muscle fiber architectures and to assign a fiber di-
rection to individual tetrahedra in the mesh. During
both isometric and isotonic contraction, muscles are
given a varying activation level throughout the simu-
lation. The activation levels are computed from key-
frames of the skeletal animation, using an established
biomechanics analysis known as muscle force distribu-
tion [75] to compute activations of redundant sets of
muscles.

Figure 9: Simulation of isometric contraction. A
posterior (from behind) view of the upper arm
shows contraction of the triceps muscle and the
partially occluded biceps muscle from passive
(left) to full activation (right).

Figures 9 and 10 show sample frames of our musculo-
skeletal simulations. Figure 9 depicts relaxed and ac-
tive muscle during isometric contraction. In this simu-

Figure 10: Muscle contraction with skeletal mo-
tion.

lation the activation level in the two muscles increases
from 0 (fully relaxed) to 1 (fully activated) and back
to 0 over the span of two seconds. The bulging in the
bellies of the muscles results from larger stiffness in the
tendons. Figure 10 shows several frames of musculo-
skeletal motion. The motion of the kinematic skeleton
was key-framed (although our framework allows for
motion data from other sources like motion capture).
At each key-frame in the animation, an inverse dynam-
ics analysis was computed for the biceps and triceps
activation levels required to maintain the static pose.
These activation levels were then interpolated in time
and used for the dynamic muscle simulation.

Figure 11 shows the relative change in maximum as-
pect ratio observed during an isometric contraction of
the biceps for meshes created using the optimization
algorithm and using the dynamics algorithm. Similar
results were observed for the triceps and during iso-
tonic contraction. These results suggest that initial
mesh quality may be misleading and not sufficient to
guarantee performance of a mesh throughout simula-
tion. In all of our comparisons, the optimization based
meshes were of higher quality initially, but tended to
undergo as much as a 70% change in maximum aspect
ratio during muscle contraction, whereas the dynam-
ics based meshes tended to degrade by only 25%. Of
course, if the initial optimization mesh is of signifi-
cantly higher quality then the overall maximum as-
pect ratio will still be lower. We are not yet claiming
that a particular method is better, but simply point-
ing out that the initial mesh quality is not always a
reliable predictor of performance during subsequent
simulation.

11. CONCLUSIONS

We presented an algorithm for producing a high qual-
ity tetrahedral mesh directly from a level set. The
focus of this algorithm is the generation of a tetrahe-

Relative Change in Maximum Aspect Ratio

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 11 21 31 41 51 61

Frame

Optimization Mesh

Dynamics Mesh

Figure 11: Plot of changes in maximum as-
pect ratios during simulation of isometric con-
traction for dynamics and optimization based
meshes.

dral mesh designed specifically for high deformation.
Key points of our algorithm that make it particularly
well suited for high deformation are: the use of a red
green strategy in conjunction with a BCC lattice mak-
ing the usually temperamental red green approach ro-
bust and suitable for subsequent simulation (and en-
hancing multiresolution capabilities); the identifica-
tion and avoidance of connectivity that is problem-
atic for large deformations in constructing the mesh;
and the use of simulation and constitutive models to
generate the mesh, thus identifying potential weak-
nesses before simulation even begins (in fact this is
what originally led us to the problematic connectiv-
ity). Finally, we simulated a few muscles from the
NIH Visible Human data set to demonstrate the effi-
cacy of these meshes. In particular, we illustrated that
although initial mesh quality measures are important,
they do not guarantee high quality during subsequent
simulation, and can in fact be misleading.

12. ACKNOWLEDGEMENTS

Research supported in part by an ONR YIP award
and PECASE award (ONR N00014-01-1-0620), a
Packard Foundation Fellowship, a Sloan Research Fel-
lowship, ONR N00014-03-1-0071, ONR N00014-02-1-
0720, NSF ITR-0121288, NSF ACI-0205671 and NSF
DMS-0106694. In addition, N. M. and R. B. were sup-
ported in part by a Stanford Graduate Fellowships,
and J. T. was supported in part by an NSF Graduate
Research Fellowship.

References

[1] Martins J., Pires E., Salvado R., Dinis P. “A Numerical
Model of Passive and Active Behavior of Skeletal Mus-
cles.” Comput. Meth. in Appl. Mech. and Eng., vol.
151, 419–433, 1998

[2] Hirota G., Fisher S., State A., Lee C., Fuchs H. “An Im-
plicit Finite Element Method for Elastic Solids in Con-
tact.” Comput. Anim. 2001

[3] Cotin S., Delingette H., Ayache N. “Real-Time Volumet-
ric Deformable Models for Surgery Simulation.” Proc. of
Vis. in Biomed. Comput., pp. 535–540. 1996

[4] Ganovelli F., Cignoni P., Montani C., Scopigno R. “A
Multiresolution Model for Soft Objects Supporting Inter-
active Cuts and Lacerations.” Eurographics, pp. 271–282.
2000

[5] Bro-Nielsen M., Cotin S. “Real-time Volumetric De-
formable Models for Surgery Simulation using Finite El-
ements and Condensation.” Comput. Graph. Forum,
vol. 15, no. 3, 57–66, August 1996

[6] Fleishmann P., Kosik R., Selberherr S. “Simple Mesh
Examples to Illustrate Specific Finite Element Mesh Re-
quirements.” 8th Int. Meshing Roundtable, pp. 241–246.
1999

[7] Marcum D.L. “Generation of Unstructured Grids for Vis-
cous Flow Applications.” AIAA. 1995

[8] Garimella R., Shephard M. “Boundary Layer Meshing for
Viscous Flows in Complex Domains.” 7th Int. Meshing
Roundtable, pp. 107–118. 1998

[9] Lohner R., Cebral J. “Generation of Non-Isotropic
Unstructured Grids via Directional Enrichment.” 2nd
Symp. on Trends in Unstructured Mesh Generation.
1999

[10] Burns G., Glazer A.M. Space Groups for Solid State
Scientists. Academic Press, Inc., 1990. (2nd ed.)

[11] Osher S., Sethian J. “Fronts Propagating with Curvature-
Dependent Speed: Algorithms Based on Hamilton-Jacobi
Formulations.” J. Comp. Phys., vol. 79, 12–49, 1988

[12] Weatherill N.P., Hassan O. “Efficient Three-Dimensional
Delaunay Triangulation with Automatic Point Creation
and Imposed Boundary Constraints.” Int. J. for Num.
Meth. in Eng., vol. 37, 2005–2039, 1994

[13] Shewchuk J. “Tetrahedral Mesh Generation by Delau-
nay Refinement.” Proc. 14th Annual Symp. on Comput.
Geom., pp. 86–95. 1998

[14] Cheng S.W., Dey T.K., Edelsbrunner H., Facello M.A.,
Teng S.H. “Sliver Exudation.” J. of the ACM, vol. 47,
no. 5, 883–904, 2000

[15] Edelsbrunner H., Guoy D. “An Experimental Study of
Sliver Exudation.” Eng. Comput., vol. 18, no. 3, 229–
240, 2002

[16] Shewchuk J. “Constrained Delaunay Tetrahedralizations
and Provably Good Boundary Recovery.” 11th Int.
Meshing Roundtable. 2002

[17] Schöberl J. “NETGEN - An Advancing Front 2D/3D
Mesh Generator Based on Abstract Rules.” Comput. and
Vis. in Science, vol. 1, 41–52, 1997

[18] Möller P., Hansbo P. “On Advancing Front Mesh Gener-
ation in Three Dimensions.” Int. J. for Num. Meth. in
Eng., vol. 38, 3551–3569, 1995

[19] Lo S.H. “Volume Discretization into Tetrahedra - I., Veri-
fication and Orientation of Boundary Surfaces.” Comput.
and Structures, vol. 39, no. 5, 493–500, 1991

[20] Lo S.H. “Volume Discretization into Tetrahedra - II., 3D
Triangulation by Advancing Front Approach.” Comput.
and Structures, vol. 39, no. 5, 501–511, 1991

[21] Mavriplis D.J. “An Advancing Front Delaunay Triangu-
lation Algorithm Designed for Robustness.” J. Comp.
Phys., vol. 117, 90–101, 1995

[22] Radovitzky R.A., Ortiz M. “Tetrahedral Mesh Gener-
ation Based in Node Insertion in Crystal Lattice Ar-
rangements and Advancing-Front Delaunay Triangula-
tion.” Comput. Meth. in Appl. Mech. and Eng., vol.
187, 543–569, 2000

[23] Fuchs A. “Automatic Grid Generation with Almost
Regular Delaunay Tetrahedra.” 7th Int. Meshing
Roundtable, pp. 133–148. 1998

[24] Shimada K., Gossard D. “Bubble Mesh: Automated Tri-
angular Meshing of Non-Manifold Geometry by Sphere
Packing.” ACM 3rd Symp. on Solid Model. and Appl.,
pp. 409–419. 1995

[25] Yamakawa S., Shimada K. “High Quality Anisotropic
Tetrahedral Mesh Generation via Packing Ellipsoidal
Bubbles.” 9th Int. Meshing Roundtable, pp. 263–273.
2000

[26] Li X., Teng S., Üngör A. “Biting Spheres in 3D.” 8th
Int. Meshing Roundtable, pp. 85–95. 1999

[27] Li X., Teng S., Üngör A. “Biting Ellipses to Generate
Anisotropic Mesh.” 8th Int. Meshing Roundtable, pp.
97–108. 1999

[28] Kass M., Witkin A., Terzopoulos D. “Snakes: Active
Contour Models.” Int. J. of Comput. Vis., pp. 321–331.

1987
[29] Miller J., Breen D., Lorensen W., O’Bara R., Wozny M.

“Geometrically Deformed Models: A Method for Extract-
ing Closed Geometric Models from Volume Data.” Com-
put. Graph. (SIGGRAPH Proc.), pp. 217–226, 1991

[30] Sadarjoen I.A., Post F.H. “Deformable Surface Tech-
niques for Field Visualization.” Eurographics, pp. 109–
116. 1997

[31] Neugebauer P., Klein K. “Adaptive Triangulation of Ob-
jects Reconstructed from Multiple Range Images.” Vis.
1997

[32] Grosskopf S., Neugebauer P.J. “Fitting Geometrical De-
formable Models to Registered Range Images.” Euro-
pean Wrkshp. on 3D Structure from Multiple Images of
Large-Scale Environments (SMILE), pp. 266–274. 1998

[33] Kobbelt L.P., Vorsatz J., Labsik U., Seidel H.P. “A
Shrink Wrapping Approach to Remeshing Polygonal Sur-
faces.” Eurographics, pp. 119–130. 1999

[34] Wood Z., Desbrun M., Schröder P., Breen D. “Semi-
Regular Mesh Extraction from Volumes.” Vis., pp. 275–
282. 2000

[35] Ohtake Y., Belyaev A.G. “Dual/Primal Mesh Optimiza-
tion for Polygonized Implicit Surfaces.” Proc. of the 7th
ACM Symp. on Solid Model. and Appl., pp. 171–178.
ACM Press, 2002

[36] de Figueiredo L.H., Gomes J., Terzopoulos D., Velho L.
“Physically-Based Methods for Polygonization of Implicit
Surfaces.” Proc. of the Conf. on Graph. Interface, pp.
250–257. 1992

[37] Velho L., Gomes J., Terzopoulos D. “Implicit Manifolds,
Triangulations and Dynamics.” J. of Neural, Parallel
and Scientific Comput., vol. 15, no. 1–2, 103–120, 1997

[38] Gloth O., Vilsmeier R. “Level Sets as Input for Hybrid
Mesh Generation.” 9th Int. Meshing Roundtable, pp.
137–146. 2000

[39] Üngör A. “Tiling 3D Euclidean Space with Acute Tetra-
hedra.” Proc. of the Canadian Conf. on Comp. Geom.,
pp. 169–172. 2001

[40] Yerry M.A., Shephard M.S. “Automatic Three-
Dimensional Mesh Generation By The Modified Octree
Technique.” Int. J. For Num. Meth. in Eng., vol. 20,
1965–1990, 1984

[41] Shephard M.S., Georges M.K. “Automatic Three-
Dimensional Mesh Generation by the Finite Octree Tech-
nique.” Int. J. for Num. Meth. Eng., vol. 32, 709–739,
1991

[42] Bey J. “Tetrahedral Grid Refinement.” Computing,
vol. 55, 355–378, 1995

[43] Grosso R., Lürig C., Ertl T. “The Multilevel Finite Ele-
ment Method for Adaptive Mesh Optimization and Visu-
alization of Volume Data.” Visualization, pp. 387–394.
1997

[44] de Cougny H.L., Shephard M.S. “Parallel Refinement
and Coarsening of Tetrahedral Meshes.” Int. J. for Num.
Meth. in Eng., vol. 46, 1101–1125, 1999

[45] Osher S., Fedkiw R. Level Set Methods and Dynamic
Implicit Surfaces. Springer-Verlag, 2002. New York, NY

[46] Strain J. “Fast Tree-Based Redistancing for Level Set
Computations.” J. Comput. Phys., vol. 152, 664–686,
1999

[47] Strain J. “Tree Methods for Moving Interfaces.” J. Com-
put. Phys., vol. 151, 616–648, 1999

[48] Westermann R., Kobbelt L., Ertl T. “Real-Time Explo-
ration of Regular Volume Data by Adaptive Reconstruc-
tion of Isosurfaces.” The Vis. Comput., vol. 15, no. 2,
100–111, 1999

[49] U.S. National Library of Medicine.
“The Visible Human Project.”, 1994.
Http://www.nlm.nih.gov/research/visible/

[50] Tsitsiklis J. “Efficient Algorithms for Globally Opti-
mal Trajectories.” IEEE Trans. on Automatic Control,
vol. 40, 1528–1538, 1995

[51] Sethian J. “A Fast Marching Level Set Method for Mono-
tonically Advancing Fronts.” Proc. Natl. Acad. Sci.,
vol. 93, 1591–1595, 1996

[52] Zhao H.K., Osher S., Fedkiw R. “Fast Surface Recon-
struction Using the Level Set Method.” 1st IEEE Wrk-
shp. on Variational and Level Set Meth., 8th Int. Conf.
on Comput. Vis., pp. 194–202. 2001

[53] Ambrosio L., Soner H.M. “Level Set Approach to Mean
Curvature Flow in Arbitrary Codimension.” J. of Dif-

ferential Geometry, vol. 43, 693–737, 1996

[54] Bridson R., Fedkiw R., Anderson J. “Robust Treatment
of Collisions, Contact and Friction for Cloth Animation.”
ACM Trans. Graph. (SIGGRAPH Proc.), vol. 21, 594–
603, 2002

[55] Gnoffo P. “A Vectorized, Finite-Volume, Adaptive-Grid
Algorithm for Navier-Stokes Calculations.” Num. Grid
Generation, pp. 819–835, 1982

[56] Gnoffo P. “A Finite-Volume, Adaptive Grid Algorithm
Applied to Planetary Entry Flowfields.” AIAA. 1982

[57] Lohner R., Morgan K., Zienkiewicz O.C. Adaptive Grid
Refinement for Compressible Euler Equations, pp. 281–
297. John Wiley and Sons Ltd., 1986

[58] Nakahashi K., Deiwert G.S. “Self-Adaptive-Grid Method
with Application to Airfoil Flow.” AIAA, vol. 25, no. 4,
513–520, 1987

[59] Dompierre J., Vallet M., Fortin M., Habashi W.G., Äıt-
Ali-Yahia D., Boivin S., Bourgault Y., Tam A. “Edge-
Based Mesh Adaptation for CFD.” Conf. on Num. Meth.
for the Euler and Navier-Stokes Equations. 1995

[60] Vallet M., Dompierre J., Bourgault Y., Fortin M.,
Habashi W.G. “Coupling Flow Solvers and Grids through
an Edge-Based Adaptive Grid Method.” Fluids Eng. Di-
vision Conf., vol. 3. 1996

[61] Fortin M., Vallet M., Dompierre J., Bourgault Y.,
Habashi W.G. “Anisotropic Mesh Adaptation: Theory,
Validation, and Applications.” Comput. Fluid Dynam-
ics. 1996

[62] Bossen F.J., Heckbert P.S. “A Pliant Method for
Anisotropic Mesh Generation.” 5th Int. Meshing
Roundtable, pp. 63 – 76. 1996

[63] Palmerio B. “An Attraction-Repulsion Mesh Adaption
Model for Flow Solution on Unstructured Grids.” Com-
put. and Fluids, vol. 23, no. 3, 487–506, 1994

[64] Bourguignon D., Cani M.P. “Controlling Anisotropy in
Mass-Spring Systems.” Eurographics, pp. 113–123. 2000

[65] Cooper L., Maddock S. “Preventing Collapse Within
Mass-Spring-Damper Models of Deformable Objects.”
The 5th Int. Conf. in Central Europe on Comput.
Graphics and Vis. 1997

[66] Picinbono G., Delingette H., Ayache N. “Non-Linear and
Anisotropic Elastic Soft Tissue Models for Medical Simu-
lation.” IEEE Int. Conf. Robot. and Automation. 2001

[67] Freitag L., Ollivier-Gooch C. “Tetrahedral Mesh Im-
provement Using Swapping and Smoothing.” Int. J. for
Num. Meth. in Eng., vol. 40, 3979–4002, 1997

[68] Torczon V. “On the Convergence of Pattern Search Al-
gorithms.” SIAM J. Opt., vol. 7, no. 1, 1–25, 1997

[69] Fung Y.C. Biomechanics: Mechanical Properties of Liv-
ing Tissues. Springer-Verlag, New York, 1981

[70] Yucesoy C.A., Koopman B.H., Huijing P.A., Grootenboer
H.J. “Three-Dimensional Finite Element Modeling of
Skeletal Muscle Using a Two-Domain Approach: Linked
Fiber-Matrix Mesh Model.” J. of Biomech., vol. 35,
1253–1262, 2002

[71] Weiss J., Maker B., Govindjee S. “Finite-element im-
pementation of incompressible, transversely isotropic hy-
perelasticity.” Comput. Meth. in Appl. Mech. and Eng.,
vol. 135, 107–128, 1996

[72] Zajac F. “Muscle and Tendon: Properties, Models, Scal-
ing, and Application to Biomechanics and Motor Con-
trol.” Critical Reviews in Biomed. Eng., vol. 17, no. 4,
359–411, 1989

[73] Ng-Thow-Hing V., Fiume E. “Interactive Display and
Animation of B-Spline Solids as Muscle Shape Primi-
tives.” D. Thalmann, M. van de Panne, editors, Proc.
of the Eurographics Wrkshp. on Comput. Anim. and
Sim. Springer Verlag, 1997

[74] Ng-Thow-Hing V., Fiume E. “Application-Specific Mus-
cle Representations.” W. Sturzlinger, M. McCool, edi-
tors, Proc. of Gr. Inter. 2002, pp. 107–115. Canadian
Information Processing Society, 2002

[75] Crowninshield R. “Use of Optimization Techniques to
Predict Muscle Forces.” Trans. of the ASME, vol. 100,
88–92, may 1978

Invited Speaker

Shang-Hua Teng

Boston University

and Akamai Technologies Inc

Abstract:

Generating Sliver-Free Well-Shaped Three Dimensional Delaunay Meshes

A mesh is cell-complex that decomposes a spatial domain for numerical
simulation. Delaunay triangulations have many desirable properties for mesh
generation. While there are several efficient methods for well-shaped 2D mesh
generation, the generation of Delaunay meshes of well-shaped tetrahedra in 3D
is considerably more difficult and has been an outstanding open problem for
many years.

Most notably, slivers are notoriously common in three dimensional Delaunay
meshes, where a sliver is a tetrahedron that has no short edge and whose four
vertices lie closely to a great circle of its circum-sphere.

In this talk, I will survey the algorithmic and geometric techniques using weighted
Delaunay triangulations and perturbations, that are recently developed for sliver
removal. In particular, I will present the first Delaunay refinement algorithm,
developed by Li and Teng, that always generates sliver free well-shaped
unstructured meshes in three dimensions. The main ingredient of this algorithm
is a novel refinement technique which systematically forbids the formation of
slivers.

This talk contains collaborative works with Xiang-Yang Li, Siu-Wing Cheng,
Tamal Dey, Herbert Edelsbrunner, Micheal Facello, Alper Ungor, Gary Miller,
Dafna Talmor, and Noel Walkington.

Plenary 1
Session

MESHING COMPLEXITY OF SINGLE PART CAD MODELS

David R. White1, Sunil Saigal2, Steven J. Owen1

1Sandia National Laboratories∗ , Albuquerque, NM., U.S.A. {drwhite|sjowen}@sandia.gov
2University of South Florida, Tampa, FL., U.S.A. saigall@eng.usf.edu

ABSTRACT

This paper proposes a method for predicting the complexity of meshing Computer Aided Design (CAD) geometries with
unstructured, hexahedral, finite elements. Meshing complexity refers to the relative level of effort required to generate a valid
finite element mesh on a given CAD geometry. A function is proposed to approximate the meshing complexity for single part
CAD models. The function is dependent on a user defined element size as well as on data extracted from the geometry and
topology of the CAD part. Several geometry and topology measures are proposed which both characterize the shape of the CAD
part and detect configurations that complicate mesh generation. Based on a test suite of CAD models the function is
demonstrated to be accurate within a certain range of error. The solution proposed here is intended to provide managers and users
of meshing software a method of predicting the difficulty in meshing a CAD model. This will enable them to make decisions
about model simplification and analysis approaches prior to mesh generation.

Keywords: time to mesh, meshing complexity, blend detection, geometry clean-up

∗ Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for
the United States Department of Energy under contract DE-AC04-94-AL85000.

1 INTRODUCTION

Mesh generation is frequently the most time consuming
part of finite element based computer simulations.
Research in mesh generation has attempted to remedy this
issue with varying degrees of success. A main difficulty in
solving the meshing issue is the extent of the problem
space. Mesh generation software is expected to
automatically create meshes for any shape created by
design engineers or other upstream sources. When the set
of shapes given to the mesh generator is restricted,
automatic mesh generation is indeed possible.
Unfortunately, the problem space cannot usually be
restricted.

Currently, shapes or Computer Aided Design (CAD)
models are given to analysts to perform computational
simulation. While meshing a model, the analyst frequently
finds problems that must be fixed by the design engineer
who created the model. Once those problems are fixed,
new problems may be found, and an iterative process
ensues until a mesh is finally generated. At times it may
even be necessary to discard the design model and build a
new model more amenable to mesh generation. After the
model is cleaned, or its problems removed, it can usually be
meshed automatically with tetrahedral or mixed elements.
If the analysis dictates all hexahedral elements, additional
geometry manipulations may be required before the mesh
can be generated. This is due to the increased complexity

of generating a boundary-conforming all-hexahedral mesh
for arbitrary geometry. Current state-of-the-art for reliable
hexahedral mesh generation dictates that volumes be
decomposed such that sweeping or two and one-half
dimensional (2.5D) algorithms be employed. For
tetrahedral mesh generation, model cleanliness typically
dictates success in meshing, while for hexahedral meshing
both cleanliness and sweep-ability contribute to its success.
Cleanliness of the model and the ease with which a given
meshing algorithm can mesh it contribute to the goodness
or complexity of the model. Meshing complexity for a
given model serves as the measure of difficulty required for
an analyst to generate a valid mesh for that model.

This paper describes a method to quantify the meshing
complexity of CAD models for the purpose of unstructured
hexahedral mesh generation. Although tetrahedral meshing
remains an important tool for computational simulation,
experience has shown that complexity of the model does
not affect the time to mesh as acutely for tetrahedral
meshing as it does for hexahedral meshing. In addition,
hexahedral meshes remain the mainstay of, and a necessity
for, a majority of analysts at the U.S. National
Laboratories. Although some aspects of this work may be
applicable for meshing CAD models in general, the
principal focus is directed at the hexahedral meshing
problem.

A new metric is proposed to estimate meshing complexity
of a CAD part. An evaluation of the metric is performed
through a study of generating unstructured hexahedral

meshes for twenty-four CAD geometries. While little
effort has been directly aimed at quantifying meshing
complexity in the literature, a great deal of research has
been performed to identify and remove geometry and
topology errors in CAD models, for the purpose of mesh
generation. This process is commonly referred to as model
clean-up. The obvious relationship between model clean-
up and meshing complexity is that geometry and topology
errors often lead to increased model complexity and time
spent on the meshing process. Various approaches for
model clean-up are reviewed. Additionally, approaches
and techniques for generating unstructured hexahedra are
also reviewed.

1.1 Model Clean-up

From a meshing perspective, the CAD model can typically
have two kinds of problems: definition errors and
representation problems. Both typically cause more time to
be spent in the meshing process. Definition errors are those
that deal with how the model is defined, both in geometry
and topology. Representation problems can be more
subjective and are dependent on how the model will be
used.

1.1.1 CAD Model Repair

CAD Model Repair is defined as the process of fixing
geometric and topological definition errors in a design
model. CAD models are represented by one of two
methods: boundary-representation or B-rep, and
constructive solid geometry or CSG. Currently, most
commercial vendors use the B-rep. B-rep models are
represented by mathematical descriptions and lower- order
boundary topology. For example, an edge is defined by a
mathematical curve and is bounded by two vertices at the
ends. The curve may be defined by a mathematical
description including a simple line-segment, arc, or a more
complicated B-spline. Similarly, a mathematical surface,
and boundary edges define a face. Volumes are defined by
a series of connected faces that wholly enclose a specific
region.

CAD Model Repair typically involves fixing the
mathematical curve and surface definitions. Work in this
area has focused on detecting errors within the CAD model,
either directly in the native format (in the software it was
created) or in a third party software package. There are
many different errors which can be detected. These
include: inverted faces, gaps between surfaces in a volume,
folded geometry, surface geometry with no bounding face,
faces with no finite area, self-intersecting edges and faces,
face/edge sloppiness, boundary edges that do not lie on the
faces, overlapping faces, etc. [1,2,3]. There are several
vendors that offer packages that detect and fix these
problems. Some of these include: ACIS 3D Toolkit [4],
Parasolid BodyShop [5], and CADfix [6]. Another tool
called CADIQ [7], connects directly with the major
vendors of CAD software and interrogates models for
errors. In environments where this package/software is
used, the cost savings to analysts could be large since the
majority of the time spent generating a mesh is used in

iterating with the design engineer on a “good” base model
[2].

CAD Model Repair often appears unrelated to meshing
since it is generally assumed at the meshing stage that the
CAD models used for simulations are valid. Problems with
the validity of the model are assumed to be taken care of
upstream, or in the design stage. Unfortunately, designers
have no incentive to validate their models for use in mesh
generation since such models are typically created for
visualization or manufacturing where model quality is less
important [8]. In recent years, more meshing related
software has been developed to fix these problems or build
meshing algorithms that are less sensitive to geometry and
topology definition errors [9,10]. In either case, it has been
clearly demonstrated that CAD Model Repair is part of the
overall process in going from design to analysis (D2A) and
should be counted as part of any system that evaluates
model complexity with respect to meshing.

1.1.2 Model Simplification

Model Simplification involves steps that are taken to detect
and alter representation problems of a solid model to make
mesh generation easier or possible. CAD models are
typically built to accurately capture the detail of the real
problem; a method which presents practical issues for
discrete, numerical simulations. For example, Figure 1
shows a part that has a filleted section “colliding” with the
boundary of another face, producing a tangential
intersection of the boundary edges. This tangential
intersection is difficult to mesh at any realistic element
size; but it is especially hard to mesh with quadrilateral
elements. This tangency is not a result of how the CAD
model is defined, but rather how it is represented with
respect to its proposed use. Model simplification is the
process of detecting and removing such representation
problems that make mesh generation difficult.

Figure 1 Geometry Problem Due to Fillet

New approaches for simplifying CAD models for mesh
generation have recently been proposed and successfully
implemented [11,12,13,14,15,16]. These methods scan the
model and search for specific preprogrammed problems,
such as stray vertices, sliver surfaces, or small fillets.

When the problems are found, they are either fixed in the
native geometry subsystem or with a system-independent
method. Sheffer et al. [11] first referred to this system-
independent clean-up method as “Virtual Topology”.
Virtual topology provides a way to change the topological
representation of the model by layering modifications on
the model without changing the model itself. Many of the
approaches mentioned [12,13,14,15,16] automate the
removal of preprogrammed problems; however, this
process is often subjective. It is, therefore, difficult to
predict which problems can be removed to make meshing
easier and which problems the mesh generators must
handle for the purposes of analysis. For example, a fillet in
a CAD model may be included to dissipate stress
concentrations at a critical region or it may be merely
cosmetic.

1.2 Unstructured Hexahedral Mesh
Generation

The study of meshing complexity is restricted here to
generating unstructured hexahedra. Despite numerous
efforts [17,18,19,20,21,22,23,24,25,26], there remains an
absence of a satisfactory high quality automatic hexahedral
meshing scheme. Instead, many researchers have
attempted to improve the manual methods of generating
hexahedral elements, namely sweeping and mapping.
Some of these improvements include automating the
traditional approaches by extending the sweeping and
primitive algorithms and developing new automation
control algorithms.

Mesh primitives are a set of pre-packaged meshes for
typical or common shapes like squares, triangles, and
circles in two dimensions and cubes, tetrahedrons, and
spheres in three dimensions. Sweeping is essentially an
extension of a cylinder primitive where the top circular
surface mesh is extruded through the volume into
hexahedrons. Sweeping requires that the “linking” surfaces
or sidewalls of the sweep axis be meshed with a structured
or regular meshing scheme like mapping [27].

In a typical manual approach, a user will decompose a part
into pieces that can be meshed with either a primitive or
sweeping algorithm. For instance, the model shown in
Figure 2 (a) is not simply sweepable along the dominant
axis of the part due to the protruding smaller cylinder on
the side. In order to mesh this part, a sweep path must be
cut through the larger material in order to sweep the side
cylinder as shown in Figure 2 (b). Additionally, the user
must be careful while creating this sweep path not to
interfere with the interior of the part. The final
decomposition and mesh of this model is shown in Figure 2
(c).

(a)

(b)

(c)

Figure 2 Swept Meshing Approach with
Decomposition

Primitives and sweeping often rely on user intervention to
prescribe exact boundary intervals, surface meshes, and
sweep directions. When meshing large assemblies of parts,
managing and entering this data can become
overwhelming, even for experienced users. Automation for
controlling and relaxing the amount of user-supplied data
has been another area of research in hexahedral meshing.
Two algorithms that have substantially reduced this
problem are automatic scheme selection and automatic
interval assignment. Automatic scheme selection uses a
sweepability proof to detect shapes that can be meshed with
sweeping and other primitives [28]. The algorithm
automatically assigns the proper surface schemes and
determines proper sweep directions. The automatic interval
assignment algorithm solves a system of linear, integer
constraint equations to provide proper edge intervals for
meshing [29]. The constraints are based specifically on the
requirements of the meshing algorithms that are to be used.

An approach to estimating the meshing complexity of
various CAD geometries is presented in this paper. The
resulting information is intended to provide managers and
users of meshing software a method of predicting how
difficult a CAD model will be to mesh, enabling them to
make decisions about model simplification and analysis
approaches prior to meshing. The developments here
pertain to individual parts in an assembly. Further
developments would necessarily include the consideration
of complexity of the entire assembly.

The complexity of meshing a CAD model is quantified
using a metric. The components of the complexity metric
discussed in this paper are intended to aid users in
identifying features in the geometry that make mesh
generation difficult. Such information will further aid in
deciding if these features are necessary and what effect
their removal will have on the meshing process.

2 MESHING COMPLEXITY

Meshing complexity is a measure of the level of difficulty
encountered in meshing a CAD geometry. Several aspects
are known to make mesh generation difficult including
near-tangencies, topology arrangement, etc. Meshing
complexity involves the translation of these difficulties into
a metric that quantifies them. For instance, there are many
geometries that have extremely geometrically complex
curves and surfaces but are meshed trivially. Likewise, one
could easily construct a model using linear curves and
planar surfaces that is nearly impossible to mesh. The
problem posed by meshing complexity is finding what
actually makes meshing difficult. Since many of these
factors may be non-quantifiable, a reproducible and all-
encompassing solution may be intractable. Instead, a
solution is proposed that focuses on a subset of quantifiable
issues to develop a useful measure for mesh complexity.

2.1 Variables of Meshing Complexity

Finding a single metric that accurately captures the
meshing complexity of a solid is a complex problem. The
problem can be viewed as determining a function that
evaluates the complexity of a solid with respect to meshing.
In developing such a function, the following variables may
be considered: Element Type, tet vs. hex; Element
Structure, structured vs. unstructured; Element Size, coarse
vs. fine; Topology; Geometry; Assembly Configuration,
multiple solids; Finite Element Analysis (FEA) Application,
e.g. boundary layers; User Expertise; Meshing Software
Maturity; and Choice of Meshing Algorithm. To reduce the
scope of the problem, Meshing Software Maturity and User
Expertise should naturally be removed because both are
highly unpredictable.

It is assumed here that models will be meshed with
unstructured hexahedra for structural mechanics
applications, thus fixing the variables of Element Type,
Element Structure, and Finite Element Analysis
Application. Also, by choosing unstructured hexahedra and
in the absence of an automatic algorithm, the Choice of
Meshing Algorithm variable will be assumed to be the
methods discussed in Section 1.2, namely sweeping and
mapped mesh generation (including the multi-sweep and
submapping algorithms). Further, assembly models are not
considered. With these assumptions and restrictions, this
paper seeks an approximation of the meshing complexity
function with the following variables: Element Size,
Topology, and Geometry.

Even when limiting the scope of the proposed mesh
complexity metric to these factors, it should be noted that
by its very nature, the values that go into defining the
metric are somewhat heuristic. Extensive experience with
meshing complex models has led to the emergence of the
proposed complexity metric. Given the same set of
circumstances, another individual may develop the metric
in a different manner; however, the principles proposed in
this work are universal.

2.2 Meshing Complexity Metric

The chief problem for unstructured hexahedral mesh
generation lies in decomposing the model into suitable
parts that are meshable with two available algorithms,
namely: multi-sweep and submapping. It is, therefore,
desirable for the approximation function to capture the
shape of the part and to determine whether or not it can be
swept. Variables that contribute to the shape of the model
are termed base metrics. The approximation function
should also consider those features in a model that make it
difficult to mesh, such as topology and geometry problems
like small curves, sliver surfaces, and small angles.
Variables that are detrimental to meshing the part are
termed negative metrics. There are various ways to
empirically combine the base and negative metrics to
compute the mesh complexity metric, C. The following is
proposed for such a combination:

∑
=

=

 +

∑
=

k

j
j

Bw
LOGC

N

n

i
ii

1
1

2
1 , (1)

where C is the new meshing complexity approximation
function; 0≤C≤1; LOG is the base 10 logarithm; n is the
number of base metrics; Bi is the base metric, i; 0≤ Bi≤1; Nj
is the negative metric, j; k is the number of negative
metrics; and wi is the base weight, i, with

∑
=

≤
n

i
iw

1

1
 (2)

C = 1 for geometries that are trivial to mesh and vanishes
for shapes that are challenging. The base 10 logarithm is
used in Equation (1) because as the complexity of the part
increases, the meshing complexity metric C approaches
zero asymptotically. Equation (1) was determined
experimentally. The scale of C was chosen to remain
consistent with element quality metrics, where zero in
meshing complexity is a non-trivial part and unity is a
trivial part. It should be noted that Equation (1) does not
assume any specific factors or number of factors for Ni. As
such, the complexity equation can easily be augmented to
suit new negative metrics as they are determined to be
useful. For the purposes of this study, and from extensive

experience, we have delineated a specific set of base and
negative metrics on which we will develop our results.

The following base metrics are used: Inverse Topology
Count, Sweep Detection, and Cartesian Edges. The
negative metrics considered most effective are the number
of: Small Curves, Small Surfaces, Close Loops, Small and
Large Angles, Bad CAD Definitions, Groups of Blend
Faces, and Tangential Surface Intersections. The one
exception to Equation (1) is where the sweep detection
metric has a value of unity. If this occurs, then C is set
equal to unity, as will be explained in Section 3.1.2.

For the purpose of this research, a software program,
SEER, was implemented to compute the meshing
complexity metric. SEER uses the Common Geometry
Module (CGM) [30] for its geometry query and model
representation, and currently uses ACIS as the underlying
geometric core. For input, SEER requires a solid model in
the ACIS SAT, IGES or STEP formats. The user of the
software must supply the solid model to be measured and
the desired element size.

3 COMPUTATION OF METRIC

The meshing complexity metric is computed by examining
the CAD model and measuring the base and negative
metrics of the meshing complexity function.

3.1 Base Variables

In the proposed metric, three base metrics are included,
namely, Inverse Topology Count, Sweep Detection, and
Cartesian Edges. The purpose of base variables is to
provide a starting range for the metric. Many parts that are
difficult to mesh do not display any negative aspects. The
base variables must, therefore, by themselves calculate the
difficulty of the shape with respect to meshing. These three
base variables do not capture the complexity entirely, but

do offer an adequate beginning for most models.

3.1.1 Inverse Topology Count

The inverse topology count variable, I, is defined as:

 +=

EF
I

126

2

1

 (3)

while

2

126 ≤+
EF , otherwise 1=I (4)

where F is the number of faces in the model and E is the
number of edges. The scalar numerators ensure that the
variable equates to unity for a cube. The restriction of
limiting the metric to unity comes from shapes that have
fewer faces and edges than that on a cube, like a sphere that
has one face and zero edges.

The inverse topology count variable arises from the
observation that as the number of topological entities
increase, the difficulty of meshing the object also increases.
If this were strictly the case, the inverse topology count
variable would be the only variable needed. This, of
course, is inaccurate since many cases have numerous faces
and edges but are easy to mesh. Likewise, there are cases
where there are relatively few faces and edges that are
difficult to mesh. However, as a rule, the inverse topology
count generally reflects the difficulty of meshing directly
and as such is considered a relevant base variable.

3.1.2 Sweep Detection

Sweep detection directly addresses the major goal of the
meshing complexity function: to identify models that are
sweepable or to determine how easy it would be to
transform the models into sweepable pieces. The sweep
detection variable is based on the ideas proposed by White
and Tautges [28]. This method, called auto sweep
detection, connects the linking surfaces and traverses them
in the opposite direction to determine sweep direction and
source/target face identification. The method, however,
does not differentiate between parts that are almost
sweepable and parts that are not. The sweep detection
variable proposed here uses the auto sweep detection
method with some modifications to determine how “close”
to sweepable a part would be.

Pseudo code for the algorithm to determine the sweep
detection variable is given in Algorithm 1. In step 2 of
Algorithm 1, the auto sweep detection algorithm is called.
The auto sweep detection algorithm consists of four
procedures to determine if a part is sweepable.

1. Let V be the CAD part being measured.

2. IF V is sweepable (use auto sweep) THEN

3. LET C = 1.0;

4. ELSE

5. IF V is a primitive shape, THEN

6. LET C = 0.95;

7. ELSE

8. LET C = ζ(V), where ζ is the partial sweep
detection metric.

9. RETURN C;

Algorithm 1 Sweep Detection Metric

The first procedure is to classify the Cartesian traversal
types of the interior vertex angles for each surface and set
the surface meshing schemes. At each vertex on every
surface the interior angle is calculated by measuring the

angle between the two edges that join at that vertex. For
non-linear edges, the tangent of the curve where it hits the
vertex is used. The Cartesian traversal type, or vertex type,
is assigned by rounding the angle to the closest Cartesian
angle of 90, 180, 270 or 360 degrees. Based on the
Cartesian angles the following values are assigned to the
vertices for each surface (a vertex can have more than one
vertex type value since it can be used differently for each
surface of which it is a part): 1 for 90 degrees, 0 for 180
degrees, -1 for 270 degrees and -2 for 360 degrees. After
all the vertices on a surface have been assigned, the
meshing scheme of the surface is assigned based on the
vertex types. If the sum of the vertex types on the surface
is equal to 4, then the surface is submappable. If the sum is
not equal to 4, then the meshing scheme is set to an
automatic unstructured scheme, such as Paving [31] or Q-
Morph [32].

The second procedure is to find chains or complete loops of
submappable surfaces. Submappable surfaces have a
logical 2D parameter space, i-j. The edges of the surfaces
can be classified into four different boundaries of the
parameter space: +i, -i, +j, and –j, where –i is opposite +i
and –j is opposite +j. When submappable surfaces are
connected with common edges, the parameter space can
continue through to adjacent surfaces following the
opposite parametric sides. Figure 3 shows an example of
how the submappable surfaces are connected to form loops
or chains of surfaces connected through opposite sides in
the parameter space. The arrows in the figure are drawn to
indicate the direction of the sweep chains. For this
example four chains are visible with one additional chain
hidden in the hole. The chains are considered complete if
and only if they are non-self intersecting, meaning that the
chain cannot begin in the “i” direction on a surface and
then later cross the same surface in the “j” direction. Each
edge in the direction maintained by the chain must also be
connected to a submappable surface, or in other words, the
chain must be complete or fully wrapping. Presence of
these chains is a prerequisite for the volume to be swept
[28].

+i

-i +i

-i

+i

+i
-i

+j

-j

-j

+j

+i

-i
-i+i

+i
-i

Face 1

Face 3

Face 2
Face 6 Face 7

Face 4
Face 8

Face 9

Face 10

Face 5

Face 11

Figure 3 Sweeping Chains

In the third procedure, the edges of the volume are
classified into Cartesian or edge types similar to the
classification of the vertices for the faces. The surface
normals on each side of every edge are used to measure the
dihedral angles between the two faces connected at that
edge. The dihedral angle is rounded to the nearest
Cartesian angle and classified to the values of: 1 for 90
degrees, 0 for 180 degrees, -1 for 270 degrees and -2 for
360 degrees.

Finally, the fourth procedure is to traverse the chains found
in the second procedure. To start, a face is chosen that is
either not submappable or if all surfaces are submappable
then an arbitrary face is taken and set to be the initial
source face for the sweep. Each of the faces of the volume
are reached by traversing from the edges of the first face,
then recursively the edges of the next faces are found in a
depth first search. The source and target faces are found by
ensuring that between each source or target face there is a
complete chain that runs in the direction opposite to the
traversal, and that there are non-zero edge types between
the source/target surfaces and the chains. For example, in
Figure 3 let the initial face be Face 10. The edge between
Face 10 and Face 9 has an edge type of 1. Face 9 is also in
a complete chain and the edge between Faces 9 and 10 is
not part of the chain. The algorithm would then move from
Face 9 to Face 8. The common edge between Faces 8 and
9 has an edge type of -1, indicating that Face 8 should also
be a source face with Face 10. The search would continue
across Faces 6 and 5 until Face 11 (underneath) would be
found and identified as a target face because of the edge
type. This process would continue until all the faces are
traversed, resulting in Faces 10, 8, 4 and 2 being selected as
source faces and Face 11 as the target face.

After auto sweep detection is run, as indicated in Algorithm
1, if the CAD part is not determined to be sweepable, the
part is tested in step 5 to see if it is one of several primitives
such as: sphere, half sphere, torus, tetrahedron, or cone.

If the part is neither a primitive nor sweepable, the function
ζ(V), or the partial sweep detection metric, is used to
determine the sweep detection variable. The pseudo code
for ζ(V) is given in Algorithm 2. Step 6 of Algorithm 2is
picking the corners of the faces that are “forced” to be
represented with the rectangular meshing primitive. Corner
picking, devised by Mitchell [33], is applied to choose the
most appropriate corners of the face.

1. FOR EACH Face f in V

2. LET Χ(f) be the mesh scheme of f

3. LET Υ(f) be the number of holes in f

4. IF Χ(f) is unstructured AND Υ(f) is > 1 THEN

5. LET Χ(f) = Rectangle Primitive

6. Choose the best corners for f

7. LET LC be the number of linking chains
in V.

8. IF LC == 0 THEN

9. RETURN 0.0.

10. ELSE

11. return S(V)

Algorithm 2 Partial Sweep Detection

In step 7, the third procedure of the auto sweep detection
algorithm is redone; namely chains of linking faces are
determined. If no chains are found, the sweep detection
metric is set to zero in step 9. Otherwise, in step 11, the
chains are used to compute the sweep detection metric S.
The sweep detection metric is computed as:

),(

1

1 1

∑

∑∑

=

= =∗∗∗= q

k
k

m

i

l

j
ij

q
TCF

chb

A

A

MAXMMMS

, (5)

where Mb, Mh, and Mc are modifiers based, respectively, on
how much the chains cover the volume, the number of
cylinder holes, and the large numbers of chains present;
MAX is the function to return the maximum of two scalars;
TCF is the number of faces in the chains; q is the number
of faces in the volume; m is the number of chains; l is the
number of faces in chain i; Aij is the area of the face j in the
chain i; and Ak is the area of the face k in the volume.

The modifier Mb is determined by comparing the union of
all the bounding boxes of the chains and the bounding box
of the volume. The comparison is made by checking the
number of directions out of three (x, y, and z) in which the
bounding box of the chains is equal in size to the bounding
box of the volume. For example, if the bounding box for
the chains is {{0,0,0}, {1,1,1}} and the bounding box of
the volume is {{0,-1,0},{1,1,1}} then the boxes will be
equal in two directions. The modifier, Mb, is equal to 0.9 if
the boxes are equivalent in no directions, 1.4 if there is one
direction, 2.0 if there are two directions, and 4.0 if the
boxes are equivalent in all three directions. These values
were determined through numerical experiment.

The modifier Mh is determined by finding the number of
chains that are formed by simple cylinder holes with one or

two surfaces constituting the entire chain. In general, these
types of chains do little to determine how sweepable the
part is, so this circumstance is viewed as a reducing
modifier. Mh is computed by finding the fraction of chains
that are not cylinder holes out of the total number of chains.
This modifier is lower bounded to be 0.01 since the
presence of holes indicates some form of a sweep direction.

The final modifier Mc is another reduction factor to reflect
whether there are numerous chains on the volume. If there
are more than ten chains, their presence can indicate that
the volume has many sweep directions, meaning that
meshing may be more difficult than volumes that have
relatively few sweep directions. Therefore, if the bounding
box of the chains is not equivalent in all three directions to
the bounding box of the volume, and there are more than
ten chains, Mc is set to be equal to the inverse of the
number of chains; otherwise, Mc is unity.

There are, of course, many counter examples for the sweep
detection metric, which is why it is only a part of the entire
meshing complexity metric. However, as a general rule,
the metric is shown to yield lower values for geometries
that are more difficult to mesh and correctly predicts higher
values for trivial geometries.

3.1.3 Cartesian Edges

The Cartesian Edges metric is intended to capture the
degree to which the volume is of a “blocky” nature. In
general, a blocky volume is easier to mesh since the
hexahedra fit easier when the faces are aligned
orthogonally. The metric is computed by first counting the
number of edges connected to planar surfaces with
Cartesian dihedral angles between them. For this metric,
Cartesian dihedral angles are specified to be 90, 180 and
270 degrees, respectively. Dihedral angles that fall within
three degrees of these values are considered Cartesian.
After the number of Cartesian edges is found, the metric is
calculated by dividing this number by the total number of
edges in the volume. The Cartesian Edges ratio is found to
be inaccurate and arbitrary when it is less than 0.4.
Therefore, the metric is set to zero for volumes with ratios
of less than 0.4, and set to the ratio itself for ratios greater
than 0.4.

3.1.4 Base Metric Weights

The weights for the three base metrics were computed by
trial and error. It was found that 0.1 would be the best
weight for the Inverse Topology Count metric. For the
Sweep Detection metric, the best weight was
experimentally found to be 0.5. Again by numerical
experiments, the Cartesian Edges metric was given a
“stepping” weight based on the metric itself. The
Cartesian Edges weights are defined in Algorithm 3. It is
acknowledged that if the Cartesian Edges metric is less
than 0.6 then the sum of the weights will be less than one,
as reflected in Equation (2). It was, however, necessary to
reflect the increased importance of the Cartesian Edges
metric as the value of the metric increased.

1. LET CE be the computed Cartesian Edge metric value

2. LET wCE = 0.0 where wCE is the weight of
the Cartestian Edge metric

3. IF CE >= 0.4 AND CE < 0.5 THEN

4. LET wCE = 0.1

5. ELSE IF CE >=0.5 AND CE < 0.6 THEN

6. LET wCE = 0.2

7. ELSE IF CE >= 0.6 THEN

8. LET wCE = 0.6

Algorithm 3 Base Metric Weight Assignment

3.2 Negative Metrics

The negative metrics are used to cause a decrease in the
value of the meshing complexity metric. The negative
metrics reflect problems found in the model that will be
detrimental to mesh generation. This study was unable to
determine a ranking of these problems in terms of their
impact on the meshing process, and as such they are
weighted equally at this time. Additionally, test results
revealed that all the negative metrics were rarely found in a
single part. This indicates that meshing complexity can
vary greatly between parts, and that the list of negative
metrics mentioned here may be incomplete. New negative
metrics may be added to the existing list until a general
metric is found.

The negative metrics identified during this study are now
presented. Unlike the base metrics, these are all
determined by counting the number of occurrences of a
given problem. Additionally, many of these metrics are
functions of element size, meaning that if the desired
element size for meshing the volume changes it could
impact the results of these metrics.

3.2.1 Number of Small Edges, Faces, and
Close Face Loops

Small edges, faces, and close face loops all adversely affect
the meshing process, making it difficult and sometimes
impossible to generate a reasonable quality mesh. In fact,
such artifacts often lead to robustness issues with automatic
surface meshing algorithms unless mesh sizing in the
region is performed carefully. Finding these entities
visually is often difficult. Additionally, before the final
mesh is achieved, these entities must usually be removed
from the model, adding additional time to the mesh
generation process.

The number of small edges is equal to the number of edges
in the model with a length less than or equal to 1/5 the
element size given as input.

The number of small faces is equal to the number of faces
with a hydraulic radius less than or equal to 1/5 the element

size. The hydraulic radius [15] is computed as, P
A

hr
4=

 ,
where A is the area of the face and P is the total length of
the parameter of the face.

The number of close loops metric is equal to the number of
minimum distances between loops that are less than or
equal to 1/5 the element size.

3.2.2 Number of Small and Large Angles

Small and large angles can also affect the quality of the
mesh. When the angles are very small, the geometry must
be modified in order to generate a suitable mesh. The
angles for this metric are calculated at vertices on a surface
and curves on a volume. For vertices the angle is
calculated by measuring the angle between the tangents of
the two edges at that vertex on a particular surface. For
edges the angle is calculated by measuring the angle
between the normal vectors of the two faces that share the
common edge. The normals are measured at the mid-point
of the edge and assumed to be constant throughout the
length of the edge. The number of small and large angles is
computed by counting all the vertex and edge angles that
are obtained by measuring all the vertex and edge angles
that are smaller than 20 degrees or larger than 340 degrees.

3.2.3 Number of Bad CAD Definitions

The ACIS geometry engine [4] is used in this study to
represent the underlying geometric definitions of the CAD
models. As mentioned in Section 1.1.1, for various reasons
these definitions may be inaccurate or faulty. Many of
these problems can be fixed via the healing technologies
available in various software packages. In general, the
presence of these problems indicates an increased time to
generate a mesh. If the problems can not be fixed, meshing
can be difficult since these problems can limit the use of
decomposition tools at one extreme and make meshing
impossible without rebuilding the geometry at the other.
The ACIS geometry engine provides the ability to detect
geometry definitions errors. For computing this metric, the
ACIS software is queried directly to determine how many
entities have problems.

3.2.4 Number of Groups of Blend Faces

Blend faces, more commonly referred to as fillets and
rounds, are commonplace in CAD models. Their presence
is usually directly related to increased meshing times,
especially for hexahedral meshing. Cartesian edges are
typically best for mesh quality in hexahedral meshing.
Additionally, presence of blend faces usually does two
things to a model: add extra topology that hinders mesh
generation, and remove topology that is needed for
sweeping. An example of this is shown in Figure 4 where a

brick of dimension 10 units has all of its curves blended
with a radius of 1.0. The result is that this trivial meshing
shape becomes more difficult and requires topological
modifications before it can be meshed.

Figure 4 Brick with All Edges Blended

The best approach to dealing with these entities for
hexahedral meshing is to remove them and return the
model to Cartesian intersections. In many cases this is not
allowable since, while some of the blends are present for
appearance, many more are there for physical reasons.
Regardless of whether or not the blends can be removed,
their presence leads to mesh generation challenges and
increases the time required to generate a mesh, making it
important for the meshing complexity metric to capture
these faces.

A blend group is a set of connected blend faces that are
generally blending the same area although the edge they
blend may change for various reasons. Because of these
changes, the number of blend groups is found rather than
the number of blend faces. While others have attempted to
detect blend faces [15], a new method is presented here.

For blend face detection, the following three rules are
made. First, blend faces have at least one edge where the
faces attached to that edge have a dihedral angle of 180
degrees at the edge. This edge is called the parallel edge.
Second, an edge opposite the parallel edge has a Cartesian
angle, 90, 180, 270 degrees, between the two faces that are
attached to it. The edge opposite the parallel edge is called
the opposite edge. And third, the angle between the face
normals on the parallel edge and the opposite edge is also
Cartesian. An example of a blend face that fits these three
rules is shown in Figure 5 where the parallel and opposite
edges are identified.

Blend Face

Parallel Edge

Opposite Edge

Figure 5 Blend Face

To find blend faces, the model is searched for faces that
meet these criteria. Determining the opposite edge is the
most difficult part. The algorithm starts with the parallel
edge, then searches the other edges on the face for the edge
that is at the closest distance and most parallel to it. The
search is done by traversing the edges counter-clockwise
around the face. The edges are not tested until a vertex
angle of less than 135 degrees is passed. The edge selected
in this process is called the opposite edge. If the face only
has three curves, then the face is a blend face only if all the
tested curves meet the first rule, and all edges are attached
to other blend faces.

Blend
Faces

(a)

Blend Faces

Blend Faces

(b)

(c)

Figure 6 Blend Detection on Test Parts 1 (a), 20
(b), 5 (c)

After all the blend surfaces have been detected, the blend
surfaces themselves are traversed going from their edges to

adjacent faces using a union-find algorithm to group the
blend faces that are connected by an edge. The groups of
blend faces metric is calculated by counting up the total
number of blend groups found from this algorithm. Figure
6 (a), (b) and (c) are test parts with blend faces. The blend
algorithm is able to find all the blend faces in these models.
Several faces that would typically not be considered blend
faces by visual inspection are also included as a side effect
of the algorithm. In general, the algorithm is able to detect
blend surfaces, and especially the hidden ones shown in
Figure 6 (c) that make mesh generation difficult.

3.2.5 Number of Tangential Face
Intersections

The final metric included in the negative metrics is the
number of tangential face intersections. This metric seeks
to find dissimilar geometrical faces that intersect
tangentially and cause problems with mesh generation.
Having two faces intersect tangentially is generally not a
problem for mesh generation. Figure 7 (a) shows an
example of two faces that intersect tangentially that offer
no resistance to mesh generation. In this figure, the two
faces intersect without creating any small features. Figure
7 (b), however, shows an example of the tangency causing
small features. Mesh generation is difficult when
tangential face intersections are “capped” by a face with
small vertex angles at the intersection. These
configurations are identified in this metric.

Tangential Face Intersection

Tangential Face
Intersection

(a)

(b)

Figure 7 Tangential Face Intersections

Tangential face intersections that cause problems are
identified by the following four steps. First, the user must
gather all the faces and vertices that have small vertex
angles. This information can be reused from the
computation of the small and large angles metric discussed
in Section 3.2.2. Second, identify the face that makes a 90
degree dihedral angle with the face with the small vertex
angle. This face will be attached to either of the two edges

that meet at the vertex with the small angle. Third, on the
face found in step two, find the edge that is also connected
to the vertex with the small angle but is not attached to the
face where the small angle is. And fourth, measure the
dihedral angle for this edge to ensure that this edge has a
tangential intersection. The angle should be 180 degrees.
If all of these steps are done successfully, a tangential face
intersection is recorded and counted. The metric is
computed by counting all such instances.

4 RESULTS

The meshing complexity metric is best evaluated on real
CAD geometries rather than contrived test parts. A set of
twenty-four CAD models were obtained for this purpose.
The models range from simplistic to challenging in terms
of their difficulty with respect to mesh generation. This
section will discuss evaluation of the twenty-four models
and the resulting meshing complexity metrics.

4.1 Test Suite

To test the validity of the meshing complexity metric, CAD
models were obtained and meshed with hexahedral
elements. Twenty-four test models were obtained from
various industrial partners. The meshing was done with the
CUBIT software package [34] that contains the meshing
algorithms described in Section 1.2. One of the authors
performed all of the meshing so that there would be no
differences in the time taken to mesh the parts based on
differences in user expertise. All the time taken to mesh
the models was recorded, including time spent thinking
about approaches, trying different approaches, and time
spent recovering from user mistakes. This is important to
note since the meshing complexity metric must try to
capture in some form which geometries and topologies
cause the user more time. Time wasted due to bugs in the
meshing software was discarded because of the
assumptions stated in Section 2.1. Table 1 shows the part
numbers, the element size for which they were meshed, and
the total time taken to generate the mesh. The time to mesh
varies from under a minute to 833 minutes for the part that
took the longest. Three of the parts and resulting meshes
are shown in Figure 8. Additionally, the parts shown in
Figure 6 (a-c) are part numbers 1, 20 and 5, respectively.

Part
Number

Element
Size

Time to
Mesh (min.)

1 2 813
2 8 39
3 1 579
4 10 327
5 0.1 114
6 4 0.17
7 1 2
8 5 369
9 2 15
10 0.5 102
11 0.005 2.5
12 3.5 23
13 7 273
14 2 719
15 0.2 18
16 0.5 0.083
17 23.9 0.083
18 2 36
19 2 146
20 0.009 425.5
21 0.5 0.017
22 10 0.083
23 2 58
24 5 13.5

Table 1 Mesh Test Suite with Element Size and
Recorded Times to Mesh

4.2 Correlation of Data

The proposed meshing complexity metric is compared with
times taken to mesh each part in the test suite. The results
of this experiment are shown in Figure 9; where, time to
mesh is on the x-axis while the mesh metric is plotted on
the y-axis on the logarithmic scale. The logarithmic scale
is used to plot this axis since the mesh metric
asymptotically approaches zero as the parts become more
complex. The graph shows that the meshing complexity
metric predicts the time to mesh within some range of
error. Specifically, it shows that as the time required to
mesh the parts increases, the metric value decreases
asymptotically towards zero. For cases where the metric
does not correlate well, this could be due to both the
limitations of the new metric and the difficulty in
prediction of human computer interactions. Table 2 shows
the results of the individual base metrics for the twenty-
four test cases.

Table 3 shows the results of the individual negative metrics
with the corresponding meshing times and part numbers.
This table shows that the models that took longer to mesh
contained more negative features, indicating the adverse
affect these features have on the meshing process.

(a)

(b)

(c)

Figure 8 Test Parts 3(a), 13(b), and 14(c)

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1
0 200 400 600 800

Time to Mesh (min)

M
es

h
 C

o
m

p
le

xi
ty

 M
et

ri
c

(C
)

Figure 9 Meshing Complexity Metric vs. Time to
Mesh

Part
Number

Time To
Mesh

Inverse Topology
Count

Sweep
Detection

Cartesian
Edges

1 813 0.044323607 0.021336 0

2 39 0.028339818 0.8 0

3 579 0.089935065 0.000964 0

4 327 0.061111111 0.038482 0

5 114 0.1875 0.56875 0.419355

6 0.17 0.146320346 1 0

7 2 1 0.95 0

8 369 0.052859421 0.08 0

9 15 0.17375 0.545189 0

10 102 0.203917051 0.428571 0

11 2.5 0.348484848 1 0

12 23 0.136090226 0.000237 0.75

13 273 0.059738458 0.026286 0

14 719 0.019699932 0.011189 0

15 18 0.070211039 0.8 0

16 0.083 1 1 1

17 0.083 1 1 0.4

18 36 0.158004158 0.486486 0

19 146 0.049500958 0.041284 0

20 425.5 0.049331551 0.030319 0

21 0.017 0.529411765 1 0

22 0.083 1 1 0

23 58 0.055927835 0.031253 0.497908

24 13.5 0.366666667 0.8 0.571429

Table 2 Base Metric Values for Test Suite

Part
Number

Time To
Mesh

Small
Edge,
Face,
Loop

Bad
Angles

Bad
Geometric

Def.
Blend

Groups
Tangential
Meetings

1 813 2 17 9 23 30

2 39 0 0 0 4 0

3 579 5 8 2 5 16

4 327 10 2 6 5 0

5 114 4 4 0 3 0

6 0.17 0 0 0 0 0

7 2 1 0 0 0 0

8 369 6 1 11 12 2

9 15 4 2 0 1 0

10 102 2 12 0 0 8

11 2.5 1 0 0 0 0

12 23 1 0 0 0 0

13 273 6 2 0 11 4

14 719 42 15 0 50 30

15 18 13 0 0 0 0

16 0.083 0 0 0 0 0

17 0.083 0 0 0 0 0

18 36 1 0 0 3 0

19 146 0 2 0 13 0

20 425.5 3 13 0 11 10

21 0.017 0 0 0 0 0

22 0.083 0 0 0 0 0

23 58 0 0 0 18 0

24 13.5 0 0 0 0 0

Table 3 Negative Metric Values for Test Suite

Using the data in Table 2 and Table 3, the weights of the
base metrics in Section 3.1.4, and Equation (1), the
meshing complexity metric results in Figure 9 can be
computed. To demonstrate this, the meshing complexity
metric is calculated for part 1. The values for various
parameters of Equation (1) are obtained from the first row

of Table 2 and Table 3 as: B1 = 0.044323607, w1 = .1, B2 =
0.021336, w2 = 0.5, B3 = 0, N1 = 2, N2 = 17, N3 = 9, N4= 23
and N5 = 30. After inserting these values into Equation 1,
the meshing complexity C for part 1 is 2.25×10-6, as
indicated in Figure 9.

Several improvements could be introduced to the meshing
complexity metric. First, the metric lacks a general base
metric which determines how sweepable the part is. While
the sweep detection metric attempts this, it is not always
accurate and can give both false-positive and positive-false
results. If such a metric is found, it would also most likely
lead to automatic decomposition approaches to vastly
reduce the time to mesh for hexahedral elements.

Second, not all variables that affect meshing complexity are
accounted for in this study. For example, in Section 2.1, it
was assumed that User Expertise would not be considered a
factor. In theory, this should be the case if the metric
compares parts that were meshed by the same user. In
practice, however, this may not be true as human
interaction is difficult to predict. For example, on some of
the parts in the test suite the solution to meshing the part
was immediately recognized, leading to a shorter time to
generate the mesh. Other problems required more thinking,
and time spent reflected this trial and error. To improve the
metric, the human computer interactions aspect of the
problem could be incorporated. Despite these inaccuracies,
the proposed metric does predict the relative difficulty
between the parts in terms of the time required to generate
a valid finite element mesh within a range of error.

5 CONCLUSION

A new metric is presented to predict the meshing
complexity of CAD parts. Meshing complexity refers to
the relative difficulty to generate an unstructured
hexahedral mesh between various CAD parts. Two kinds
of metrics have been identified; they are called base metrics
and negative metrics, respectively. Base metrics analyze
the shape of the parts while negative metrics detect features
that traditionally cause problems with mesh generation.
Three base metrics have been identified: Inverse Topology
Count, Sweep Detection and Cartesian Edges. The Inverse
Topology Count metric captures complexity that typically
exists as the number of the topological entities the model
increases. The sweep detection metric identifies the degree
to which the model can be swept by inspection of both the
topology and geometry. The Cartesian Edges metric
measures the level to which the model is blocky. Five
negative metrics are proposed: Number of Small Edges,
Faces and Close Face Loops; Number of Small and Large
Angles; Number of Bad CAD Definitions; Number of
Groups of Blend Faces; and the Number of Tangential
Face Intersections. The Number of Small Edges, Faces
and Close Face Loops metric is determined by the element
size provided by the user and identify small regions that are
difficult to mesh. The Number of Bad CAD Definitions
metric is obtained by identifying the bad geometric
definitions that can impede mesh generation. The Number
of Groups of Blend Faces and the Number of Tangential
Face Intersections metrics identify the often harmful blend

faces and tangential intersections through sets of proposed
rules. The base and negative metrics are combined to form
the proposed metric.

The proposed complexity metric is compared with the
times to mesh using a set of twenty-four test cases
consisting of real parts. The metric correlates well with the
timing data. For some parts the metric does not correlate
accurately due to both the limitations of the metric and the
difficulty in predicting human computer interactions.

The proposed metric is intended to be used for several
reasons. First, by analysts and managers to aid in
predicting the time it will take to generate a mesh on
certain CAD models. Based on previously meshed models,
and the metric values computed for them, analysts and

mangers can compute the complexity of new models
allowing them to predict the time required for mesh
generation. The proposed metric could also be used to help
measure progress that is made in research in unstructured
hexahedral mesh generation.

6 ACKNOWLEDGEMENTS

The authors wish to acknowledge Sandia National
Laboratories for providing funding and motivation for this
project. Additionally, we wish to thank ANSYS Inc. for
providing many of the CAD models that were included in
the test suite.

7 REFERENCES

[1] Butlin G, Stops C. CAD Data Repair. Proceedings of 5th

International Meshing Roundtable. 7-12, 1996
[2] Cheney D. CAD Model Quality Holds the Key for

Analysis. Proceedings 7th International Meshing
Roundtable. 539-546, 1998.

[3] Mezentsev AA. Methods and Algorithms of Automated
CAD Repair For Incremental Surface Meshing.
Proceedings 8th International Meshing Roundtable,
299-309, 1999.

[4] http://www.spatial.com, April 2003.
[5] http://www.eds.com, April 2003.
[6] http://www.cadfix.com, April 2003.
[7] http://www.cadiq.com, April 2003.
[8] White, DR, Leland RW, Saigal S, Owen SJ. The Meshing

Complexity of a Solid: An Introduction. Proceedings of
10th International Meshing Roundtable. 373-384,
2001.

[9] Steinbrenner JP, Wyman NJ, Chawner JR. Fast Surface
Meshing on Imperfect CAD Models. Proceedings 9th
International Meshing Roundtable. 33-41, 2000.

[10] Marcum DL, Gaither A. Unstructured Surface Grid
Generation Using Global Mapping and Physical Space
Approximation. Proceedings 8th International Meshing
Roundtable. 397-406, 1999.

[11] Sheffer A., Blacker T, Clements J, Bercovier M. Virtual
Topology Operators for Meshing. Proceedings 6th
International Meshing Roundtable. 49-66, 1997.

[12] Sheffer, A, Blacker T, Bercovier M. Clustering:
Automated Detail Suppression Using Virtual
Topology. Trends in Unstructured Mesh Generation,
ASME, AMD-Vol 220:57-64, 1997.

[13] Armstrong CG, Bridgett SJ, Donaghy RI, McCune, RW,
McKeag RM, Robinson DJ. Techniques for Interactive
and Automatic Idealisation of CAD Models. Numerical
Grid Generation in Computational Field Simulations,
643-662, 1998.

[14] Blacker, T, Sheffer, A, Clements, J, Bercovier, M.
Using Virtual Topology to Simplify the Mesh
Generation Process. Trends in Unstructured Mesh
Generation, ASME. AMD-Vol. 200:45-50, 1997.

[15] Tautges, TJ. Automatic Detail Reduction for Mesh

Generation Applications. Proceedings 10th
International Meshing Roundtable. 407-418, 2001.

[16] Mobley AV, Carroll MP, Canann SA. An Object
Oriented Approach to Geometry Defeaturing for Finite
Element Meshing. Proceedings 7th International
Meshing Roundtable. 547-563, 1998.

[17] Armstrong CG, Robinson DJ, McKeag RM, Li TS,
Bridgett SJ, Donaghy RJ, McGleenan CA. Medials for
Meshing and More. Proceedings 4th International
Meshing Roundtable. 277-288, 1995.

[18] Sheffer A, Etzion M, Rappoport A, Bercovier M.
Hexahedral Mesh Generation using the Embedded
Voronoi Graph. Proceedings 7th International
Meshing Roundtable. 347-364, 1998.

[19] Lu Y, Gadh R., Tautges TJ. Volume Decomposition and
Feature Recognition For Hexahedral Mesh Generation.
Proceedings 8th International Meshing Roundtable.
269-280, 1999.

[20] Schneiders R, Schindler R, Weiler F, Octree-based
Generation of Hexahedral Element Meshes.
Proceedings 5th International Roundtable. 205-216,
1996.

[21] Tautges TJ, Blacker T, Mitchell SA, The Whisker
Weaving Algorithm: A Connectivity-Based Method for
Constructing All-Hexahedral Finite Element Meshes.
International Journal for Numerical Methods in
Engineering, Wiley, 39: 3327-3349, 1996.

[22] Folwell NT, Mitchell SA. Reliable Whisker Weaving via
Curve Contraction. Proceedings 7th International
Meshing Roundtable. 365-378, 1998.

[23] Blacker, TD and Meyers RJ. Seams and Wedges in
Plastering: A 3D Hexahedral Mesh Generation
Algorithm. Engineering with Computers, 2:83-93,
1993.

[24] Mitchell, SA. The All-Hex Geode-Template for
Conforming a Diced Tetrahedral Mesh to any Diced
Hexahedral Mesh. Proceedings 7th International
Meshing Roundtable. 295-305, 1998.

[25] Muller-Hannemann M. Hexahedral Mesh Generation by
Successive Dual Cycle Elimination. Proceedings 7th
International Meshing Roundtable. 365-378, 1998.

[26] Ymakawa S, Shimada K. Hexhoop: Modular Templates
For Converting A Hex-Dominant Mesh To An All-Hex
Mesh. Proceedings 10th International Meshing
Roundtable. 235-246, 2001.

[27] Cook WA, Oaks WR, Mapping Methods for Generating

Three-Dimensional Meshing. Computers in
Mechanical Engineering, 1:67-72, 1983.

[28] White, DR and TJ Tautges. Automatic Scheme Selection
for Toolkit Hex Meshing. International Journal for
Methods in Engineering, 49:127-144, 2000.

[29] Mitchell SA. High Fidelity Interval Assignment.
Proceedings 6th International Meshing Roundtable. 33-
44, 1997.

[30] Tautges T J. The Common Geometry Module (CGM): A
Generic, Extensible Geometry Interface. Proceedings
9th International Meshing Roundtable. 337-348, 2000.

[31] Blacker TD, Paving: A New Approach To Automated
Quadrilateral Mesh Generation. International Journal
For Numerical Methods in Engineering. John Wiley,
Num 32:811-847, 1991

[32] Owen SJ, Staten ML, Canann SA, Saigal S. Q-Morph:
An Indirect Approach to Advancing Front Quad
Meshing. International Journal for Numerical Methods
in Engineering. Wiley, 9(44):1317-1340, 1999

[33] Mitchell. SA. Choosing Corners of Rectangles for
Mapped Meshing. 13th Annual Symposium on
Computational Geometry, ACM Press, 87-93, 1997.

[34] Shepherd J.CUBIT Mesh Generation Toolsuite.
http://cubit.sandia.gov, April 2003.

������� �������	���
�	� �� �
���
�
��

�����
	 ��� �	� ���� �
��	�
�	��

������ �� ����	
��	

����������	�
�	

�� �� ��������

��
����������	�
�	

����	 �� ���	���

������
������	�
�	

������� ��	��

��������	�
�	

�������� ����	�
��������� ��������� ���
�����

��������

�� �������� ��	� �	�
�	
��� ��� �������	��� ��������� ������ �����	�� ����� �
��	��� ������ �
����� ���
��	��
�Æ����	��� �
� �������	�	��� ���
���� ���
	 � ���	�� �� ��� ���� ������ 	��� 	�� ���	 �Æ����	 �	������ ��������
	�	���� �� 	�����
��� �� 	�	�������� ������� ����� �Æ����	�� �
��	��� 	�������� ����� ��������� �	����� ��	� ��
��������� ��� �����	��� ��� ����	��� �� ���������
�
� �������	�	��� �� 	�� ��	� �	�
�	
���
��� ���
	 � ��	���	������� �� 	�� ���������� �� ! ��� "��
��	���	�	�������� �� 	���� ���������� �# !� ��
�� 	�� �������	�	���� 	� �������	 � ��� # ��������	�� �����
��	��� ��� ������	��� � ���
��� ����� $�� # ������	�� ��� ������	� %&& '������ 	�	��������� ��	� % (��	� ��
������� ����
���� 	�� ���� ��� 	�� ��������	�� ��� ��� ��	�
��� �� 	�� ������	��� $�� �
�	��� �� 	�� ������	�� ��
�� ���	 ��)�����
*+� ,������ ����� 	�� ���	 �Æ����	 �� *��� ��� ���
��� � ���	�� �� #�� ���� ������ ��������

��������� 	��
 �������������� ��	�������� ���	���� ��	��������

�� �	��
�����
	

$�� ���� ���
���� 	� �������	 �����
��	�
�	
���
������ �� ������ ��� �� 	�� ����	��� ���	�� �� 	�� ��-�
�� � ����
��� �� �����
� �����	�����)	������ ���
�����	�	���� �� 	�	�������� ������� ��� �.����� ���
���
��� #&&��&& ��	�� �� ���	�.� ��� �	��� ���
����
������ ������ �� 	� ����	��� 	�� ���� �� �.	����� ����
���� $� ����� 	��������� 	��� ���
���� ��������� �����
��	��� 	��	 �����
��� ������	��	� ��� 	��� ������ 	��
����� /�	��
�� ������� �
�� �.	����� ������ �����
��	��� ���� ���� �������� 0%"� %�� %&� �"� 1%� �� 1&� %2�
	���� ������	��� ��� �� �
�� ���� �������	�� 	���
	���� ����������� ��
�	����	�� ��� ��� �� �������
���	�� �������

/��	��� �	��� ���
���� ������ ������ �� 	� 	�� 	�

� $��� ���* ��� �
��	�� �� ��	 �� 	��
3�	�����)������ 4�
���	��� �� ��	 �� 	�� /��
����� 5��	�� ���������������	�
�	! ���)������
,��6��	 ����������	�
�	���������!
���� ����	�
/57�&&89&:#� 55;�&&8�:8�� ��� 55;�&%���8%�

������� 	�� �������	�	��� ��	��� ���� �������
$���� ��� �� ���	 ���� ���������	 ��	����	 �� ��������
��� ������ 0%%� �%� #:� #%� #�� #8� �1� ��� %92� 7� 	����
����������� ��� �.����� 	���� ��	���� ��� �������
� 	�	�������� ���� 	� ���� 	��� � ��	� �� 	�	�����
���� 0#82<���
	 9 ��	������	�.� $���� 	������
���
�������� ��� �������� ��� �	����� ������ �� ���* ��
��� ���
���� 	����������� 	���� ��	 ��� �������	��� �
���� �� ���� ������� $��� 	�������� �� ��	 �
�
��	 ������� �
����� ��
��	�� 	� 	�� ���� ����� ��
��������� �����

�� ��� ��	����	�� �� ��������� �������	�	���� ��
������ 	��	 ����	 ������� �
����� ���
��	�� 	�
	�� ����� $�� ���� �� 	� ����� ������ ������� �����

���� �	������ ����������� ������	���� 7� 	��� ��
�� �� �����	 ��	� �	�
�	
��� ��� �������	��� 	��
��� 	���� ����������� ��������� ������� $�� ���
�����	�	���� �
��	 �	������ ����	���� �� ������
����
���� 	��������� ����� ����������� ��������� ���
���	��� ��� ����	��� ��������� ��� 	�� �����	� 	�
�	��� ��	� �� ��������� 4�� � ����� �� ���� �����

������ 0�:2 	���� ����	���� ��� 	�*� ����	��	 	����
$�� ������ �����	��� �� �
� ��	������ �� ��������� ��
)��	��� 1� /�	��
�� �
� �������	�	���� ��� ��	 ��
�����	 �� 	���� �������� ��� ���* �	������ 	��� �	���
���� � ���	�� �� ��	���� � ��� %& ���� �	������ ���
�����	�	�����

�
� ��	� �	�
�	
��� ��� ��������� ��)��	��� �� $���
	�*� �����	��� �� 	�� �����	�� ����	� �� �����
����� ������ 0�:2� ���
�� �����	 ���
�	� �� ����
������� ����� 012� 7� ��	��
��� �
� 	������
�
���
�����	��� 	� ������� 	�� ���	���� �� 	��	 ���	���� 	��	
����� � �����. ��� ��*��� 	� ���� ������ 	��	 ��� �����
�� ���
�� ,���	��� ��� 	��� ��=������ �������
����
�������� ����	� ������ ��
�� 	��� 	������
� 	� ���
������ �	��� 	�� ����������� ���	���� ���
�� ���� ����
	�. �� � ��� ���
�� � �
���	 �� 	�� ����� �� # � /
�
��� ���� ���� ������ � ������ ���	�. �� � �� ���	�.
��� ���� �� # � 4�� �����	���� 	��	 ���� 	� ������	�
��� ���	����� ����� ���
��� ��������	� �� ����� �.	��
���� �� 	�� ����� ���� ��� ������ ��� ������ �����
�� 	�� ������ �� 	�� ����������

)��	��� 9 ��������� �� �������	�	��� �� �
� ��	�
�	�
�	
�� ���)��	��� " �����	� �.������	�� ���
�	��
$�� �������	�	���
��� ���
	 � ��	�� �� 	������� ��
� ��� ���
	 "�� ��	�� �� 	�	�������� �� # ����
����
��� ���� � ����� �� ���� ��-�� ��� ���	 ����
	���
	����� �� �����	 �.������	� ����� ��
����
�
� �������	�	��� �� ��	 �� ��������	�� ���
��� ���
����	��� �� ��	� � ��� # � ��
�� � ������	 �� 	��
�	������ >��������	��� ������	�� 08� 1�2 ��� 	�� �.�
��	 ���	���	�� ������	�� ��)�����
* 0#"2 ��� ��� ���
���	��� 	��	�� �� ���� �����	 �.������	� ����� ��
� ���
��� ��������	 ������	�� 	��	 ������� 	�����
���� ��	� ����� ������ �� ������ ��� ���	� �	 	����
����
����	���� /�� ���� �� ����	�� �� 	���� �� 	��
	�	�� ���� ����
���� 	�� ���� ��� 	�� ���	�. �����
����	�� ��� ��� �	��� ��	� �	�
�	
��� ���
���� �� 	��
������	��� $�� ���
�	� ��� % (��	� �� ������ ���
�
�����-�� �� ��������

� �� ��� ������	� � � ���
��� ���� ��	� %%&
������� 	�������� ��1" (��	�� ��� 	�� ����� �11
(��	�� ��� 	�� ���	�. ��������	��� ��� ���
	 �%
(��	�� ��� �
.������ ��	�
��� �� 	�� ������	��!�
5������ 	� 	�� $������� ���� 0#92 �	�� ���	 ���
�����	 �� *��� ��! �
� ������	��
��� � ���	�� ��
# ���� ������� 7	 �� ���
	 %&? ������ 	��� $���
�����+� ���������������
�� ������	�� ��� �
��
���	�� 	��� �	� ��������	�� ������	���

� �� ��� ������	� � # ���
��� ���� ��	� %&&
'������ 	�	��������� ��"� (��	�� ��� 	�� ����� �%"
(��	�� ��� 	�� ���	�. ��������	��� ��� �&8 (��	��
��� �
.������ ��	�!� 5������ 	� 	�� ,������
���� 0#�2� �
� ������	��
��� � ���	�� �� #�� ����
������� ��� �� ���
	 #&? ���	���

� �� ��� ������	� � ������ � ���
��� ����
��	� 8& ������� 	�������� ��	� �� ����� ���� 	���
�9?� $��� ������� ����������� ������	�� ��� ���
����� ���
��� �� �.	�� ����� �� �������	��� �� �
�
��	���	�
�	
���

�
� �������	�	��� ��� ��
��� �� ���6
��	��� ��	�
�.	����� ������ ������	���� /���� ��	��
�� �� ����
�������� �
� �������	�	��� ��� � ��� # ���������
������� 	�� ����� �.	��� 	� ������ ����������� $����
	���� ��� ����
����� ����@�� ��)��	��� 8�

� ���	���� ����

�������	����
	�

$���� ���� ���� �
����
� �������� ��� �������	�
���
��	�
�	
��� ������ �� � ��� # �����������)���
��� �������-�� 	� ��������� ������ ��� �	���� ��� ��

��� ��� ���� ������� ���	�� ������� 4�� 	��
��
��� �� �������� ����
����� �� ������ 	�� ���	
������ �� 	���� �������	�	���� ����� / ���� ����
��	� ��������� ��� � ��	� �	�
�	
��� ��� �� ��
��
�� � ��� �� A�		��� 0��2�

7� 	�� ���������� ���	 �������� ��� ����� �� ���
	��� 	�������� �� ������ $�� ������	 �������	�	���
�� 	�
�� ��� �	�
�	
�� �� 	�������� B��� �	�
�	
��
��� 	���� ���	��� 	� 	�� ����������� 	��������� ���
	���� ���	��� 	� �	� ���	����� /��
���� �� ��	� �����
	� �� �	���� �� 	�������� �� ������ 	��� �������	�	���

��� 9 ���	��� �� 	��������)	����� ��	� ���
���� �.�
	�� ���	����)�����
*+� $������� ���� 0#92� ��� 	��
5(/C � 	�����
��	��� ��	� �	�
�	
�� 0"2 ��	�
�� �
	������������� �������	�	���� $� ���	���
��� 	�� 	����
�������������	���� �� � 	�������� � ������ 	� � 	�������
	������� ����� 	� ����
�� �� ����. ���� % 	� #� $��
��	� �	�
�	
��
��� �� $�������� ��� �.����� ����
���
�
�� �� ����. �� 	�� ���	�� 	� ���� �������� ��� 	��
��� � ��	�! �� 	��	 � �������� �
��� ��	 ���� ��	
���
	�� �������� 	�������� �
	 ��	
��� �� ����� �� 	����
������ �	 �� �����

$���� ��� ���� ������� ����	�� �������	�	���� �����
�� ������ ����
���� 	�� ��
��� ������	�� ���� ���	 0#&2�
����������� 0#2� ��������� 01#2� ��� �
������� 0�&2
�	�
�	
���� 7� ����	��� 	� 	�����
��	�� ������� 	����
�������	�	���� ��� ��� ��
��� ��� �������� �������
7� 	���� �������	�	���� ���� ���� ����	���� ���	�
��� 	� �	� 	�� ����������� ���	���� ��� 	� ���������
��� ����� ���������� ���
�� 	�� ����������� ����� ���
���	����� B��� ���� ����	 ���� ����	��� ���	��� 	�
	�� ����������� ����� ��� 	� ���� ��	�� $�� ���	
���� �Æ����	 �� 	���� �������	�	���� ��� ����	���
��� ���� ���� � ���	�� 	� 	�� 	�� ����������� ���	����
��� 	� 6
�	 	�� ����������� ������ ��� ���
�� ����
���� ��� ���	�.� /��
���� �� ��	� ����� 	� �� �	����
�� � ���� �� ����� 	��� ���
���� 1 ���	��� �� �����

����� ��� � �������� 	�����
��	��� �� ��
������	 	� 	��
9 ���	��� �� 	�������
��� �� 	�� 	������� �	�
�	
��
���� D #���� �!� $�� ��������� ��	� �	�
�	
�� 01#2�
���
�� 5(/C 0��2� CB / 0�82 ��� E(/' 0%82� ����	����
	�� �	�
�	
��� �� ����� ��� �� ���� �����	���� $����
���������� ��� ����� ����������� ���
����� �� �.	�� 	��
���	��� �� ����� $�� ����������� ��� �
�������
�	�
�	
��� ����	��� ���	��� 	� ��� ��
� �����������
������ ���
����� 9 ���	��� �� ���� �: �� 	�������!�

7� 	���� ���������� 	���� ��� �������
� �������	��
	���� ����� ��	��� �� 	�	��������� �� �� ����� ���
������ /���� 	�� ������	 �������	�	��� �� 	�
�� �
�	�
�	
�� �� 	�	��������� B��� 	�	�������� ��� 1
���	��� 	� ��6����	 	�	���������� ��� 1 	� �	� ����
��� ���	����� /��
���� �� ��	� 	��� ���
���� 8 ���	�
��� �� 	�	��������� $��� �������	�	��� ��
��� ��
,������ 0#�2 ��� 5(/C 0"2� $�� ���� ��� ���� �����
���	�	���� ��� ��	�� ������ ��
����� �������	�	����
������!�)
�� ��
����� �������	�	���� ��� ����
������� 	��� 	�� 	�	�������� �������	�	����� ������
��� 	�� �������	�	��� �� ���	�� ������� �
	 	���
	� 	�*� ���������	�� ���� ����� ��*�� ��� C���
-�� 0%#2 �
����	 � ��	� �	�
�	
�� ����� �� ���������
����� ����� �� ������� ���
���� 9 ���	��� �� �����
����� 4�� 	�	�������� ������ 	��� �������	�	��� ���
�� �	���-�� 	� : ���	��� �� ���� �9 	� 	�� ��6��
���	 ����� ��	�	��� ���
�� �	� # ������ ��� # 	� 	��
������ ���	����!� $��� ���������� 	� %8 ���	��� ��
	�	��������� ������+� ����������� �������	�	��� 0112�
>������+� �����	
�� �������	�	��� 0:2� ��� C�������+�
(��� �������	�	��� 0�92 ��� 	�*� ���� �����

7� �
������ 	�� ���	 �Æ����	 �	������ �������	��
	���� �� ��������� ������
�� 9 ���	��� �� 	�������
�� � ��� 8 ���	��� �� 	�	�������� �� # � /	 ����	
��� �.	�� ���	�� �� ���
���� 	� �	��� ��	� �� 	��������
�� � �� 	�	��������� �� # �

�� �������	�����

7� 	��� ���	��� �� ������ ���� ����� ��	���� �� ������
��	����� 	������
��� �� 	��� ���� 4�� � ���� ���
	����� ����
����� 	�� ������ ��� ����� 	� 0%12 ��� 0##2
����� �	�����

/� �������	�
 �����	��� 	����� � �� � ������	� ����
���	��� �� ���	� ��	� ����� �� ������
���� 	�*��� ����
��	� �
���	�� $�� ������	� �� � ��� ������ �����	���
$��
��������� ��	 �� �� ������ 	�� ������ ��� ��� �	�
������	� ��� ������ �����	��� $�� ��������� �� � ����
��. ��	� � ���	���� �� ��%� $�� ��������� �� � �� 	��
��.��
� ��������� ����� �	� ��������� / �����.
� �� � ��	� �� � �����. � �= � � �� ��� �= � �D � �� ���
	��	 � �� � ���� ���� �� �� �� ��� 	��	 � �� ��� ��
����� �����. �� � ���� �� � �����. �� ������	 ������
����� C�	 � �� � �
���	 �� �� �� ���� 	�� ������	��� ��
��� �������� �� � 	���	��� ��	� ��� 	���� ������ �	��!

	�� 	������ �� �� $�� ���� �� � �����. �� 	��
���� ��
�	� �
�������� ����! D �� F � � ��� $�� ���� �� � ����
��. � �� 	�� ��	 �� �������� �� 	�� ����
�� �� �	� �	��
	��	 �� ��	 ��	�����	 �	� ���! D �	�����!!� ����!�

C�	 � �� � ����� ���� 	�� ���	���� �� � 	� ��� ��
��	 ��� ����	� 	�� �����. �
�� �� 	�� ������ �� 	����
���	���� �� �
���� �� ��� ��	 ��� D ���� ���� ��
��� 	��	 ��� �� �� ��������� �� � �= ��� ��� ��������
� ��� � �	 ����� 	��	 ��� � �� � D ��� ����� � �� 	����
��.��
� ������ ���� ������ ��� �� ��	�!� ��
��� 	��	 � �� � ���������� ���	� ��
�����! �= ��� ��
� ���������� ���	� ��
�����!� 7� � �� � �������� ��
��������� � 	��� 	�� ���* �� ����� �� � �!������. ��
� ����� �� ����� ��� ���	���� ������ � %���������!� 7�
� �� � �������� ��	� ��
������ 	��� 	�� ���* �� �����
�� � �!������. �� ��	��� � ����� �� � �	�� ����� � %�
�������� ��	� �� ��	��
	 ��
����� ���� 4��
�� % ��!!�
�� ���� ��*�
�� �� 	��� ���	 �� �
� �������	�	���
��������� �� ���	��� ��

/� ��������� ���� �� � �������.� ��� �� � 	�	�� ��������
�� �	� ���	����� /� ������������ ��� �� � �����.� ��� �� �
��.���� ��	 �� ��������� ����� ��� ���� ���
	�	����

�� ���� �	����� B���� �������� ��� �� � �����. ������
�� �����	�	��� �� �� 	�� �����.� ��� ����� �������.�
� � &� ��� 	�� ������� �����	�	����� $�� �����	�	���
�� �� � �����. ����	�� �� �����	�	��� ���� �� �����

�� % �
������.<����� ��� ��� ����� 	 ���� 	���� �.��	�
��� 	 �� �
�� 	��	 ����� �� � ���. �� ����

4�� �
�
������ � ��������������� �� �
�� ��
�����. ����� ����� �� � %!������. �� ���	����� ��
�	 ���	 	�� ���������� ��� ����� 	�� �
�� ���� ��
������	��� $�� ���	���� �� 	�� �
�� ���� ��� 	�� ��
�������� ��� 	�� ����� ��� 	�� �� � %!���������� /
����
���������� �� ���������� �� �	� ���������� ��� ��
����� �����	�	���� �� �
�� � ��� 	��	 ���� 	��� ���	
�	 � �� � %!������. �� 	��� ���
�� ����	� ������
	�	���� �� �� B���� �����	���� ����
���������� ���
	�� ������� �����	�	����� ����� ��� �� ������� ��
	�� �����	�	��� �� ��� �� �	� ����������� 7� � �� � ��
��
���������� 	��� 	�� ���* �� ����� ��� �!������.
�� � ������	��� �� ���6���	 ������ ������ �	�� ���� 4���

�� % ��!!�

7� 	��� ��� �� ����
�� 	�� 	��� �����	��� ���� 	�
����� 	� � ��
���������� ���	���	 ��������� �����.
��	� � ����� �����	�	����

�� �	�������

7� 	��� ���	��� �� �����	 	�� ��	������ ��� ������
���� ������ 	��	 �
� �������	�	��� �������	�� 7	
�� � �������� ������� �� �� ��	������ ��������� �� 0�2�
$�� ��	������ �
��	� �	������ ����	���� �� ������

��� ���� ������	�
��
� 	 ������	�
�� ��	��� �� 	�
���� ������ �� ��	���

V V

��! ��!

������ �� ������� �	 �
� ���	��� ������� ���
�������� ��� ��� � ���������	��� ������� ��� �����
��� ��� ��� �	 � ������ �� ��� ��� � � ����� ���� �
��� ��� ��� ����� � ����

����
����� � ��������� 	� ���	���	������ 	������� �
���� ������ ��@��	 ������ � ����� �� ��	�	� ���
�� �
���	�.!� ��� ���
��	��� 	�� ����� ����
���� �����	�
��� ��� ����	��� �������� ��� �������	��� ��	� ��	�
��������� $�� ��	������ ������	� �� 	���� ����	����
�� ������� �������� ��	��� ��� ��� ����!� ���
	���� ����	���� �� ��������� ������ ����� ������
��� �����!�

C�	 �� D ���
 � � �
 ����! �� �� ������� �����.�
$�� �	�� ����	��� ����	�� �� ��	� �����.
�	���!
 �!� $�� �� ����	��� ���� � ���	�. �
	� �F �����
 �!
 ���
 � � �
 ����
 �!� $�� ���� ����
�	��� �.	���	� 	�� ���	 ���	�. ���� ��F �������!

���
 � � �
 ��! F �����

C�	 � �� � ������������� ��������� ����� $�� ���
����	��� 	�*�� � ��� � ������	 ��������� �������

�����. ��� ��� ��	
��� � ��� ���� � � 	��	 ���
�	�
���� ������ �� 	� � � �� ���
��� 	��	 �� ��� �������
	��	 �����	�	��� ��	� � � 3�	� 	��	 ���� �� ��� ���

�� ���+	 ���� 	� �	��� ��� ���� ���
	�	���� �� ���<

6
�	 �	����� ��� �� ���
�� 	� ��	������ 	�� �����	�	���
�� ��� $�� ����� ����	��� 	�*��� ��� � ������	 ���

������� ������� �����. ��� ��� ��	
��� 	�� ���� � �

	��	 ���
�	� ���� �������� �� ���� � � $�� �����

	�*�� �� ������� �����. ���� & � � � �� ��� � � 7�
�� �� ��	 �� � �	 ��	
��� ����� �	������� �	 ��	
���
�� ������� �����. ��� �
�� 	��	 �� 	 � ��� ��� �� �

���. �� ���� 7� 	�� ������ ���� ����� � D �� %� 	���
	���� �� �	 ���	 ��� �� 	��	 ��� �� ��	
�����

7� ����	��� 	� 	�� ���� ��	������� �� ���� ������ 	��
����	���� 	� �������	� ��� ��	����� ��	� ���� ����
����� �� � �����.� $�� ������ ����	��� 	�*��

� � �� ������� �����. ���� & � � � � ��� ����
���
�
���� ��	� �� 7	 �������	�� � ��	� �� ��� � $�� ��

���	��� ������ 	�*�� � ��� �� ������� �����. ���

��� ��	
��� 	��
��� ��	� �� �������	�� ��	� �� ��� �

7� 	���� �� �� �������	�� ��	� 	��� ���� �� ��	
�����

�� �������	����
	

E��� �� �������� �
� � ��� # �������	�	���� ���
��������� ������ ���������� �����	���� ��
�� �����
�����!� �� ���	 ��������
���������� �������� �� 	��
�������	�	���� ��� 	��� �������� ��� 	� �������
	���� �
� �������	�	���� ��� ����� �� �	����� 	��
���* ��� � ��	 �� ��� �!���������� 7� � 	��� �� �������
	� 	�� ��������� �	�
�	
�� 01#2� ��� �� # �	 �� �����
��� 	� 	�� ��*�� ��� C��-�� 0%#2 �	�
�	
��� �� ��	��
�������� 	��	 ��� ���������� ��� 	� ���	�. ������ ���
�	��� �� ���	��� 	� �	��� ������������������ �����.
�	�
�	
���� ��������
� 	� ������� ����� �� ���	�. ���
����� �
� �������	�	���� ���� 	�� ����	� 	��	 �� 	��
������ �� ��� ���	���� �� ��
���� ��� �
����� 	�*� ����
�	��	 	���� �� ���	 �������� � ������� ��� ��������
�����.���

�
� � �������	�	��� ��� ���� ���	�. 	� �	� ���*�
�������	�� �� � ����� �� 	�� ������ �� �	� �����������
���	����� $�� ����� �� ������� �������� ���
�� 	�� ����
	�. �� 	�� �����	�	��� �� 	�� �����.� ����� ����*�����
/ ����� �
��� �� 	�� ������� ���� ���
 ��! ��� ��
�������� �� ���*���
 	�� ���* ��� ��� ������ �� ��
	�� ���*� ��� ��	
����� 	�� ��.	 ���	�. �� 	�� ���*� /
����� �� � ���	�. ��� �� �������� �� �����	��� 	��
���	 	�� ���	���� �= �� �	� ���*�

$�� ���* ��� �� �	���� �� � ���	 �� ������ �	��	��� �	
�� ����	���� ���	 �� 	�� ������ 7� 	�� ���	�. ���
��
���� ������� 	�� ���*
 	�*�� ����	��	 	���� $�
�����-� 	�� ���� ��	� 	��	 ���� ���� ����� �� 	��
������� ��� ���� �������� ���
���� 	�� ���	���� ���
	� 	�� ���	�. ����� ��� ��� 	� 	�� ��.	 ������	 �� 	��
���	� $�� 	�	�� ���� �� 	�������� 1 ���	�������� G %
���	������	�.� $��� �� ����	���� �� ����
���� 	� 	��
	������������� �	�
�	
��� ���
���� 	��	 �	 ���� �����
	���� � ���	�� ���� ���� ���	�. 	� ��� �� �	� �������	
	��������� �
� �������	�	��� �� ������� 	� 	�� �����
���� �	�
�	
�� ����� 	���� ��� �=��	����� 	�� �	�
��
	
��� �� ����� ��� ���	��� �� ���� �����	���� 7	 ����
����� �������� �� 	��	 	���� ��� �� �����	 ����� ���	���
��	���� 	�� ��	����� ���� ������

7� # 	�� �������	�	��� ��� � �
���	 �� ��� �������
����� 	� 	���� ���*� �������	�� �� � ����� �� ���	�.
������� $�� ����� �� ����	����� �� � ������	��	 ������
	�	���� ����� ������� � ����	����� �
�� ��	� �����	 	�
	�� ����� ������	���! �� 	�� ����� $�� �������������
�
���	 �� �� �����	�� 	� ����
�� ���� 	�� ����� ���
 ���
��� ����� ��	��� 	�� ������ �� �� ��� �� ��� ��	� ����
�� 	��� ��� ��	� ����� 4
�	������� �� ���� �� ����
�	���� �� ��� �� �	� 	�� ������� ������
���� � �.��
�
��� ����� ����� ������� ���	�. ���	�)���� ��� ��� 	���
����� ��������.! �	 ����	 	�� ������ ���� 	� �� ��	���
��� �� ����� 	��� ������� �� 	�� ����� �
����	��� 	��	

����� 	������� ��� �	 ����	 ��� �������	�	��� �������
���� �� ��� $�� �������	�	��� ���� ����� 	� �
�� �
��� 	� ������ 	�� ���* ����� 	�� ���	�. ������ �� ���
���� �� ��� $��� ��� �� �������	��
���� �� ��6��
����� ���	 ��� ���� � 	 � �� ��� �
	����� �������	�	���
����� ��
 ��! 	 ��� B��� ������	 �� 	�� ���	 �	���� ��

��� � ���	�� 	� 	�� ���* �� ��
 ��!�

/ ����� �� �� ������� 	������� ���
 ��
 ��! ���*� ��
�������� 7	 ���	 ���� � �������	�	��� ������� ����
���
 ��! ���� 	�� 	�������� C�	+� ���� 	�� 	���� ���	�.
�� 	�� 	������� ��� 7	 ���*�
 	�� ���* �� ���
 ��! �� 	��
��6������ ���	 ��� ��� ��� �������� ��� �� �� 	�� ���*�
7� ���
 ��
 ��! ��� ���
 ��
 ��! ���� 	�� ���� �����	�	���
���� �� ���� ���
	�	��� �� ���� �	���! ����� ���
	
��� 	�� ��.	 ���	�. �� 	�� ���*� �	������� �	 ��	
���
	�� �����
� ���	�. �� 	�� ���*� / ����� �� � ���	�.
��� �� �������	�� �� �����	��� ��� �� �	� �
	�����
������ ��� �����	��� 	�� ���	 	�� ���	���� �� 	�� ����+�
���*� / ���	�.� �������� ����	 ���� �� �
	����� �����
�� ��� 4�� �
�� � ���	�. � 	�� �������	�	��� ��� �	���
���
 ��! ��� ��� 	������� ��
 ��
 ��!� $�� 	������� ��� ��

��� 	� ��� 	�� 	�	��������� $� �
��	 ����� ��
����� ���
���� �	����� ��� ����� ��� ��� �����	���!� �
	
��	 ����������� 	���� ���*�� 4�� ����� ��	 �� �� ������
�������� �����!� 	�� �������	�	��� ����� ���� �	��� �
������ ���	�. �� 	���� ���*�

$� �����-� 	�� ���� ��� 	��� �������	�	��� �� ���
�
�� 	��	 	�� ���*� �� �������	�	��� ����� ��� �	����
�� ���	� �� ���	����� B��� ���	 ������	 ��� 	�� ���	�
���F ��� 	� 	�� ���	�. ��� ��� 	� 	�� ��.	 ������	
�� 	�� ���	� 4�� �� ���� � 	 �� 	���� �� � ����	�����
������������� ��	���� 	�� 	�������� ��� ����� � �� �
���� ��� ���	 ������	� �� 	�� ���* �� ��)���� � 	���
����� ��� # ������ ��� �� ������� ���� 	�� ����� ����
���� �� ���� ����� 	������� ���� ���	���
	� ��� ���
����� �� # � �� D %�� ���	 ������	� 	� 	�� ������� ��	�
�	�
�	
���)���� 	���� ��� 	���� �� ���� 	�������� ��
	�	���������� ���� 	�	�������� ���� ���	���
	� �� ���
����� �� # ���	 ������	�� ����� ���������� 	� 9 ���	�
���� �� ���� ���� 	� �	��� 	�� ���	�. ��6������ ���	�
��� �
	������ �� ��� B��� ���� ���
 ��! 	 �� ���� ��
��� �� �� ������	 �� ��� ���	 ���!� ��� ���� ���
���
	���� ���	���F ��� 	� ��� ��� 	� 	�� ���* �� ���
 ��!�
��� ��� 	� 	�� ��.	 ������	 �� 	�� ���	� /���	�������
� ���	�� ���� ���� ���	�. 	� �	� ���	 �� ���
����� $��
	�	�� ���� 	� �
��	 ����� �� 	�������� �� 	��������
9�� � G #����� G �� �� 4�� � 	����� ���������� �����
���� ��� "�9�� � ��� �� � %�9�� �� ������ ���.�
���	��� 8 ���	����	�	��������� $��� �� 	�� ���� ��
	�� �������	�	��� ����� �� 	�	����������

$�� ����	����� ���� 	� �
��	 ����� �� ���	����
�� 	������ ����� ���	 ���	���� ������� ���� �� �
	���

���
�
� ���� ���
��� ���� ��� �	������ ������� �	�����
�������� ��� �����	���� �	���� ��� 	� ��� 	 �	�� �� ���
�	���� �� ��
�� �� ��
� ����� ��
������

��� ����� $� �
��	 ����� �� ������ �� ���� 	�
�����	��� �	��� 	�� �.��
��� ����� ���
 ��! 	��	 ���
��	 �� �� �� ��	��� �����	���� $���� ��� �� �	���� �=
�� ��
���� � ���*�� ���	 ��	� # ���	��� �� ����<
��� ��� ��� ��� ��� ���� � �� 	�� ���* �� ���
 ��!�
��� ��� ��� 	�� ��.	 ���	��� $��� ����� 	� ���
	
� %�� � ��� D "�9 � #���� � D "�1�� �� '��� ������
	���� ���� ��	 ���� ����� �� ������ �� �� 	���� �����
	��� �.	�� ��	� ���� ��	 �� �	�����

4�� ��������� ��	� ��
�������� 	�� ���* ����	 �� �
�	� �� ���	���� ���	��� �� � ������ �� ��� �����
*�� 	�� �	� �	��	��� �	 	�� ���	 ������	� 4�� ��
�
����������� 	�� ���* �� ����
��� ���	���� �� ! �� �����
�# ! ��� ������	 �� � ��	 �� ������ ������ �	��� ��
���� 	��� ��	 	�� ���� ��� ��� �	 ��� �� �������	�� ��
�
�	��� ���	��

/ �������. � ��� �� ����	�� �� ������ 	�� ��������
	�	��� ��� �!��������� 	��	 ����� �� �� ��� ���		��� �
����� �� �	� �� ���� �� 	���� ���*�� 4�� �.����� ��
4��
�� % ���� 	�� 	������� �� ����	�� ���� ��! ����� 	�
��!� 	�� �	� ��� 	�� ���* �� ���	�. � �� ���	 ��	� 	��
�	���)�������� 	�� ������ ��� 	�� �	��� 	�� ���	����
�� 	�� 	������� ��� ���� ���	 ��	� � �	�� 7� ���		��� �
���* ������ 	�� ���* ��	 ��	�� 	��� 	�� ����!������.
�� ����	��� / �������. � ��� �� ����� �� ������
	�� �������	�	��� �� � �!��������� �� �� ��� �.	����
��� ���� �� 	���� ���* ��	�� $��� �.	������ ����	 ���
� ��� �	� 	� 	�� ��	 ��� ���	��� �� 	�� 	�� ��� ����
	���� ��� �� 	�� ��	!� �	 ����	 �.	��� �� �.��	��� �	�
��� ��� ���	�. �� �� 	�� ��	!� �	 ����	 6��� 	�� �.��	���
�	�� ��� 	�� 	�� ���	���� ��� �� �����	� �	��!� �� �	
����	 6���	 � �	� ��	� � ����� ��� 	�� 	�� ���	���� ���
	�� ���� �� 	�� ���� �	�!� 7� 	�� �������	�	��� ��
���	���	�� 	� ��������� ��	� ��
������ 	��� 	�� ������
�	� �
�	 ��	��� �� �.	����� �� ��� ��� ��	��� ����!�
�� 6���	�� ��	� � ������

 �	� ��� �� ����� 	� 	�� � �������� ��� � � % ����
�����! �� ������ � ��	� ���� 	� ���� ������	 �� 	��
���*�)���� � � �����. ���� ���� �� �
�	��� ���*��
	�� ��	� ���� ����� 	� �� �	���� �� ��� �� 	��� �����
��� �� � �.�� ������ 	� ��*� ���*
 ����!� �� ��*�

�� �� 	��� �� 	�� ��������� �������	�	����

��	������� ������������� �� ���	 ����
��
��� 	� ������� 	�� �������	�	��� �� � � 5������
���� �� # �� �������� �� ��*�
�� �� �������	� 	������
�� ����� ���� ������	 �� � ���	�.+� ���* �� �������	��
�� �	� ��=������ ���� 	�� �������� ���	�.� 7� 	���� ����
�������� ��� ������ 	��� � �������������	� ���. ����
��
�� �� 	�� (���� ���� �� B���� 0%�2! ��� �������	
	��� �Æ����	��� /� ����	����� ���� ��	 ��� �� �����
	� ����� ��� ����	��� ��=�������� $� ���
�� 	��	 	��
��=������� ��� ������ �
� ������	�� �������� 	�� ����
	���� �� � ����������� ���� ����� �� ���� ����
��
��	���

6 3 5 −2 −8 −5 1

314

317

306

319

315

309

312

������ �� ��� ����������� ��� ������������ ����
���� ���� ���� 	�� ������ !"#� ��� $��� �����% &% � ���
������ �	 ��� ������� '���� ������ ��� ��� ������ �	 ���
���������

���� 	�� ���	���� ��� ���������� 	�� ���* �� � ���	�.
��� �� �������	�� �� �����	���	��� 	�� ���� ��� �	�
������ 	� 	�� ����� ��� 	�� ��=������� �� �	� ������
����� �)�� 4��
�� � ��� �� �.�����! 7� � ���	�. ���
� ���* ������	��� �� �
�	��� ������ �� �	�� ��� ���
���
� �� � ��
����������!� 	��� ���* ��	 ��� �� �����
���	�� ��
		��� 	�� ��������	�� ��� ��	�� 	�� �	���
��	� � ��
�	 ������ ����� 7� ��	� �� �������	�� ��	�
���� �� 	�� ��������� 	��� ��� �� ��	�������� ��	� 	��
����� ��� 	�� ���������� $�� ���
�	��� ���	�. ������
���� ��� �	���� �� �.�������	� ����*�H �� �� �������� ��
������ 	��� ���� �	 �� ��� ����*� �
�	��� ����*� ���
�� ������ ��	� � ���*�� ���	 	� ���� 	�� ��������� �
�
�������	�	��� ��*��
�� �� � ������� 	������
� 	�
������-� 	�� ��-� �� 	�� ���	���
��� �� 	���� ���*��
���	��

���� 	�� �������	�	��� �� �
������ 	�� ���� ��� 	��
������������ ���	�. �� ������������ ���� ��
�
��	� �� ����� 	�� ���� ��� 	�� ������������ ���	���� ��
������������ �������� ��� 	��� ��������� ������

5��������� �� � # �������	�	��� �� ������� �.��	
	��	 	�� �������	�	��� �	���� 	�� ���* ���
�� �����
���	�	��� ����� ��	��� 	��� ���
�� ���	����� 4�� ����
���	�. 	�� �������	�	��� �	���� � ���	 �� 	��	 ���	�.+�
�������	�	��� �
	������� ��	� ���	��� 	� 	�� ���*� ��
	���� �
	������� $���� ���	��� ��� ���������
����
	�� ���� ������� 	������
� �� ������

��������� ������� 7� ��� 	�� ���	���� ��� *����
������ 	�� ������	�� ������� �
� ������	�� ��� �������
	���
���� � 	������
� ����� �� ��� �
	�� (���� �
��	 �� ���	�� 	�� 	������
� ���	 ���� ����� �� 	��
� ��� � �.�� ��� 	�� ����	��	 �����	��� 7	 ���� 	��
���.���	� ������ �� 	��	 ��������	� ��� ��	�	����

	�� ���	� �� ��	��� ���� �� 	��	 ������� $�� ���	� ��
��� ���� ��� ������� ���	� 	��� 	�� ���	� �� 	�� �	���
����� $��� �� ���� ���
������� 	� ���
�� � ��������
�� ����� ���	� 	��	 ��� ���� ���� �	��� ���� �������
������� $��� �� ������� 	� � �����	�������� 	������
�
��� ���� ���������� 	���
�� ���������� 012 �.��	
	��	 �	 ���
�� ������ ��� ����� ���� ���� ����� 	�
	�� �����

7� ��	 ��� ���	���� ��� *���� ������ 	�� ������	�� ���
����� �
� ������	�� ��� ������ � ����� �������� 	� 	��
���	��� ���	����� ���� � ��� ���	�. �� ������ �	 �� ���
������ � ����� 	��	 �� ����� 	� 	�� ������ �� �	� ����������
7	 ��
�� �� ���Æ����	 	� ������	� �	����� ��� ����� ���
����� �����H ���	���� �
� ������	��
��� �� �.	�� �����
�� �������	��� 	� �� ���	�. ������ 	� ������ ����*��

�� �������	����
	

�� ������������� �
� ������������� ���������
��	� �	�
�	
�� �� �������	�� �� ��������

4�� ��=������ �������� �
� �	�
�	
��
��� 	�� ������
	���� � ���� �� �
� ��� �������� 	��	 �	���� ��	�����

���� 1���	 I�������J� B��� ������ ���	���� 	���� ��	�
�� ��	� ��� ��� I���	��
�J ��	� $�� ���	��
� ��	 �� ��	
	� �� 	�� ������ �� 	�� ���	 ��� �� 	�� �������	�	���
�� � ��	����� ��� ! �	�������� �� ��� 	��	 	��� ���� ��
�
�� ���	�� 	��� 	�� ����� ���� ����� ����� �����	
�� ������Æ����	�

7	 �� ����	���� ��������� 	� �	��� �� �.	�� ��	 � ��	�
� ���
� �� $��� �� ����������� ��	� � ����	 ����	���F
�� � �� G �� 7� ��	��
���� �� ��� ���
� ����	 ��
����	���� �
� ��=������ ����� �	���� �	� �����
	� ���
�
�
� � ���� ��	F �� � ���� G ������!�

/ ���	�. �� �������	�� ��	� � ������ ���� ��� 	�� ���
���� �� 	�� ���	�.� �������� �� ������ ����� ��� 	��
��=������� 	� ���� �� 	�� ���	�.+� ���������� �
� ���
�����	�	��� �	���� 	�� ����	����� I�����������J ��	�
��	� ���� �������� 	� ������ �������	��� ���
	 	��
	������� 	��	 ������� �	 �� 	�� ���*� ��� ��	 �� ��	 	�
������	� � �� �� 	�� ���* ��	F �	 ������	�� 	��	 	���� ��
�� 	������� �������� 	��	 �������� �� 	�� ����� $��
�	��� ��	 �� ��	 ���� ��	� �� �������	�� ��	� 	�� 	�����
��� �������� 	��	 ��������� 7� 	��� ����� 	�� ���� ���
	��	 �������� �� �������� ��	� � ������ ���� ��������
	�	��� �� 	�� ��	��

/� �� �	���-�	���� ��	� 	��	 ��� ���� ���	���� ����
�� 	�� ����������� ��	� ���� �� ��	� �
� �������	�	���
�	���� � ��	 ��	� 	�� ������ �� ���� ���	�. 	� ������	�
�� ���� �� �	� ����������� ��	� ��� ��	H �� 	��� �� ��� 	����
��	� ��� ���		�� �� 	�� �������� �� 	��	 ���	�.�

�
� �������	�	��� �	���� 	�� ������ ����� ��� ����
���	�. �� �� ����� ���	������ ��� ��������	� ����* ��
���	�.� 7� � ����* ����@��� �	��	 ��� �� 	�� �	�����
������ �� ����	�� 	��� ����� ��	��!� ����	����� ����

>���* >���*� $�	��
)�-� 3�����)���

� "1�%�% %&&89#8%
9 1"��9# :::8�#%
" �8#��: ::�&119
8 %9199& %&%&%%&1
: :1%&� %&�#"%:�
%& �##:: %%%"::8"
%% #&1:9 %%:"1&"�

������ �� ��� ������ �	 ����� ������ ������ 	�� ���

������� �� � ��	��� ��������� �
�% ��� ��� �����
����� ��(���� 	 �� �������� #&? ���� ������ ���� ���
�������

�� ������	�� ���� � �����	� ��� �� ��������	� ����*��
$�� ���	 ��	� �� 	�� ����* �	���� � ���	�� 	� 	�� ��.	
����* �� 	�� ���
����� �
� �������	�	���
��� � �����
��� 	������
� 	� ���
�� 	��	 	�� ���	�� ����� �����
	� �� ������ 	��� ��� ��	�� $��� ���
���� � ���� �
���
	��� 	��	 ��� ��������� �! ���� 	� ��������� �� 	��
���� ������ ���� �
� �������	�	��� 	��	� ���
��
�� � �� 	�� ����� & 	� %�"
�	�� 	�� ���
�	 �� 	�� ����
�� ��
�
��� ����*� 7	 	���
��� 	��	 ���
� �� � �� 	��
���	�� 	� 	�� ����*� K���� ���	��� ���
�	���� ���
	
	�� ���� �
��	���� �� 	�� ������ ��� �� �	 ���	 "�?
�
��� 	��� 	�� ��������	� 	��	 	��� 	������
� ���� ����
�� �	 ���	 �"���� � %&����

7� 	�� ���	���� ��� ������� ������� ��� 	��	 ��� ������
��� �� ������	�� �����������!� �
� �������	�	��� ����
��*��
�� �� � ���� ����� ��	���� ������ ��� ����
	�. ��	� ����*�� ��� ��	� �� ������ �� ������	�� ��
�����H �� 	�� ����� �� ��
��� 	��� ��	� ���	���� � ����
���	�� 	� 	�� ���	 ��	� ����* ��� 	��	 ���	�.�

��� ��	 �� �	���� ��	� ���� ����* 	� ������	� ���	���
	�� �
����	 ����* �� 	�� ���	 �� 	�� ���
����� 4�� 	��
���	 ����* 	��� ��	 �� �	���� ��	� 	�� ������ �� 	��
���	�.H ��� �
����
��	 ����*� �	 �� �	���� �� 	�� ����	�
��	 �� 	�� ������	� ���	�� 	� 	��	 ����*�

$���� �� � 	�����= �� 	�� ��-�� �� 	�� ����*�
����
C���� ����*� ��� ���Æ����	 ����� 	��� ���	���
�
���
����H ����� ����*� ��� ���Æ����	 ����� 	��� ���
���
���� ��� ���	��� 	� �	��� ����*�� 7� ����	���� 	����
�� � ���	 �������	�� ��	� ���
	��� ���� ���	��� ��
��������� ���
�
��� ����*� �� 	�� ������ ���� 4���

�� # ����� 	�� 	�����= ��	���� 	���� ���	��� ���
�
� ���
��� 	�����
��	��� ������	�� �
� �� ���
���
������ ���	���
	�� ���	� �� 	��
��	 ��
���� �� �����
� ����* ��-� �� " ����� �	 ����� 	�� ���	 �Æ����	
�� ��
�����

$� ������ 	�� �Æ������ �� ���*
� �
� �������	��
	���
�� � ������� ���	��� ���� � �
��� ��
��	�
�� ����� 	�� ����*� �������	�� ��	� 	�� ������	�
���	�. ��� �������� $�� �������	��� �� �������	��

>���* >���*� >���*� K���
)�-� /�����	�� ��� ��� ���

� &���� �:? 9"? "&?
1 %�#� :&? :&? 88?
9 %���� :&? :&? 8"?
8 %�#� "8? "#? "�?
%& %�8� #&? �%? 9#?

������ 	� ��� ������ �	 ������ �	 ���� �)� ���� ���
��������� 	�� �� � ������ !� ����% ��� ��� ����������
�	 ������ ���� ���� ���� 	�� � D ���% ���% ��� ����

��
���������� ���� �� � ���	 ��	� ��� ���	�. �� 	��
���* �� ������	 �� 	�� ���	� $�� ���	� ��� *�	 �� �
474� ����� ��	� � ��.��
� �����	� �� �&&& ������
K��	� ����	���� ��� �=��	 	�� ���	� ����� 	��� ���
�� 	�� ������ $�� ���	� ��� ������� ���* ��	� ����*�
���� 	��� ��� @
���� ���� 	�� ������

"� ������������� �
� #������������ �	�
�	
��
�� �������	�� �� � �����	 ��������-�	��� �� �
� ��
����������� �	�
�	
��� ;����� 	��	 �
� # ��������
	�	��� *��� � �� ���� ���� ���	�. � 	� ��� �� �	�
�������	�	��� �
	������� $��� �� �	���� �� � ��=������
����� ���	 �� 	�� ������������ ���������� $�� ����
��� ���� �������� �� �� �������� �� � ���� ��� 	�� �
��
��� �� ������� �� 	�� �������� �� 	�� �������	�	���
���� ��
 ��!� ��� � ���	�� 	� 	�� ���	 ����* ���	������
	�� ��	� ��� 	��	 ����� �$�� ���	�� �� �	����
���� 	��
���� ���� 	���* �� ����� 	� *�� ���	�� ��-�� ������!
B���� �������	�	��� ���� ��� �	� ��� ����* ������	��
���� 	�� ������ ���� ��	� 	�� �������	� 	� ������	�
����	����� ����*� �� �������

���� �� ���� �� �
������ �
� �������	�	��� ����� ����
	�� ���	 ��� ��� ���	�. ��� ��� 	�� ���� �	���� ��	� 	��
������ 7	 ���� ��	 ���� 	� ��������� 	�� �	��� �����
��6������ 	��	 ���	�.�

)���� 	�� �
���� �� ������ ������ �� �������	�	���
���� �� �
�	� ��������� �
� ��	� �	�
�	
�� ������	��
���� ���� �� �� 1� 9� 8� �� %&���	� ����*� 	� ���
��
���	�� ����� $�� �
���� �� ����*� �� ���� ��� ���
��	������� �.������	���� ��� �� ����� �� 4��
�� 1�
$�� ��	� �	�
�	
�� ���
��� 	��	 ���� ��� ������ ���
�	 ����	 %&? ���� ����H �� � ����* �����	 �� ������	��
���� � ����� ���� 	�� ��	� �	�
�	
�� ���*� ��� � ������
���� $�� ���	��� ����* ��� ���� ���	�. ����� ���� �
�����	� ����� ���	������ ����*� �� ��-� "�

����	�� ���� ���������� $� �
��	 �������
���	 ������	��� ��
�� �� �.����� ����� ����� 7�
� 	�	�� �� � ���	���� ��� 	� �� ������	��� �� ����� ���
�� ������� ������� B��� ����� �������� � ������	� ����
���	�� ������ �� 	�� ����� �� ��
��� ���	� 	� 	�� ���	���

��	� ����* ��� 	�� ������������ ���	�.� $�� ���	���
���	���� ��� ����� ������ ������ 	�� ����� �����

#����	���� ��������� �� �������	�� � ��
��
��� 	�����
��	��� ������	�� �� 	�� ��� 	���� ���
��������
���� �
� ��������� ��	� �	�
�	
��� ��
����� 	�� �����*���� >��������	��� *����� 08� 1�2
	� ��������	���� ������	� 	�� �����
���� 	�� ��
���
�� 	�� ������	�� � ���
��� 	�����
��	��� �� 	�� �
��
���	 ���	��	 �� ����	������ /� ��������	�� �	� ���
���	� � ��� ���	�. ��	� 	�� ���� �� ��	�������� 	��
������	� 	��	 �����	� 	�� ���
��� �����	���� $����
������	� ���� 	�� ���
��� 	������ $�� ����� 	��	
��
�� 	�� ����	� ��� ������ 	�� �������� $�� ���� ��
������� �� �������� 	�� ������	� �� 	�� ����	� ���
������	��� 	�� ��� ���	�. 	� 	�� ����-���

B��� ������� ������. �� ������	 ���������! �� 	��
���� ��� �� �������	�� ���	 �� ��� ���	� �� �	� ��	�����
	��	 ���� ��	 ��	 ���� ����� 	� 	�� ���� �� ���������
�� 0%:2� /	 ���� ��������	�� �	� ��� ���	� �� ����	�
������	� ���� 	� �� ���������	�� ��	� ��� ������	�

���� �������� 	��	� �� � ��� �������� 	��	� �� # �
����� ����
�	� ��� 	�� �������	 ���	 �� 	�� ������	���
�� ���� �����
��� �������	�� 	�� ���������� ���� ���
������� �� 0�2 ��� �.	����� �	 	� 	���� �����������

�
� �������	�	��� ���� ��	 ���
��� �.	�� ������
��� 	�� ���	� �� ���	� ����� �	 ��� 	��� � ���	 �� ��	���
� ���	�. �� 	�� ���� �� �� ��� �
�� ���	� $�� ������
	��	 ���� ��
��� 	� �	��� 	�� ���	�. �� 	�� ���� ���
���	 ��
��� �� � ���	 �����

$�� ������	�� ����	���� � ���* �
�
� �� ������	�
����� ��	������ ���	��� ���	�� ���� �� ������	� ����
	��� ���	� ������ ��� ���� ���� ����� 	� 	�� ����!� 	��
������	�� 	������	���

7� 	��� �������� ��� ���	� ��� *���� �	 	�� ����������
�� ������� 	�� ��
	 ���	�
���� �
	� ����� �������
��	� �����	���� �� ��������� ������ $�� �
�	���� ���
��	�� �� 	�� ��.	 ���	��� ����
�� 	��� �����������
�	��

�������� �����	��� $� 	��	 �
� �������	��
	���+� ���������� ��� 	�� ���� ���� ��� ���	� ���
����������� ������	�� �	 �
�	���� �� �������	��
� � ���
��� ��������	 ���� �� 	�� �	��� �� ;
�
��	 0#12� �� �
����	 � ���
��� 	�����
��	��� ��
������ ����
����	��� �� ����� ����� 	�������� �����
����	������ 	�� ���
��� ����	�� ���� 	�� ���	���
	�����
��	��� �� �
��	 �� ���* 	���
�� 	�� ���� ����
��� ����* 	�� �
���	� �� ���� ������	� �
�
��� 	��
���� ��	 ��	������� � ����	 �����
� ����� ��
���
$�� ���� ���* �
�
�
��� �� 	�� 	�����
��	��� ����
�� 	�� ������	�� ��
��� 	� �	��� 	�� ���	 �� 	�������� 	�
�� ���	�

 ��	���
	��� L ,	� L B.	�� >���*� $�����!

������ ��� "&8�# #�%9
������ ��� "��#: #���
*
-��� ��� "�:%" 1�#9
���� ��� 99�:" #�91

������ ��� �88��� %#���
������ ��� �:��8& %1�1%
*
-��� ��� �:�"&: �%�#1
���� ��� �"9%�1 %��89

������
� ��� ������ �	 ����� " ���� ������ ������ ��
����� ��������� �������� ������ 	�� ������ ���� ����
������ ���� ��� ��������� ��� ��� ������ �	 ���
�
�������������

�������� � ��� ���	 � �� ������	�� 	�� ������	��
������� �� ��� ����� �� ����������� 	�� ������� ���	����
� �� 	�� ����	� ����	�� �� � ��� ����
��	��� 	�� ���
�
� 	��	 ������-�� 	�� �
� �� 	�� ��� ����� 	� �� 7	
	��� ���� 	�� ������	 ����� 	� � 	��	 �� ��	 ��	
����

7� 	��
�� 	�����
��	��� ����� ��� ���	���� ��� *����
�	 	�� ���������� �� �� ��� �	��� 	�� ���	 �������
��	�� ��� 	�� ���	 ����� ���	�. ������ �������� 7� 	��
��������	 ���� �� ��� ���� ��� 	���� ������
 	�
���
	 8�? ������ 	�� ��� ������� ������� 	�*�� ���
����	����� ����� �� ���� ���
��� �.	�� ������ ��� 	��
����	����� �� ���� 	�� ����� ���� 	� 	�� ���	�����

�� ��������	��

�� ����	 �.������	� �� � ,��	�
� 1� ��1(E- ����
	��� �
����� ;��E�	 C��
. A����� ��1�%8� (3K
5�5GG ������� ������� #�&�%� 4�� ��� �����	��� ����
�	���� ���������� ��������� ��������� ��� ������� 	��	�!
��
��)�����
*+� ���	��� �������� �����	��� �����
��	�� 0#"2� ��
�� ��������������� @��	�������	 �
��
���� 	� �������	 	�� ��������	���

�� ��������� �� 	��	�� �
� � �������	�	���
�� ��	� ����� ���� ������� ���	���
	���� 	� ������ �	�
������ ����� ��� ����
������ ��	� ��	�� �� ���
	��	� �� 	�� ��������� ���	���
	����F K�������� ����
���� ������� *
-���� ��� � ���� ����
����	�� �	����
�� 	���� ���	���
	���� ��� �� ��
�� �� 092� 7� 4��
�� �
�� ����	 	�� �
���� �� �.	�� �����@��! "���	� ����*�

��� 	� �	��� ���
��� ������ �� �����
� ���	 ���	���
�
	���� ��� 	�� �
�	��� �� �
� �������	�	���� 7	 ���
�� ���� 	��	 	�� �
�	��� ������ �� ���
	 1&? ����� 	��
�
���� �� �.	�� ����*� ������ �� ���
	 %&?� 4
�	����
���� 	�� �
���� �� �.	�� ����*�
��� ����� 	� ����
���
	 �8? �� 	�� �
���� �� ����
�	 ����*� �������
����� �� ��� �� ���	�.� 7� �
� �.������	� �� ��	 	��
�
���� �� �.	�� ����*� ��������� 	� #�? �� 	�� �
��
��� �� ����
�	 ����*�� $�� �.	�� ����*� 	�������� ���

0 2 4 6 8 10 12

x 10
7

0

500

1000

1500

Problem size: # elements

R
un

tim
e

(s
ec

)

triangle divide−conquer
triangle incremental
our incremental code

������ �� *����� �
�% ��	����� ������ �����

0 2 4 6 8 10 12

x 10
7

0

200

400

600

800

1000

Problem size: # elements

P
ea

k
m

em
or

y
us

e
(M

B
yt

e)

triangle
our code

������ �� +����� ��� �
�% ��	����� ������ �����

0 2 4 6 8 10 12

x 10
7

0

200

400

600

800

1000

Problem size: # elements

M
em

or
y

us
e

(M
B

yt
e)

total
simplicial mesh
point coordinates
work queue

������ � ,�������� �	 ������ ��� �
�% ��	�����
������ �����

 ��	���
	��� L ,	� L >�	��
��� $�����!

������ ��� ����#&: :��9
������ ��� ��"�9�: :�#8
*
-��� ��� ��"%"9: %%��#
���� ��� ��9119� 8�""

������ ��� %&%#�#�% #:��:
������ ��� %&19#"9% 1%�8:
*
-��� ��� %&111%:� 1��&1
���� ��� :#"�99: #8�:"

������ �� ��� ������ �	 ����� ������ 	�� �������
������ �� ����� ����������� �������� ������ 	�� ������
���� ���������� ��� ��� ������ �	 ��� !� �������
������

	� ���
	 8&? �� �����	�� (���� 	��� ��		���� 	�� 	�	��
���� �� ���
��� ��� 	�� ���� �� %�#��" ��	������	�.�
����� �� 1�"�� ��	���	��������

3�.	� �� ������ �
�	��� ��� ������
���� ��
�
� �������	�	��� 	�)�����
*+� $������� 0#92 ����
����� �� 	�� ���	 �Æ����	 ���� ����	�� �� >�������
��	 �	� ��� 0"2� 7� 4��
�� 9 �� ����	 	�� �
�	��� �� �
�
���������	��! ���� ��� $�������+� ���������������
��
��� �	� ��������	�� �������	�	���� �� ����	 	��
	�	�� ������
�� �� ��	� ����� �� 4��
�� " ��� ����*
���� �
� ������
�� ��� 	�� ��������� ����� ���	
��������	�� ��� 	�� ���* �
�
� �� 4��
�� 8� �����

���� 6
�	 ���
	 � 	���� �� 	�� ������ �
� ���� �
��
���
	 %&? ������ 	��� $�������+� ���������������
��
�������	�	��� ��� �� ���
	 �� ����� �� �����	
��
���	�� 	��� $�������+� ��������	�� �������	�	���� 7�
�
� ���� �&? �� 	�� ������ ��
��� 	� �������	 	��
����� 1&? 	� �	��� 	�� ��������	��� ��� %&? ��� 	��
���* �
�
��

"� ��������� /� �� � �� 	��	�� �
� # �����
���	�	��� �� 	�� ���� ��
� ���	 ���	���
	����� 7�
�
� # �	�
�	
�� �� ������	� ������ ����*� �� ����
�����	 ��-�� $� ������ 	�� ������ ����� ��� �����
�
� ���	 ���	���
	���� �� ����	 	�� �
���� �� ��	��

��� 	� �	��� ���
��� ����*� �� 4��
�� :� /� �� �
	�� �
�	���� ��=��� �
	 	�� ������ ������ �� ������
���������	 �� 	�� ���	���
	����

�� ������ �
� # �������	�	��� ��	�
������ ����
��� ��	� 	�)�����
*+� ,������ ���� 0#�2�� 4���

��� %& ��� %% ���� 	�� �
�	��� ��� 	�� ������

����� 4��
�� %� ����*� ���� 	�� ������
���� ��
�
� �����

7� ��������� �
� �������	�	��� �
�� �����	�� ���	��
���
��� ���� ���
	 ��� 	���� �� 	�� ������� 7� #
	�� �������	�	��� �� 	�� ����
��� ���
	 "�? �� 	��

��� ���� ��	� ��� ����
�� �� ���	�
� �� 	�� ��
��
� 	
���	 ����	���

0 2 4 6 8 10

x 10
7

0

500

1000

1500

2000

2500

3000

Problem size: # of elements

R
un

tim
e

(s
ec

)

pyramid
our code

������ ��� *����� � !�% ��	����� ������ �����

0 2 4 6 8 10

x 10
7

0

200

400

600

800

1000

Problem size: # elements

P
ea

k
m

em
or

y
us

e
(M

B
yt

e)

pyramid
our code

������ ��� +����� ��� � !�% ��	����� ������ �����

0 2 4 6 8 10

x 10
7

0

200

400

600

800

1000

Problem size: # elements

M
em

or
y

us
e

(M
B

yt
e)

total
simplicial mesh
point coordinates
work queue

������ ��� ,�������� �	 ������ ��� � !�% ��	�����
������ �����

0 2 4 6 8 10 12

x 10
7

0

100

200

300

400

500

600

700

800

900

Problem size: final # elements

R
un

tim
e

(s
ec

)

pure delaunay
delaunay refinement

������ ��� *����� �
�% ���� �������� ��� ��������
��$������

0 2 4 6 8 10 12

x 10
7

0

200

400

600

800

1000

1200

1400

Problem size: final # elements

P
ea

k
m

em
or

y
us

e
(M

B
yt

e)

pure delaunay
delaunay refinement

������ �	� +����� ��� �
�% ���� �������� ��� ��
������ ��$������

	�	�� ������H ���	 ��������	�� ��� ���* �
�
� ���
��
�	 ��� %8? ��� "?� �����	������

�� �������� �����	��� �� 	��	�� �
� � ��
��
��� ��������	 ���� ��� ������ �
�	��� ���
������
�� 	� �
�
�� � ���
��� ����� ��� 4���

��� %# ��� %1� $�� 4��
��� ���� ������ ��-� ��
	���� �� 	�� ���� �
���� �� ������	� �� 	�� ����� 7�
	��
�� ���
��� ����� ��� � ���	� ��� *���� ����
	������ ������� �� 	�� ��������	 ���� ���� ��� ���	�
��� *���� ���	������ 	�� �	��� ��� ��� ������	�� ���
������� �� 	�� @� �� ��������� ��)��	��� 9� �� �����
	�� ����
 	� � �����
� ����� �� �9�8�Æ�

$�� �
�	���� ��� 	�� 	�� �������� ��� �����	 ����	�����
�� ���� ���
	 #&? ���� ������ �� 	�� ��������	

����� /���	����� ������ �� ������ ��� 	�� �� ����
������ 	� ���	���� ��� ��� ����* �� 	�� ���	 ��������	�
����� ��� 	�� ���	 ����� ���	�. ����� ������ ��� �
�
������� 	������
��

�� ��������
	

$�� �������	�	��� �� ��������� ��� ��
��� �� ��
��	����	��� 	� �.	����� ������ ��
	��������! ��������
	�	����� ���� 	�� ���� �� ��	��� � ���	�� �� ��� �� ��
�� �		��� �� ������ ����	��� 	� � �	������ ��������
	�	���� �
� �������	�	��� ��� 	�� �����	��� 	��	 �	
������ ������ ������ 	� 	�� ���� ��	��
	 ���������	
����	�� ��� ��� 	�������� ��
��� �� ��	 �� �	������
��������� ������	��� ��� ���� ����! �� 6
�	 �.������
��� 	�� ���� ��	�������

#� ���$������ ��
 �%����� 	�	���� 4�� ����
����� ������� �
� �������	�	��� ��� ��
��� �� ����
6
��	��� ��	� �.	������������ 	������
���)���� ��
�
� �������	�	��� 	�� �������� �� 	�� ���	���� �� ���
������ 	� �� ����� ��	 �� ����� �� 	�� �
�����	 	���
��������	���!� ��� 	�� ����*� �� ������ ��� ����
	���� ��� ���� �
	 �� 	��� ��������� ������ ���	���� ��
	�� ���� ���� ���	 ��*��� ���� �� 	�� ���� ����
��� ������ �� 	��	 �� 	�� ��	� ��� � ���	�. �����
@��� �� ��� ������ 	�� ����@�� ��	� 	� 	�� �.	��
����*�
���� � ����� ����� ��� �� ������	�� $� ��*�
�
�� 	��	 	�� ����@�� ��	� ��� ���� ��	��� ������	�
��� ��
�� �� ���� �����
� ���
	 ��������� 	�� �.	��
����*� ����� �������	����� ��	��� 	�� ���� ��� �� 	��
�������� ����*!� >���� �� 	��� �������	�	���� �����
��	��� 	��	 ���� � �	���� ���� 	� ��������� 	�� ����
������� ������ ��� 	�� �����	 ���* �� /���	�� 5��� ���
;�	� 0%2! ���� 	��� 	� ���� ���� ��	��� ������	� ���
���* ���� ��	� ���	
�� ������ ���� �	 ���� ��	 �	
��	� ������� �������

��������&����� � �'��	�������� $�� ���� ��
�	����� 	�� ���* �� ����� � � � ����������� �����.
��������-�� 	� ����	���� ���������� $�� ����������
	������
� ���� ��������-�� 	� ����	���� ���������� �
	
�� ��*��� 	� �� ���=��	��� ��� ����� ����������� $���
�� ����
�� 	�� ��-� �� 	�� ��=������ ����� ������ ��
	�� �����	�� ��-�� 012� ����� �� 	
�� ������ �� 	��
���������� 5������� �� �=��	��� ��� 	� �����	 	��
�������	�	��� �
���	 �� 	�� � � � ����������� ����
����� ���� ����� �� 	�� ��������� ��� ��
�� ���� 	�
�� ���������� 	�
�� �
� �������	�	��� �� ����������
����	�� 	��� 	����� �� ���� ��	 ���� ��� �.�������
	�	��� 	� �����-� 	�� �=��	������� �� �
� 	������
��
�� ���������� ����	�� 	��� 	����� �� 	� ������ �
�
�������	�	���� 	� �	��� �������	�	�����

���	
��������	��

�� ��� ���	��
� 	� M���	���)�����
* ��� ������	���
�� 	�� ��� ��� ��		���
�
�� � ���������� �������

�� ,������� $��� ���* ��� ���� �� ��	 �� 	��)���
���� 0�#2 ��6��	� ��� ������� ��6��	 ������� ����
���	���
	�� ������

���� �!"�#

0%2 3� /���	��)� 5���� ��� (� ;�	�� 7�������	��
����	�
�	���� ��� >;7�� 7� ���	� ��� ���
����� �� ������������ !�������� ���� �%%N
�%:� M
�� �&&#�

0�2 C� /���� B.	����� ������ ��	� �	�
�	
���� 7�
���	� "������ ������� �� ����������� ����
%N�:� �&&%�

0#2 >� >�
����	� / ��������� �������	�	��� ���
���
	�� ������� 7� ���	� #������� �������
��������	�� ���� �8:N�:9� %:"��

012 � >��������� (� >�������� ��� 7� A���� 5���
��	 �������	�	���� �� �������� ������ 7� ���	�
���� $�� ������� �� %��	���� �����������
�&&#�

0�2 (� >�������� E� >
���� A� 5����� ;� E�����
(� '������ ��� 3� ���*���	��� ,�����	��	 	���
���
��	����� &������ �� '��	������ �����������
�&'�
� %%��!�)�	� �&&%�

092 (� >�������� M� E������*� (� C� '������ ��� � $���
���� ����� ��� �������	�	��� �� � ���	��
��� ������� ���
��� ������	��� ����������	��
�1�#�1!F�1#N�9:� %:::�

0"2 M�� � >��������	� �� ���������)� ,���� '� $����
��
�� ��� '� O������ $�����
��	���� �� 5(/C�
������������ !�������� ���%N#!F�N%:� �&&��

082 /� >������ 5��
	��� �������	 	�������	�����
(�� ������� &������� �1F%9�N%99� %:8%�

0:2 B� >������� ;������	��� �����	��� �	�
�	
��� ��
� ����������F $������ ��� ������ 7� ���	� ���
 ������� �� ������������ !�������� ����
�%8N��"� %:8:�

0%&2 /� 5��
���� ,� 4��������� A� '�������� K� '�����
��� B� ;����� ;������-�� �.	������������ ���
����	��� ��� ���� �����	��� �������� 7� ���	�
��� ������� �� ������������ !��������
���� ��:N�98� M
�� %::8�

0%%2 '� ������� (����	�� ����������� 7� ���	�
 $!!)��*� ���� %#N�&� %::��

0%�2 4� A� E� /� ����� � E
	�������� /� '������
����� ��� �� �		����� ;��
���� 7�� �����.�	�
�� ���
��	��� ������ ������� ������� ������	����
7� ���	� $�� + �%�� ���� %1N�&� %:::�

0%#2 � ��*�� ��� '� C��-��� ,����	���� ��� 	�� ���
��
��	��� �� 	���������������� �
����������� ���
��������	�� 1�%!F#N#�� %:8:�

0%12 E� B������
����� !������� ��� (������ �� ����
!���������� 5�������� K���� ,����� B�������
�&&%�

0%�2 ,� B����� K�������� �������� ��	� ��� �������	��
	���� �� 	�� ��	������ $""" (�����	����� �� $�����
������ (������ 7$��%��!F%:1N�&#� '���� %:"��

0%92 ,��'� (������ ��� �� ��������� ,���������� ���
�������� ���������� �� ����	���� ��������� ����
��.��� 7� ���	� $!!)��*� �&&��

0%"2 '� $� (�������� M��M� $���� � B� P�����=� ���
M�)� P�		��� B.	������������ ���
	�	����� ���
���	��� 7� ���	� $""" ������� �� '������
����� �� ������� 	���	�� ���� "%1N"�#� 3���
%::#�

0%82 Q� (
� E������ ������� �������<���� ��������
��������������
����������
�	����	��
���

0%:2 C� (
����� � A�
	�� ��� '�)������ ;������
�-�� ��������	�� ����	�
�	��� �� ���
��� ���
P������ ��������� ����������	�� "�1!F#8%N1%#�
%::��

0�&2 C� (
���� ��� M�)	���� ,����	���� ��� 	�� �����

��	��� �� ������� �
���������� ��� 	�� ���
	��
	��� �� P������ ��������� ��� (�����	����� ��
!����	�� 1�#!F"1N%�#� %:8��

0�%2)� (
����� ��� ��)	������� ;��� 	��� ����
������� �� 	������� ���� ������	���	�� 7� ���	�
 $!!)��*� ���� %##N%1&� %::8�

0��2 '� 7����
�� ��� M�)������*� 4��� �.��F 5���
������� ������ ������ ��	� ����	���� 7� ���	�
 $!!)��*� ���� �9#N�"&� �&&&�

0�#2 M� 4� /�	�*� �	� ���)������ ��6��	�
���������������	�
�	���������� �&&��

0�12 R� A���� ��� 5� (�	�����)��	��� ����������
�� ���� �����	��� 7� ���	� $!!)��*� ����
�":N�89� �&&&�

0��2 C� A�		���� K���� ������� ���������� ��� ���
������� � ��	� �	�
�	
�� ��� ��������� �
�������
������������ !������� , (����� ��� ���	��
������ %#F9�N:&� %:::�

0�92 ,� C�������	� 3������������ ��������-�� ������
��	����� ��� ��� ����
��� �
�������������� $��
����������� &������ �� ������������ !�������
��� ���	������� 1�#!F�"�N#�1� %::1�

0�"2)� '�'����� M� '� E������	���� ��� 5� E�)�
���
�
	�������� �
��� �� � 	��������� ��	� �	�
�	
��
���� ������ ��
� 7� ���	� ������� �� ����
�������� ��� ���	������� ���� %"%N%8�� M
��
�&&%�

0�82 A� '������� ���)� 3����� -"%�. � ������� ���
������������� ��� !�������	 ��������� 5���
������ K�������	� ,����� %:::�

0�:2 (� C� '������)��E� $���� �� ,� $�
��	��� ���
)� /� P�������)����	��� ��� ��������*���� ���
������	 �������� ������ &������ �� ��� ����
11F%N�:� %::"�

0#&2 � '
���� ��� 4� ,�����	�� 4������ 	�� ��	������
	��� �� 	�� �����. ��������� (�������	�� ����
���� 	���	�� "F�%"N�#9� %:"8�

0#%2 ;� ,�6������ M� ;��������� ��� /�)-���-�*� 7��
���	 �����F 5��������� �� ���������� 	�	���
������ ���� ������	���	�� 7� ���	� /������������
00� ���� �::N#&9� %:::�

0#�2 M� ;��������� B�������*��F 5�����	���	� ����
������� ��� 	������� ������� $""" (�����	�
����� �� /������������ ��� ������� !����	��
��%!F1"N9%� %:::�

0##2 M� ;�	���� �� $������	���� �� ��������	 (����
���1 !������� (���� �� ���������	��)������
P������ %:88�

0#12 M� ;
��	� / ���
��� ��������	 ������	�� ���
�
���	� ������������� ���� ������	���� &� �����
������� %8�#!F�18N�8�� %::#�

0#�2 M�)�����
*� ,������ ���� ������	�� ���	�
����� ���������������
��
�
��
�	������!�
,������� 5���
����	����

0#92 M� ;�)�����
*� $�������F B���������� � � �
���
�	� ���� ������	�� ��� ���
��� 	�����
��	��� 7�
���	� '���� 2������ �� ����� ������������
!�������� ���� %�1N%##� ,����������� ,/� '��
%::9�

0#"2 M� ;�)�����
*� /��	��� �������� @��	����
���	 ���	���	�� ��� ���	 ���
�	 �����	��� ����
���	��� %��	���� ��� ������������ !��������
%8�#!F#&�N#98� %::"�

0#82 /�)-���-�*� ��� M� ;��������� (��� S
4���F ���������� 	�� ������	���	� �� 	�	�����
���� ������� ������������� %������ #�F��"N
�#"� �&&&�

0#:2 (� $�
��� ��� M� ;��������� (����	��� �������
���� 	���
�� 	��������� �
������ ��� (�����	�
����� �� !����	�� %"��!F81N%%�� %::8�

01&2 $� $
� � ;� �+E�������� ��� M� 5� C��-� B	��� �
� ��	�����������	�� ��	��� ��� ������	��� �����
��	��� ������� 7� ���	� $������������ �������
)���������� ���� %�"N%#8�)�	� �&&��

01%2 M�)� P�		��� B.	����� ������ ������	��� ���
��	� �	�
�	
���F ������� ��	� ������� ��	�� ���
�������� ������� ##��!F�&:N�"%� M
�� �&&%�

01�2 � 4� ��	���� 5��
	��� 	�� ������������� ��
��
��� 	������	��� ��	� �����	��� 	� P������
���	���� (�� ������� &������� �1F%9"N%"��
%:8%�

01#2 A� ������� B��� ����� ��	� �	�
�	
��� ��� �����
�������� �� � �
���� �
����� ����������	� $"""
������� !����	� ��� ���	������� ��%!F�%N1&�
M��� %:8��

0112 A� ������� $�� ������ ���� �	�
�	
��F / 	���
������� �������	�	��� ��� ������������ �����	���
��
����� ��������� 7� !�������	 �������� ���
��% ���	������� ���� #N#9� 3��	��E�������
%:88�

A MESH WARPING ALGORITHM BASED ON
WEIGHTED LAPLACIAN SMOOTHING∗

Suzanne M. Shontz† Stephen A. Vavasis‡

†Center for Applied Mathematics
Cornell University, Ithaca, NY 14853

shontz@cam.cornell.edu.

‡Department of Computer Science
Cornell University, Ithaca, NY 14853

vavasis@cs.cornell.edu.

ABSTRACT

We present a new mesh warping algorithm for tetrahedral meshes based upon weighted laplacian smoothing. We
start with a 3D domain which is bounded by a triangulated surface mesh and has a tetrahedral volume mesh as its
interior. We then suppose that a movement of the surface mesh is prescribed and use our mesh warping algorithm
to update the nodes of the volume mesh. Our method determines a set of local weights for each interior node which
describe the relative distances of the node to its neighbors. After a boundary transformation is applied, the method
solves a system of linear equations based upon the weights to determine the final position of the interior nodes. We
study mesh invertibility and prove a theorem which gives sufficient conditions for a mesh to resist inversion by a
transformation. We prove that our algorithm yields exact results for affine mappings and state a conjecture for more
general mappings. In addition, we prove that our algorithm converges to the same point as both the local weighted
laplacian smoothing algorithm and the Gauss-Seidel algorithm for linear systems. We test our algorithm’s robustness
and present some numerical results. Finally, we use our algorithm to study the movement of the canine heart.

Keywords: moving meshes, optimization-based mesh smoothing, unstructured mesh generation, tetra-
hedral meshes, cardiology

1. INTRODUCTION

Moving meshes arise in cardiology, computer graph-
ics, animation, and crash simulation, among other ap-
plications in science and engineering. With moving
meshes, the mesh is updated at each step in time due
to a moving domain boundary, thus resulting in po-
tentially drastically varying mesh quality from step to

∗THE WORK OF THE FIRST AUTHOR IS SUP-
PORTED BY THE NATIONAL PHYSICAL SCIENCE
CONSORTIUM, SANDIA NATIONAL LABORATO-
RIES, AND CORNELL UNIVERSITY. THE WORK OF
THE SECOND AUTHOR IS SUPPORTED IN PART BY
NSF GRANT ACI-0085969.

step. One problem that can occur at each timestep
is element inversion. We focus on maintaining good-
quality tetrahedral meshes throughout the mesh warp-
ing process in this paper.

It is well-known that poor quality elements affect the
stability, convergence, and accuracy of finite element
and other solvers because they result in poorly condi-
tioned stiffness matrices [1]. If well-shaped elements
are not the result of updating the mesh boundary, the
mesh quality must be improved by topological or geo-
metrical means after each time step.

Research has shown that mesh smoothing (or r-

refinement) methods can be applied to improve the
quality of a mesh. These methods adjust the posi-
tions of the vertices in the mesh while preserving its
topology.

Laplacian smoothing is the most popular method for
node-based mesh smoothing. In an iterative manner,
it repositions the vertices of the mesh by moving each
interior node to the geometric center of its neighbors.
It is often used because it is computationally inex-
pensive and is very easy to implement. However, the
method has several undesirable properties. One of
them is that the method is not guaranteed to work,
i.e., sometimes it inverts mesh elements. A second
drawback is that the resulting mesh depends upon the
order the nodes are smoothed.

A related type of smoothing, namely Winslow smooth-
ing, is more resistant to mesh folding due to the re-
quirement that the logical variables be harmonic func-
tions. See [2] for more details on Winslow smoothing.

Other, more accurate methods for r-refinement are
possible. Most of these methods are based upon opti-
mization. Optimization-based methods are used with
the goal of guaranteeing an improvement in the mesh
quality by minimizing a particular mesh quality met-
ric. Their main drawback, however, is their computa-
tional expense. Examples of optimization-based meth-
ods for r-refinement can be found in the following pa-
pers: [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
and [14]. For a theory of algebraic mesh quality met-
rics see [15].

To address the above issues, Baker [16] developed a
three-step method for the metamorphosis of tetrahe-
dral meshes. Each cycle of the method involves a com-
bination of r-refinement, mesh coarsening, and mesh
enrichment to adapt the mesh. The first step in the
cycle is to move the interior nodes as far as possible us-
ing r-refinement while avoiding element inversion. The
second step is to remove the poorly shaped elements in
the mesh using mesh coarsening. The final step is the
addition of elements to improve the mesh quality by
mesh refinement. This dynamic procedure was shown
to be more cost-effective than just r-refinement. One
disadvantage of this technique is that it comes with
no theoretical guarantees as it is difficult to analyze
because each cycle is a combination of three very dif-
ferent techniques.

We study a different mesh warping problem where the
connectivity of the mesh is not allowed to change,
which is important for some applications. Seeking
simplicity, preservation of the mesh’s combinatorial
structure, theoretical guarantees, and low computa-
tional expense, we developed a linear weighted lapla-
cian smoothing (LWLS) method for mesh warping in
two and three dimensions. A full description of the

algorithm is given in Section 2. In Section 3, we prove
a theorem that gives sufficient conditions for when a
mesh is able to resist inversion by a transformation.
We also study mesh inversion within the context of
our algorithm. In particular, we prove that our al-
gorithm yields exact results for affine boundary trans-
formations, and we state a conjecture for more general
mappings. In Section 4, we show that our algorithm
converges to the same point as both the local version
of weighted laplacian smoothing and Gauss-Seidel. In
Section 5, we test our algorithm on several types of
mesh deformations. In Section 6, we apply our algo-
rithm to study the motion of the beating canine heart
under normal conditions. In Section 7, we summarize
our work and identify directions for future research.

2. LINEAR WEIGHTED LAPLACIAN
SMOOTHING

The problem that we address is as follows: Given a
3D domain, bounded by a triangulated surface mesh,
and given an interior volume mesh composed of un-
structured tetrahedra, suppose the triangulated sur-
face mesh is displaced. Is there an algorithm to move
the nodes of the volume mesh so that it continues to
conform to the surface mesh and to be a good quality
mesh?

Our mesh warping algorithm to address this question
is based upon weighted laplacian smoothing. The first
step in the algorithm is to generate a set of local
weights for each interior node that represent the rel-
ative distances of the node to each of its neighbors.
We use an interior point method from nonlinear pro-
gramming in order to generate these weights. Next we
apply a transformation to the boundary nodes. Us-
ing these new positions for the boundary nodes and
the sets of weights from the original mesh, we solve a
system of linear equations to determine new positions
for the interior nodes. We now give a more detailed
description of this algorithm.

Here we describe a nonlinear programming method for
computing the weights for 2D meshes. Note that our
method can be extended to 3D in the straightforward
manner; however, we have not done extensive testing
of our 3D implementation. In addition, this paper
analyzes primarily the 2D version.

Let (xi, yi) denote the x- and y-coordinates respec-
tively of the ith interior node in the initial mesh. In
addition, let the x- and y-coordinates of its adjacent
vertices be given by {(xj , yj) : j ∈ Ni}, where Ni de-
notes the set of neighbors of node i.

In order to find the set of weights wij , where wij is
the weight of node j on interior node i, we use the log
barrier function from linear programming to formulate
the following optimization problem for each i:

max
wij ,j∈Ni

∑
j∈Ni

log(wij) (1)

subject to wij > 0, (2)∑
j∈Ni

wij = 1, (3)

xi =
∑

j∈Ni

wijxj , (4)

and yi =
∑

j∈Ni

wijyj . (5)

We note that the objective function together with the
constraints form a strictly convex optimization prob-
lem for which there is a unique optimum. The opti-
mum can thus be found by an interior point method.
The use of convex optimization in mesh smoothing is
not a new idea. Amenta et al. developed a framework
for formulating mesh smoothing problems as quasi-
convex programs so that they can be optimized as
generalized linear programming problems [9]. In addi-
tion, Freitag et al. developed methods for local mesh
smoothing and untangling using mesh quality metrics
with convex function levels sets in [7] and [8].

By starting with an initial feasible point in the interior
of the space of all possible weights, we are able to solve
(1)-(5) using the Projected Newton Method. This
method can be applied to solve optimization problems
of the following form:

min
x

f(x)

subject to Ax = b.

The optimality conditions for the above problem are:

∇f(x) − AT λ = 0 (6)

b − Ax = 0. (7)

Here λ denotes the vector of Lagrange multipliers.
Note that this is a system of nonlinear equations in
x and λ; thus Newton’s method can be used to solve
for x and λ. However, if the initial point is feasible
(i.e., b − Ax0 = 0) then pk must satisfy Apk = 0
where xk+1 = xk + pk, i.e., pk is the Newton direc-
tion at iteration k. This implies that pk = Zvk for an
(n − m)-dimensional vector vk, where Z is a basis for
the null space of A. It is easy to see that the resulting
equation for pk is given by

pk = −
(
H−1 − H−1AT [AH−1AT]−1AH−1

)
∇f(xk),

(8)

where H = ∇2f(xk) [17].

In order to compute an initial feasible point in the
interior of the solution space, we choose three of the
interior node’s adjacent vertices and write (x, y) as a
convex combination of the positions of the three nodes.
This yields three positive weights; call them w1, w2,
and w3. In order to find a set of n positive weights,
the rest of the wi are initialized to ε, a small positive
constant. Then once ε has been specified, linear equa-
tions (3) through (5) can be solved for new values of
w1, w2, and w3. For small values of ε, all of the con-
straint equations above will be satisfied (using the new
values for the weights). An inexact linesearch is used
to make ε as large as possible so that w1, w2, and w3

are still reasonably sized, i.e., each of them should be
greater than some small tolerance.

Once the weights have been generated, the input sur-
face deformation is applied to move the boundary
nodes to new locations. The final step is to use the po-
sitions of the boundary nodes and the sets of weights
to simultaneously determine the final positions for the
interior nodes by solving a linear system of equations.
The linear equations that must be solved are of the
following form:

∑
j∈Ni

wijxj = xi (9)

∑
j∈Ni

wijyj = yi. (10)

The resulting linear systems from (9) and (10) are both
m × m, where m is the number of interior nodes.

We first prove that the resulting linear system has a
unique solution.

Theorem 1 The linear system (11), which expresses
the position of each interior node as a convex combi-
nation of its neighbors, has a unique solution.

Proof.

We first establish some necessary notation and termi-
nology. Let b and m represent the numbers of bound-
ary and interior nodes, respectively. Next, define xB

and yB to be vectors of length b that contain the ini-
tial x- and y-coordinates of the boundary nodes. Simi-
larly, let xI and yI be vectors of length m that contain
the initial x and y-coordinates of the interior nodes.
Then [xB , yB] and [xI , yI] contain the original posi-
tions of the boundary and interior nodes respectively.
Next, define the weighted Laplacian matrix, L, for a
weighted graph G(V ; E; w) as follows:

L(i, j) =

{−wij if i �= j,∑
k∈V wik if i = j,

where wij = 0 iff (i, j) /∈ E. The boundary nodes are
assumed to be numbered last.

Denote by A = [AI , AB] the matrix that is derived
from the weighted Laplacian matrix in LWLS by delet-
ing its last b rows. Note that AI contains all of the
weights corresponding to the interior neighbors and is
m×m. In addition, AB contains all of the weights cor-
responding to the boundary neighbors and is m × b.
Linear systems (9)–(10) then can be expressed

AI [xI , yI] = −AB [xB , yB]. (11)

To argue that we have uniqueness when LWLS is used
to generate the weights, we classify AI as an M -matrix
which is defined as follows:

Definition: An n × n real matrix A is said to be an
M -matrix if aij ≤ 0 for all i �= j and A−1 ≥ 0.

To see that AI is an M -matrix, we make use of the
following characterization theorem:

Theorem 2 [18] If A ∈ R
n×n satisfies aii > 0, aij ≤

0 for all i �= j, is weakly row diagonally dominant (i.e.,
Ae ≥ 0, �= 0, where e is the vector of all 1’s), and is
irreducible, then A is an M-matrix.

Because the mesh is connected and a positive weight
is associated with each edge, we see that AI is irre-
ducible. Because the diagonal entries of AI are 1, and
the off-diagonal are negative and sum to a number in
[−1, 0], we see that AI is diagonally dominant. There-
fore, AI satisfies the definition of an M−matrix by the
above argument [19]. Thus, AI is invertible, and (11)
has a unique solution.

Because the above system has a unique solution, it
is next solved via Gaussian elimination. Because the
matrix is weakly diagonally dominant, partial pivot-
ing is not necessary. This is a major advantage, since
sparse matrix algorithms are much more efficient with-
out pivoting. The sparsity structure is apparent, since,
on average, an interior node has 6 neighbors in 2D,
whereas a typical 2D mesh may have hundreds, thou-
sands, or even millions of nodes. In addition, because
the nonzero pattern is symmetric, we can first apply
the symmetric minimum degree ordering to the ap-
propriate matrix in an attempt to improve the speed
of the computations. GMRES could also be used to
solve the linear system instead of Gaussian elimina-
tion in an attempt to further improve the algorithm’s
speed although we have not tried this.

Another big advantage of our method is that if a con-
tinuous deformation of the boundary is given, then
LWLS is a valid algorithm for computing the result-
ing trajectory that specifies the movement of the in-
terior nodes. In addition, these trajectories will be
continuous. This is vital for some applications where
continuity of motion is required.

Consider the following application of the LWLS
Method. Figure 1 shows the three steps of the mesh
warping process. Note that the original mesh is shown
in the top graph. A rather large deformation is then

applied to the boundary, and the result is shown in the
middle graph. Finally, the interior nodes are moved to
new positions as is shown in the bottom graph. The
final mesh is a valid mesh, that is, it has no inverted
elements.

−15 −10 −5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

−15 −10 −5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

−15 −10 −5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

Figure 1: The three stages of the LWLS algorithm [20].

These figures show that the method demonstrates
promise for use as both a mesh untangler and a
smoother in the context of the mesh warping problem.

However, the method will not always be successful. If
the boundary itself becomes tangled (self-intersecting)
under the deformation, then there is no possibility that
LWLS could recover an untangled mesh. But even if
the boundary is not tangled, LWLS may still fail as
indicated by our computational experiments below.

Because LWLS is not guaranteed to work for all types
of boundary transformations, we seek to determine ex-
actly what conditions will guarantee that LWLS will

be successful. In order to meet this goal, we first prove
a theorem about mesh invertibility and then give a
conjecture (with supporting theory) on sufficient con-
ditions for LWLS to be successful on the mesh warping
problem.

3. THEORY OF MESH INVERTIBILITY

In this section we consider sufficient conditions to
guarantee that elements are not inverted in the
mapped mesh. The material in this section focuses
on the 2D case, but we also indicate results that ex-
tend to 3D. First, we prove a theorem about mesh
invertibility in the case when a known transformation
f : R

2 → R
2 is applied to all the nodes. Then we con-

jecture that a similar theorem holds in the case when
f is applied only to the boundary and the LWLS al-
gorithm is used to position interior nodes (i.e., the sit-
uation under consideration). We provide some partial
analysis in support of the conjecture.

In order prove Theorem 3 below, we first prove the
following useful lemma, which has appeared in other
forms in the previous literature (e.g., [21]). This
lemma extends to 3D as well if “angle” in 3D means
solid angle.

Lemma 1 Let T be a triangle with vertices
v1, v2, v3 ∈ R

2. Let A(T) = [v2 − v1; v3 − v1],
and define the aspect ratio of T , a(T), by 1

a
, where

a is the minimum angle given in radians. Then,
a(T) ≤ κ(A(T)) ≤ 16a(T).

Sketch of Proof: First, we argue that without loss of
generality, we can assume that the smallest angle of
T is at v1 and that −−→v2v1 is longer than −−→v3v1. The
second step in the proof is to compute ‖A(T)‖ and
‖A(T)−1‖ and show that the quantities are related to
the area and edge lengths of T . Throughout the proof
we use ‖ · ‖∞ for our choice of norm. The result is

that ‖A(T)−1‖ ≤
√

2
area

lmax, where lmax is the length

of the longer of the edges −−→v1v2 and −−→v2v3. Similarly,
it can be shown that ‖A(T)‖ ≤ 2

√
2lmax. Putting

this together, we obtain that κ(A(T)) is bounded

above by 2
l2max

area(T)
. Similarly, it can be shown that

κ(A(T)) can be bounded below by 1
2area(T)

lminlmax.

Recall the product of an edge with its altitude is al-
ways twice the area of T . Using the relationships
between side-lengths, we can rewrite our bounds as
lmin
hmin

≤ κ(A(T)) ≤ 8lmin
hmin

. Now define θ to be the

angle at v1. Because we assumed that the small-
est angle is at v1, the longest edge is −−→v2v3. There-
fore, lmin

hmin
= (sin θ)−1 and a(T) = 1

θ
. So, we obtain

1
sin θ

≤ κ(A(T)) ≤ 8
sin θ

. Note that 0 < θ ≤ π
3

be-
cause θ is the smallest angle. Using basic calculus,
we see that for θ ∈ [0, pi

3
], 1

θ
≤ 1

sin θ
≤ 2

θ
. Therefore,

a(T) = 1
θ
≤ 1

sin θ
≤ κ(A(T)) ≤ 8

sin θ
≤ 16

θ
= 16a(T)

which proves the lemma.

We are now ready to prove a theorem about mesh resis-
tance to invertibility in the case that a transformation

is applied to all nodes. This theorem is stated for 2D
but extends to 3D.

Theorem 3 Suppose that f : R
2 	−→ R

2 is bijective
and differentiable on the entire mesh, with f ′ nonsin-
gular. Suppose f is applied to all nodes of the mesh.
Then the triangles in the mesh are not flipped by f if
inequalities (14) - (16) below hold.

Proof.

For simplicity, assume for the rest of this section
that det(f ′) > 0 on the whole mesh since the case
det(f ′) < 0 is handled symmetrically. We give suf-
ficient conditions for the noninvertibility of the mesh
elements. Let t be a triangle in the triangulation T
with vertices v1, v2, and v3.

Note that t is flipped by f ⇐⇒

∣∣∣∣ (v2 − v1)x (v2 − v1)y

(v3 − v1)x (v3 − v1)y

∣∣∣∣∣∣∣∣ (f(v2) − f(v1))x (f(v2) − f(v1))y

(f(v3) − f(v1))x (f(v3) − f(v1))y

∣∣∣∣
< 0. (12)

Using Taylor’s Theorem, we obtain:

f(v2) = f(v1) + Jv1(v2 − v1)

+
1

2
vT

(
∂2f
∂x2 (ε, µ) ∂2f

∂x∂y
(ε, µ)

∂2f
∂x∂y

(ε, µ) ∂2f
∂y2 (ε, µ)

)
v,

where v =

[
(v2 − v1)x

(v2 − v1)y

]
for some (ε,µ) lying on the

line connecting v1 and v2.

Substituting the above into (12) we obtain an inequal-
ity of the following form giving necessary and sufficient
conditions for invertibility:

∣∣∣∣ a11 a12

a21 a22

∣∣∣∣
|Jv1 |

∣∣∣∣ a11 + γ1 a12 + γ2

a21 + γ3 a22 + γ4

∣∣∣∣
< 0 (13)

So, Lemma 2.7.1 in [22] applies to (13) once we have
sufficient conditions for the hypotheses to hold. Note
that the portion of the lemma we used states that if
A is invertible, if M = A + δA satisfies ‖δA‖ ≤ ε‖A‖,
and if εκ(A) < 1, then M is nonsingular. Here κ(A)
denotes the condition number of A.

Using algebra and Lemma 1 above, we find that
the following conditions ensure the hypotheses of the
above lemma are satisfied:

1

Jv1

∣∣∣∣∂2f1

∂x2
(ε)

∣∣∣∣ ≤ 2

51

hmin

a(T)h2
max

(14)

1

Jv1

∣∣∣∣ ∂2f1

∂x∂y
(ε)

∣∣∣∣ ≤ 1

51

hmin

a(T)h2
max

(15)

1

Jv1

∣∣∣∣∂2f1

∂y2
(ε)

∣∣∣∣ ≤ 2

51

hmin

a(T)h2
max

, (16)

where hmin and hmax are the smaller and larger alti-
tudes (respectively) from v2 and v3. Similar conditions
are obtained for f2.

Note that this proof generalizes to higher dimensions
and is thus applicable to unstructured mesh generation
in 3D.

Next, we state our conjecture for the LWLS method,
which is formally reminiscent of Theorem 3. After
stating the conjecture, we provide some supporting
theory.

Conjecture 1 Suppose that f : R
2 	−→ R

2 is bijective
and differentiable on the entire mesh, with f ′ non-
singular. Consider transforming the mesh by apply-
ing f only to the boundary nodes of the triangulation,
and then using LWLS to position the interior nodes.
Then no triangles are flipped provided that an upper
bound on the second derivative of f in terms of the
first derivative and mesh aspect ratio is satisfied.

The condition in the conjecture is analogous to the hy-
potheses in Theorem 3, namely, a condition for invert-
ibility that relates the first and second derivatives of
f . There is a qualitative difference, however, between
the theorem and the conjecture: The theorem states
that as long as f is bijective, then for a sufficiently re-
fined mesh (with bounded aspect ratio), there will be
no inversions. On the other hand, the conjecture and
supporting theory here apparently indicate that the
condition for occurrence of inversions in the LWLS al-
gorithm depends on f and the mesh aspect ratio but
not so much on the level of refinement.

In considering how to prove the conjecture, let us fix
a particular triangle T in the original mesh’s interior,
centered at (xc, yc) with vertices v1, v2, v3. As noted
above, the positions of the nodes in the updated mesh
are obtained from solving AI [x̂I , ŷI] = −AB [x̂B , ŷB],
for [x̂I , ŷI] given that [x̂B , ŷB] are obtained from
the original [xB , yB]. In fact, each two-element row
of [x̂B , ŷB] is f applied to the corresponding row of
[xB , yB]. Let WT be the 2×m matrix with 1’s in the
(1, v2) and (2, v3) positions and −1’s in the (1, v1) and
(2, v1) positions. Then WT [x̂I , ŷI] is the 2×2 matrix,
call it A(T), whose determinant must be positive to
avoid inversion. Observe that

A(T) = −WT A−1
I AB [x̂B , ŷB]. (17)

Next, expand f as a Taylor series about (xc, yc), and
for simplicity assume f is a quadratic function. The
Taylor expansion therefore has the form

f(x, y) = f(xc, yc) + Dx(f)(xc, yc)(x − xc)

+ Dy(f)(xc, yc)(y − yc)

+
1

2
Dx,x(f)(xc, yc)(x − xc)

2

+ Dx,y(f)(xc, yc)(x − xc)(y − yc)

+
1

2
Dy,y(f)(xc, yc)(y − yc)

2

We can write the first three terms of this expansion as
vT + [x, y]L, where L is a 2 × 2 matrix and vT is 2-
vector, i.e., in the general form for an affine mapping,
where L and vT depend on the choice of triangle T .
(The dependence on T is not explicitly denoted; the
superscript T on v indicates “transpose.”) Let us write
the remaining terms as Q((x, y)− (xc, yc)), where Q is
a pure quadratic function also depending on T . Thus,

f(x, y) = vT + (x, y)L + Q((x, y) − (xc, yc))

We substitute this into (17) to obtain

A(T) = −WT A−1
I AB

(
evT + [xB , yB]L

+

Q((xB1, yB1) − (xc, yc))
...

Q((xBb, yBb) − (xc, yc))

)

(18)

where (xB1, yB1), . . . , (xBb, yBb) is an explicit enumer-
ation of the nodes of [xB , yB]. We can analyze the sum
of the first two terms on the right-hand side explicitly
using the following lemma.

Lemma 2 Suppose the boundary transformation ap-
plied to the initial mesh is an affine mapping. Then if
LWLS is used to reposition the interior nodes, the re-
sulting mesh is the same as if the affine mapping were
applied to all nodes in the initial mesh.

This lemma extends to 3D as well.

Proof.

Continuing to use the above notation, we note that the
position of the interior nodes in the deformed mesh is
given by

[x̂I , ŷI] = −A−1
I AB([xB , yB]LT + evT). (19)

In order to show that affine mappings yield exact re-
sults with LWLS, we want to show that (19) is the
same as:

[x̂I , ŷI] = [xI , yI]L
T + evT . (20)

Observe that if (20) is the same as (19), then it will
follow that:

AI([xI , yI]L
T + evT) = −AB([xB , yB]LT + evT).

(21)

Thus, it remains to check that (21) holds.

Because the weights for each interior node sum to 1,
Ae = 0; i.e., AIe+ABe = 0. Hence (AIe+ABe)vT =
0. Also, because [xI , yI] and [xB , yB] denote the orig-
inal positions of the nodes, we know that AI [xI , yI]+
AB [xB , yB] = 0. So, (AI [xI , yI] + AB [xB , yB])LT =
0.

Putting these together, we see that

(AI [xI , yI] + AB [xB , yB])LT + (AIe + ABe)vT = 0.
(22)

Therefore, (21) holds, and the lemma is proven.

For an example of using LWLS in conjunction with an
affine boundary transformation, see Figure 2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Figure 2: Exact results from LWLS for affine map-
ping [20].

Substituting the result of this lemma into (18) and
using the fact that WT e = 0 (by definition of WT)
yields

A(T) = WT [xI , yI]L

− WT A−1
I AB

Q((xB1, yB1) − (xc, yc))
...

Q((xBb, yBb) − (xc, yc))

 .

(23)

Observe that this equation is in a form analogous to
the proof of Theorem 3: the matrix whose determi-
nant we must take is written as the product of a de-
terminant in the original mesh (namely WT [xI , yI])
by the first derivative of f locally (namely, L) plus
a quadratic term. We now wish to argue that the
linear term dominates the quadratic term under suit-
able assumptions. Let us write the quadratic term
as q1 + · · · + qb, where ql denotes the contribution
from the lth boundary node. In other words, ql =
−WT A−1

I AB(Q((xBl, yBl) − (xc, yc))el) where el de-
notes the lth column of the identity matrix. Fix l and
let r = −A−1

I ABel, so that AIr + ABel = 0 and

|ql| ≤ ‖WT r‖ · |Q((xBl, yBl) − (xc, yc))|. (24)

If all the weights were equal and the mesh were uni-
form, the equation AIr + ABel = 0 would be a dis-
cretization of Laplace’s equation on the mesh domain,

in which the boundary condition is a Dirichlet condi-
tion of 1 at a single boundary node (node l) and 0 at
all other boundary nodes. The quantity under con-
sideration is WT r, which (by definition of WT) is a
2-vector each of whose entries is a finite difference of
two entries of r at neighboring mesh nodes of trian-
gle T centered at xc, yc. Therefore, we analyze this
quantity by considering the model problem of solving
Laplace’s equation on the unit disk in which a Dirich-
let boundary condition of 1 is imposed on boundary
segment S of length h and a Dirichlet condition of zero
is imposed on the rest of the boundary. Here h is the
typical mesh cell size for the mesh under considera-
tion. Let u be the Laplace solution for this bound-
ary condition. The Poisson integral formula may be
used to show that for any point t inside the unit disk,
‖∇u(t)‖ ≤ const ·h/ dist(t, S)2. Therefore, if t1, t2 are
two points in the unit disk satisfying ‖t1 − t2‖ ≤ h,
then

|u(t1)−u(t2)| ≤ const·h2/ min(dist(t1, S), dist(t2, S))2.

If we hypothesize that a bound of the same form holds
for the LWLS algorithm, we conclude that

‖WT r‖ ≤ const · h2/ dist((xc, yc), (xBl, yBl))
2.

This takes care of the first factor in (24). Because
the second factor is quadratic, it is bounded above
by const2 ·dist((xc, yc), (xBl, yBl))

2. Combining shows
that |ql| ≤ const3 ·h2 since the dist2 terms cancel each
other. Since there are b = O(1/h) terms in the sum
q1 + · · ·+ qb, we conclude that the overall contribution
from the quadratic term of (23) is O(h) and that the
constant factor in this O(h) bound depends on the sec-
ond derivative of f . On the other hand, the first term
in (23) is also O(h) (since WT takes a finite difference
of locations of mesh neighbors), but here the constant
depends on the first derivative. This concludes our
justification of the conjecture.

We have less insight into how the mesh aspect ratio
affects (23), but we can show that no weight is too
close to zero as long as the mesh has bounded aspect
ratio.

Theorem 4 There is a positive-valued function q(x)
such that wij ≥ q(a), where wij is any weight com-
puted by the LWLS algorithm and a is the worst
(largest) aspect ratio in the mesh.

Proof.

First, for this proof we need the following claim.

Claim. Let p = (1, 0) be an interior node in a bounded-
aspect ratio triangulation, and suppose that all of
its neighboring nodes have nonnegative x-coordinates.
Let xmax be the maximum x-coordinate among neigh-
bors of p. Then xmax ≤ q0(a), where q0 is a fixed
function and a is the mesh aspect ratio.

The proof of claim is omitted, but we give a sketch of
its main idea here. For more details, see [24]. Con-
sider the triangle t1 containing p and also the line seg-
ment starting at p and proceeding in the negative x

direction. Since no neighbor of p has a negative x-
coordinate, we conclude that this triangle t1 has an al-
titude at most 1. Therefore, its maximum side-length
is at most a, using the following definition of the aspect
ratio: AR = lmax

altmin
, where lmax and altmin denote the

maximum side-length and minimum altitude. The tri-
angle immediately adjacent to p, possessing one side of
length at most a, therefore has maximum side-length
at most a2, and so on. The number of triangles ad-
jacent to p is bounded by ca, where c is a universal
constant, since the minimum angle of each triangle is
at least 1/(c′a), using the alternative definition of the
aspect ratio, AR = 1/θmin, where θmin is the minimum
angle in the triangle. (Note that the two definitions of
aspect ratio are equivalent up to a constant.) There-
fore, the longest side-length among neighbors of p is
aca, which is the function q0. A similar argument ap-
pears in [25].

Once the claim is established, we can return to the
proof of the theorem, which is as follows. Fix an inte-
rior point p in the initial mesh with n neighbors, and
let the optimal weights computed by the LWLS algo-
rithm be w1, . . . , wn. (Omit the second subscript since
p is fixed throughout the proof.) Let the neighbors of
p be (x1, y1), . . . , (xn, yn), and let p itself be located
at (xp, yp). Since the LWLS problem is a strictly con-
vex optimization problem on a bounded convex set,
the Lagrange multiplier conditions are necessary and
sufficient for optimality [26]. These conditions are as
follows. There exist three multipliers λ, µ, ν such that

w1x1 + · · · + wnxn = xp,

w1y1 + · · · + wnyn = yp,

w1 + · · · + wn = 1,

λx1 + µy1 + ν = 1/w1,

...

λxn + µyn + ν = 1/wn.

First, let us consider a very simple case that λ = µ = 0.
In this case, each wi is equal to 1/ν. Since the sum of
the wi’s is 1, this means in fact that 1/ν = 1/n and
hence wi ≥ 1/n for all i. Furthermore, 1/n > (1/(ca))
using the argument about the number of neighbors
from the proof of the claim. This shows that wi > q(a)
in this special case.

The generic case is that at least one of λ, µ is nonzero.
Without loss of generality, we can assume λ = 1, µ =
ν = 0. The reason this assumption is WLOG is as
follows. We can apply an arbitrary transformation of
the form

(x, y) 	→ (x, y)

(
u v
−v u

)
+ (k1, k2)

(with at least one of u, v nonzero) uniformly to the
original data (x1, y1), . . . , (xn, yn), (xp, yp); applying
such a transformation has the effect of transforming
λ, µ, ν arbitrarily as long as not both λ, µ are zero but
does not change any of the aspect ratios in the orig-
inal triangulation (since the above transformation is
a combination of a rigid motion, a translation, and a
uniform scaling).

After this transformation is applied, we can further
apply a uniform translation to all the y-coordinates
in the original data to force yp = 0. Since λ = 1
and µ = ν = 0, we conclude from the KKT system
that xi = 1/wi so that wixi = 1. This means that
w1x1 + · · · + wnxn = n, hence xp = n so p = (n, 0).
Also, the relationship xi = 1/wi means that all the
xi’s are positive. Finally, the relationship xi = 1/wi

means that min wi = 1/ max xi. In particular, in order
to have a very small wi means that there must be a
very large xi. It follows from the claim that max xi ≤
nq0(a), hence min wi ≥ 1/(nq0(a)). Therefore, there
exists a positive-valued function q(x) such that all the
weights are at least q(a).

4. CONVERGENCE THEORY

Next, we study the convergence of LWLS and compare
it with the convergence of the local weighted Laplacian
smoothing and Gauss-Seidel algorithms.

Theorem 5 The LWLS Algorithm converges to the
same point as the local weighted Laplacian smoothing
method and the Gauss-Seidel method taken one pass at
a time.

Proof.

First, we note that as proved in Theorem 1, unique po-
sitions result when using LWLS to solve for positions
of the interior nodes. Throughout this discussion we
assume that the input transformation has already been
applied to the boundary.

Now, we discuss the convergence of the Gauss-Seidel
algorithm when applied to AI [x̂I , ŷI] = −AB [x̂B , ŷB].
It is well-known in the numerical analysis community
that this algorithm is guaranteed to converge for an
M -matrix. (See [27] for the details.) Thus, according
to Theorem 2, it will converge when applied to this
system.

Next, we observe that it is easy to show the iterates
produced by applying the local version of weighted
Laplacian smoothing to the above linear system are
the same. (The details are omitted due to space con-
straints.)

Thus, we can compute the iterates for the local version
of weighted Laplacian smoothing as follows:

[xI , yI]
(k+1) = C[xI , yI]

(k) + F [x̂B , ŷB],

where C = (M−1
G NG), F = (−M−1

G AB), MG = D + L,
D = diag(AI) and L = tril(AI), NG = −triu(AI), and

[xI , yI]
(0) = [xI , yI].

Finally, we show that the local version of weighted
Laplacian smoothing converges to the same point as
LWLS. To this end, we consider the convergence of
the local version of the weighted Laplacian smoothing
method. In order to study its convergence, we need to
concern ourselves with

lim
k→∞

((
C F
0 I

)k
)

. (25)

Note that (25) is equal to

(
limk→∞ Ck

(∑∞
j=0 Cj

)
F

0 I

)
. (26)

Now, observe that
(∑∞

j=0 Cj
)

F = (I − C)−1F. In

addition, observe that AI and −AB can be obtained
from I −C and F via elementary row operations since
I − C = I − M−1

G NG and F = −M−1
G AB . Thus, the

desired matrices are obtained by left multiplying by
MG. This proves that (I − C)−1F = −A−1

I AB .

The final observation to make is that the eigenvalues of
C satisfy ρ(λ) < 1, which can be seen as follows. First,
we note that all of the entries of C are nonnegative by
definition of C. Second, we note that each row sum
is less than or equal to 1 since each row is a convex
combination of rows with nonnegative entries and row
sums that are less than or equal to 1. In addition,
there is at least one row with row sum strictly less
than 1 since there is at least one interior node with
a boundary neighbor. Thus, the eigenvalues of C are
less than 1 in absolute value, i.e., limk→∞ Ck = 0.

Putting everything together, we see that (26) is equal
to (

0 −A−1
I AB

0 I

)
. (27)

This proves the theorem, since the solution to the sec-
ond linear system, AI [x̂I , ŷI] = −AB [x̂B , ŷB], can be
written as follows:

(
x̂I ŷI

x̂B ŷB

)
=

(
0 −A−1

I AB

0 I

)(
xI yI

x̂B ŷB

)
.

5. NUMERICAL TESTS

In order to test the robustness of LWLS, we designed
three numerical tests each based upon a series of
mesh deformations. These tests have been designed
to mimic the basic elements of a beating heart’s mo-
tion, namely translation and rotation. We study the
heart’s motion in Section 6. All of the tests involve
the deformation of an annulus on each timestep. The
annulus is composed of four, equally-spaced concentric
rings of triangles. Its inner radius is 1, and its outer
radius is 10. The initial annulus mesh is shown in the
upper, left-hand corner of Figure 3.

In the first test, the inner circle was deformed via an
outward translation on each iteration. In particular,
its radius was increased by 0.5 each timestep. The test
showed that when the inner radius of the annulus be-
came 6.5, too much deformation had occurred, since

the mesh had inverted, and the minimum mean ratio of
a triangle in the mesh was less than 1. (See [3] for the
mean ratio definition.) However, as this test demon-
strates, LWLS tolerates a large amount of translation
is tolerated before inversion occurs.

Rotation of the inner circle occurs in the second de-
formation series. On each iteration, the inner circle
was rotated counterclockwise 10 degrees. While per-
forming this test, we observed that as the inner circle
rotates counterclockwise, the quality of the triangles
in the inner ring decreases. The mesh remained un-
tangled until it had been rotated 70 degrees.

The goal of the third test was to combine translation
and rotation of the inner circle. At each timestep, the
motions of the first two tests were combined, i.e., the
radius of the inner circle was increased by 0.5, and it
was rotated by 10 degrees. Figure 3 shows the results.
The new radius for the inner circle, its amount of ro-
tation, and the minimum mean ratio of the triangles
are given. Observe that the mesh remains untangled
until the radius of the inner circle is 3.5 and the circle
has been rotated by 50 degrees.

r = 1, θ = 0, MR min = 1.0809 r = 2, θ = 20, MR min = 1.1111

r = 3, θ = 40, MR min = 1.1801 r = 3.5, θ = 50, MR min = −9.1187

Figure 3: Translation and Rotation of Inner Circle of
Annulus.

From these three tests, we conclude that LWLS can
withstand relatively large amounts of deformation
of various kinds while resisting inversion. However,
whenever the deformations either tangle the bound-
ary or are too large, LWLS fails because inversion of
elements occurs.

6. APPLICATION TO CARDIOLOGY

We now use LWLS in order to study the movement of
the beating canine heart under normal conditions. To
do this, we obtained data from the Laboratory of Car-
diac Energetics at the National Institutes of Health
(NIH) [28]. We were given (x, y, z, t) data for 192
points on the inner surface of the left and right ventri-
cles of the beating canine heart from a physiological
pacing experiment. The data frames are 14.6 millisec-
onds apart with the first frame occurring 12 millisec-
onds before the pacing spike.

The first step in the simulation of the ventricular
movement was to generate a mesh for the initial po-
sition of the ventricles. In order to do this, we first
noted that the 192 points we were given were arranged
in 8 slices with 24 points each. Thus, in order to gen-
erate the initial mesh, we decided to create a mesh
for the top slice and then use LWLS to do the mesh
warping necessary to create meshes for the remaining
slices. Note that this uses LWLS in one and two di-
mensions as we describe in detail below. Once we have
the meshes for all of the levels, we connect the triangu-
lar meshes into a tetrahedral mesh for the ventricles.
The procedure to do this is also described below.

We now give a more detailed description of the method
we used to create the initial mesh of the canine ventri-
cles. We first used the two-dimensional quality mesh
generation package called Triangle [29] to generate an
initial mesh of the top slice (after projecting it into the
x-y plane). Note that this yielded a good-quality mesh
in the x-y plane with several additional nodes. Second,
we computed the z-coordinates for the new points on
the boundary of the top slice using 1D LWLS. Third,
we used the weight-finding portion of our LWLS algo-
rithm to compute the weights for the appropriate 2D
linear system obtained from the x- and y-coordinates.
Fourth, we determined the z-coordinates for the mesh
of the top slice by forcing the z-coordinates to satisfy
the appropriate 3D linear system using the 2D weights.
At this point, we had the mesh for the top slice.

Our second task was to generate meshes for each of the
remaining 7 slices. This was done using our LWLS al-
gorithm to warp the mesh for the top slice into meshes
for each of the remaining slices. In order to accomplish
this, the first step was to determine the coordinates of
the additional boundary nodes for the mesh of the ap-
propriate slice. This was done using 1D LWLS. Then,
the (x, y) coordinates of the interior nodes of that slice
were determined using 2D LWLS. The z-coordinates
for the interior nodes were found by forcing them to
satisfy the appropriate 3D linear system using these
weights.

The third step was to connect the triangular meshes
for each of the 8 slices into one tetrahedral mesh for
the canine ventricles. To do this, the corresponding
triangles between two slices were connected to form
a triangular prism. After a temporary mesh of trian-
gular prisms was created, the triangular prisms were
subdivided into tetrahedron using the method outlined
in [30].

After the initial tetrahedral mesh was created, we
checked its quality using the mean ratio mesh qual-
ity metric. Using this test, it was determined that the
initial mesh was of poor quality. This was because the
8 slices were equally-spaced even though the curvature
of the ventricles changes much more rapidly near the
bottom of the heart. Thus, we decided to use linear
interpolation in conjunction with LWLS in the obvi-
ous way in order to add two additional slices of nodes
near the bottom of the heart. Because the curvature
of the ventricles changes more rapidly near the bot-
tom of the heart, the first additional slice was placed
halfway between levels 7 and 8, and the second addi-
tional slice was placed halfway between the first new
level and level 8. The resulting initial mesh is shown
in Figure 4.

Figure 4: Initial canine ventricular mesh.

After the initial mesh was created, the heart data was
used to move the 192 data points on the boundary
of the mesh to their new positions The same process
as above (i.e., LWLS in 1D, LWLS in 2D, and using
1D LWLS to add the two new levels of data near the
bottom) was used in order to reposition the remain-
ing boundary points. Once the boundary nodes were
relocated to their positions for timestep t = 2, the 3D
version of LWLS was used to move the interior nodes
to their new positions for this timestep. This process
was performed iteratively in order to study the move-
ment of the heart at timesteps t = 3, . . . , 32.

The simulation of the canine ventricular movement
produced a series of meshes that show the ventricles
twisting, expanding, and then contracting over the
cardiac cycle. This is consistent with what occurs in
nature. These meshes were combined into an anima-
tion which can be seen at [31]. Because the dynamic
range of the motion is small, it cannot be detected in
single figures (separate from an animation).

During each timestep, the mean ratios of the tetra-
hedra in the mesh were computed. The mean ratio
computations showed that the heart remained untan-
gled throughout the entire simulation. This is not
very surprising since the heart mesh is composed of
elliptical rings that seem to undergo less movement on

each timestep than the circular rings in the test cases.
However, the motion of the heart is anisotropic which
makes it difficult to predict in advance how it will tol-
erate deformations. Interestingly enough, the values of
the minimum and average mean ratios were relatively
constant across all timesteps. Only the value of the
maximum mean ratio changed a significant amount.
The mean ratio computations are also a good indi-
cation that the heart meshes are of sufficiently good
quality for use with a numerical PDE solver that re-
quires moving meshes.

In order to further test our mesh warping algorithm,
the motion of the ventricles was exaggerated by a fac-
tor of 3. In this case, the motion was large enough
to detect in separate figures and is shown in Figure
5. We note that the LWLS algorithm also performed
successfully in this case, which is encouraging given
the much larger deformations.

7. CONCLUSIONS

In summary, we developed a new mesh warping al-
gorithm for tetrahedral meshes based upon weighted
laplacian smoothing.

Our method determines a set of local weights for each
interior node which describe the relative distances of
the node to its neighbors. A deformation is then ap-
plied to the boundary, and the method solves a system
of linear equations based upon the weights to deter-
mine the final positions of the interior nodes.

Furthermore, LWLS is simple, preserves the mesh’s
combinatorial structure, is computationally inexpen-
sive, and provides theoretical guarantees for use on
the mesh warping problem.

We proved a theorem regarding mesh invertibility
and a lemma showing that LWLS yields exact results
for affine boundary transformations. In addition, we
proved a convergence result comparing LWLS to the
local weighted laplacian smoothing and Gauss-Seidel
algorithms.

We also used LWLS to study the motion of the canine
ventricles under normal conditions.

We now describe some possibilities for future research.
First, we would like to extend the above theory to
prove Conjecture 1. Second, we would like to use
our canine ventricle meshes to study the bioelectric-
ity of the heart. To do this, we will couple the heart’s
electrical activity with its mechanical motion (from
the LWLS meshes). We will then use the finite ele-
ment method to simulate the electricity on the beat-
ing heart. This will yield new knowledge of the heart’s
activity since most of the current models have not cou-
pled the heart’s electricity with its mechanical motion.

8. ACKNOWLEDGEMENTS

The authors wish to thank O. Faris and E. McVeigh
from the Laboratory of Cardiac Energetics at the

Figure 5: Exaggerated Movement of the Heart as it
Beats. Motion for timesteps t = 1, 9, and 25.

National Institutes of Health for the moving canine
heart data that they provided. In addition, they
wish to thank Dr. Lori Freitag of Lawrence Livermore
National Laboratory for providing us with two 2D
test meshes. They benefited from conversations with
G. Bailey and especially H. Kesten of Cornell. Finally,
they thank the two anonymous referees for very helpful
comments on the first version of this manuscript.

References

[1] Shewchuk J. “What is a Good Linear Element?
Interpolation, Conditioning, and Quality Mea-
sures.” Proceedings of the Eleventh International
Meshing Roundtable, pp. 115–126. Sandia Na-
tional Laboratories, Albuquerque, NM, 2002

[2] Knupp P. “Winslow Smoothing on Two-
Dimensional Unstructured Meshes.” Engineering
with Computers, vol. 15, 263–268, 1999

[3] Freitag L., Knupp P., Munson T., Shontz S.
“A comparison of optimization software for mesh
shape-quality improvement problems.” Pro-
ceedings of the Eleventh International Meshing
Roundtable, pp. 29–40. Sandia National Labora-
tories, Albuquerque, NM, 2002

[4] Freitag L., Knupp P. “Tetrahedral mesh improve-
ment via optimization of the element condition
number.” Int’l. J. Numer. Meth. Engr., vol. 53,
1377–1391, 2002

[5] Freitag L., Knupp P. “Tetrahedral Element Shape
Optimization via the Jacobian Determinant and
Condition Number.” Proceedings of the 8th Inter-
national Meshing Roundtable, pp. 247–258. San-
dia National Laboratories, Albuquerque, NM,
1999

[6] Freitag L., Ollivier-Gooch C. “Tetrahedral mesh
improvement using swapping and smoothing.”
Int’l. J. Numer. Meth. Engr., vol. 40, 3979–4002,
1997

[7] Freitag L. “On Combining Laplacian and
Optimization-based Mesh Smoothing Tech-
niques.” AMD - Vol. 220 Trends in Unstructured
Mesh Generation, pp. 37–43. ASME, 1997

[8] Freitag L., Plassmann P. “Local optimization-
based simplicial mesh untangling and improve-
ment.” Intl. J. Num. Methods in Engr., vol. 49,
109–125, 2000

[9] Amenta N., Bern M., Eppstein D. “Optimal
Point Placement for Mesh Smoothing.” Proceed-
ings of 8th ACM-SIAM Symposium on Discrete
Algorithms, pp. 528–537. 1997

[10] Amezua E., Hormaza M., Hernández A., Ajuria
M. “A method for the improvement of 3D solid
finite-element meshes.” Advances in Engineering
Software, vol. 22, 45–53, 1995

[11] Parthasarathy V.N., Kodiyalam S. “A con-
strained optimization approach to finite element
mesh smoothing.” Finite Elements in Analysis
and Design, vol. 9, 309–320, 1991

[12] Canann S.A., Stephenson M.B., Blacker T. “Op-
tismoothing: An optimization-driven approach to
mesh smoothing.” Finite Elements in Analysis
and Design, vol. 13, 185–190, 1993

[13] White D., Rodrigue G. “Improved Vector FEM
Solutions of Maxwell’s Equations Using Grid Pre-
Conditioning.” Int’l. J. Numer. Meth. Engr.,
vol. 40, 3815–3837, 1997

[14] Zavattieri P., Dari E., Buscaglia G. “Optimiza-
tion Strategies in Unstructured Mesh Genera-
tion.” Int’l. J. Numer. Meth. Engr., vol. 39, 2055–
2071, 1996

[15] Knupp P. “Algebraic Mesh Quality Metrics.”
SIAM Journal on Scientific Computing, vol. 23,
193–218, 2001

[16] Baker T.J. “Mesh Movement and Metamorpho-
sis.” Proceedings of the Tenth International Mesh-
ing Roundtable, pp. 387–396. Sandia National
Laboratories, Albuquerque, NM, 2001

[17] Nash S.G., Sofer A. Linear and Nonlinear Pro-
gramming. McGraw-Hill, Inc., 1996

[18] Windisch G. M-matrices in numerical analysis.
Teubner, 1989

[19] Ortega J. Numerical Analysis: A Second Course.
Academic Press, 1972

[20] Freitag L. Personal Communication

[21] Mitchell S., Vavasis S. “Quality Mesh Genera-
tion in Higher Dimensions.” SIAM J. Computing,
vol. 29, 1334–1370, 2000

[22] Golub G.H., Van Loan C.F. Matrix Computa-
tions. John Hopkins University Press, third edn.,
1996

[23] Doyle P.G., Snell J.L. Random walks and elec-
tric networks. The Mathematical Association of
America, 3.02 edn., 2000

[24] Shontz S.M. A Mesh Warping Algorithm Based
on Weighted Laplacian Smoothing. Ph.D. thesis,
Cornell University, Expected 2004

[25] Mitchell S.A. Mesh generation with provable qual-
ity bounds. Ph.D. thesis, Cornell University, 1993

[26] Nocedal J., Wright S.J. Numerical Optimization.
Springer, New York, 1999

[27] Varga R. Matrix Iterative Analysis. Springer-
Verlag, second edn., 2000

[28] McVeigh E., Faris O. Personal Communication,
February 2003

[29] Shewchuk J. “Triangle: Engineering a 2D Qual-
ity Mesh Generator and Delaunay Triangulator.”
Proceedings of the First Workshop on Applied
Computational Geometry, pp. 124–133. Associa-
tion for Computing Machinery, New York, NY,
1996

[30] Dompierre J., Labbé P., Vallet M., Camarero R.
“How to subdivide pyramids, prisms and hexa-
hedra into tetrahedra.” Proceedings of the 8th
International Meshing Roundtable, pp. 195–204.
Sandia National Laboratories, Albuquerque, NM,
1999

[31] Shontz S. “www.cam.cornell.edu/˜shontz/heart.html.”
2003

A NEW ALGORITHM FOR GENERATING QUADRILATERAL
MESHES AND ITS APPLICATION TO FE-BASED IMAGE

REGISTRATION

S. Ramaswami� M. Siqueira��� T. Sundaram� J. Gallier� J. Gee�

�Rutgers University, Camden, NJ 08102, USA, rsuneeta@camden.rutgers.edu
�University of Pennsylvania, Philadelphia, PA 19104, USA, �marcelos,tessa�@seas.upenn.edu

�Universidade Federal de Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil.

ABSTRACT

��� ��� �� ��	
� ������
 ��� ������	� 	�
�� �	����
	�� �� ����	��� ��������� ����
�� ����� ���� ��� ������	
�
��

�� ����
���
	�� �� ������ ���� 	������ ����	
�
�� ���	���	�	
� �� �������
���� ��� ������
	�� ������ ��� ��������
����	��
	���� ���
 �����
 ���� �	���
�� �	
�
�� ��� �	�����	�� ��������
�
	�� �� 	���� ��
�� ��	
	������� ���� ���
��
	�	!�� ���
�� ����
���
	�� �� ���� �	����� ������
���
���� ������
���� �	
�	�
�� ����� ����� "�
�	� ���#�
�� 	�
������ � ��� �����	
��
� ��
�	� �
�	�
�� ������ $����	��
���� ������ �� ������� �	!� ����
�	������
	���
�� ��������� ���	��� �	
� �� �	
���
 ��������� ������ %� ������
 �� ��������
� ����
���
 $����	��
���� ������
���� ������
�� 	����� ��	��
�� ��������
	���� �����	
��� ��� � $���
	
�
	�� ������	� ��
�� $���	
� ��
�� ������
������
�� �� ��� �����	
�� �	
� ������

�
�� ����������� �� � �������� 	���� ���	�
��
	�� ��
���
��

�#��
	���� ������ �� 	���
�

��������� 	
��������� ����� ���� ����������� ����� ������ ������� ����� ������������

1. INTRODUCTION

�	�	
� ������
 ������	� �� � 	� � ��������
��� ���
�����	����� ����	�� �	&����
	�� �$��
	��� �� ���	��

	���� ��������
��
 ��	�� ���	�� �
���
���� �����	��
	� ���	����	�� ���
�� ����	�� ��	������ � �����
	��
�����$�	�	
� ���
�� ��� �� �� 	�
�� ���	���	�	
� ��
� ���� ����
�� ������� ����	�� "�
�� ������� ���
��	� 	� � �����
 ��
�� ����	���� ������
�	������� ��
$����	��
���� ������ ���
��	����� ��������� ��� ���
������ �� � �������'� ����
	�� ���
�� �Æ�	���� �	
�
��	�� 	
 	� ��
�	��� ��	�� � ���
	����� �� 	��������

�
	�� ��� �	���� ��������
 �� � ���	�
� �� ���� ���
����
���� 	�����	�� ������
 ������ ��� ������ ���
���� �������	
�� �	���
	����	
� ��� ����	��� ()*�

��	������� ������ ���� ���� ��
���	���� 	����
	��
��
��
�� ����	�� ������	
�� ���
��	�
�����
	��� �����
��
	�� ��� ��� ���� ������
���� ����	
��� ��� ����
���
	�� �������� ����
�	������� ������ �� �������
��� ����	�� ���� ���� ��������� (+*� ,�
�� �
���

�����
�� ������
	�� �� ���� $����	��
���� ������ 	�
��
 �� ���� ������
���� ��� �����	
��� ��	�

� ����
���
� $����	��
���� ������ �� ������� �	!�� (-� .� /� 0*�
������� ���	��� ������ (.*� ��� ���
������ ����
�	
� ��� �	���
	����	
�� (1� 2*� ��� ��������� ����	���
3�������
���� ��� �� #���� �����	
���
� ������
�
$����	��
���� ������ �� ���	
���	�� ������� ���������
����	��
��
 ��� �������� ������
���
� �	���
����
����� ���
 ������� $���	
� ��	
��	�� 4�
 ���� $����
	
� $����	��
���� ������ ��� �� ���� ���	����� ���
���
�	� �������� ����	��
	���� ���� �� ������ �
�����
�
��	� ������	�� (5*�

��� ��� �� �� ������	� 	� �	����	��� �������� ��� ���
�����������
� �������
�� ����
���
	�� �� ������ ����
	������ ()6*� "�
�� �	����	���� 	���� ��
� 	� ����
�����
�� �� � �	����
� ������
	�� �� �	����� �
�����
������� �����	
��� ���� ���� �������� ��� ������
	��
������ �� ���	
���� �����
�	� ����	��� ���
 ��
���
���� ���� ��������� ��� ��
	�	!�� �	
� �
���
���� ���
�	����	�� ����	��
	��� 	� �	��� � � �����
�
��� ���

��
 �	���
�� ����	�����
� �	����
� ��
�� ���
��� ���
��
 ������� ���� ���� ���� ������
�� �	
� �����
�	�
����� ������� ������ ���� ��
�� ���� ������
���� 	�
�	������

"�
�	� ����� �� ��� ��	���	�� ��������� �	
�
�� ����
���
	�� �� �������� ���	
� $����	��
���� ������ ����
	������ ���
�� 	�7����� ��
��	� $���	
� ��
�� �����
���� ��� ����������� �� � ���
	����� 	�������
�
	��
�� � �������� 	���� ���	�
��
	�� ��
���� 8
�	�
�� ����
��� $����	��
���� ������ ��� ������ 	� ��	�� ���� ��

�� ���� ������ �� ����� $����	��
���� 	� �
�	�
�� ����

���)26�� ���
��� ���
�� ���� ���	����� $����	��
�
���� ������ ��� �������� ����	��
	����

��� ��	� ���
�	��
	��� �� ��� ���# ���
��������
�	��
� �� �����	�� � ��� �����	
�� ��� ������
	��
�
�	�
�� ������ $����	��
���� ������ �� �������� �����
�	!� ��� ��������� ����	�� �	
� �� �	
���
 ���������
������ "� ���
	������ �� ����
��

�� 	�
��	�� �� �
��������� ���	�� �	
� �����
�	������
�� �	
� �
�	���
���� ��� �� ������
�� 	�
� � $����	��
���� ���� �	
�
�
 ���
 � ��

�
� 9 + �
�	�
�� ������ $����	��
������ %�

���� ���
�	� �����	
��
� ����
��
 �� ���	
���� ����
�
��	���
�	������
	�� 	���� �
�	������
	�� 	� ��	��
���� ������ ������ ����
��	�
 ������ ���
 �� 	��������
�� �
�	������ ��� �� ������
�� 	�
� � ����
��	���
$����	��
���� ���� �	
� �
 ���
 � ��

�
� 9 -� $����	��
�

������ ����� � 	�
�� ������ �� ������
�� ��������
�
	�
�� ���� ����� ��
��
�	������
	��� ����� �����
�
	������ �� ����	����� #���� ������ �� ���� �	!��
,�� �����	
�� ���� 	� ���
	�� ��� ������ 8������
�� ����	�� � $���
	
�
	�� ������	��� ��
�� ��������
��� ����������� �� �������� 	���� ���	�
��
	�� ����
������
�� �	
� �	�
	��

���� �� ������ ���� �����
	�
��������� :;� 	����� ��
�� ����� ���	� 	�����	��

�� ���� ������
�� �� ��� ��������
	���� �����	
����

��� ����	���� ��
�	� ����� 	� �����	!�� �� �������� "�
8��
	�� + �� 	�
������ ���� ���	� ������
� ����
��
�
��� ���# ��� ���	�� ����
�� ���#� "� 8��
	�� - �� ���
���	��
�� ��
�	�� �� ��� ��� �����	
�� ��� ������
	��
$����	��
���� ������ �� ��������� ����	��� "� 8��
	��
. �� �	����� �� ��������
� ������
� ������ ���� 	��
���� ��	�� �����	
��� ��� ����	�� ��������� ����	���
"� 8��
	�� / �� ����� 	���� ���	�
��
	��� ��	�7� ���
���	��
�� �������� 	���� ���	�
��
	�� ��
��� ����
����� ��� ������

�� ��������
	���� �������
	�� ���
$���
	
�
	�� ������	�� "� 8��
	�� 0 �� ������	!� ���
�����
� ��� �	����� ��
��� ���#�

2. BACKGROUND AND RELATED WORK

��� ������� �� ������
	�� � $����	��
���� ���� �� �
��������� ���	�� � 	� ���� �������
���
��
 �� ����
���	�� �
�	������� ����� ��� ���
�	��� 	� �� ��$�	��

�� ��
 �� ���
	��� ��
�� ����
� ��
�� ��
 �� ����

	��� �� �� � $����	��
���� ���� ��� ��
 ���� ��	�
�

���
�� ������� �� ���	�	�� ���
��� �� ��
 	
 ��	�
�
��� ���� �����
� �� ���������
� ��� � �	
� ��� ��
���� ������ ())*� "� ���	
	���
��
�����
	��� �������

	��
� ������
� ���� $���	
� $����	��
���� ������ ���
��
 �� ���� ������
��� ��
�� ���� ��� ������	�� ����
$���	
�
�	������� ������� ����� ���
� ���� ��� �������
�����������
� ����
 �� �����
�� ������
� ��
�	�	��
$����	��
���� ������<
�� ��������� ����	� 	� ���

�	�
������
�� ���
���
��
�	������
	�� 	� ������
�� 	�
�
� $����	��
���� ����� (-�)+� /� 1�)-� 2*� ��	� ��������
���	�� ��
�� ����	��
��
 � ���� $���	
� $����	��
����
���� ����� �� ���� ���	�� ������
�� ���� �� ��	�
	��

�	������
	�� ��
�� ������� ����	��

=�
 � �� � ��������� ���	�� �	
� � ���
	��� ��� �

��������� ������ ��� ��
 � �� ���
�	������� ���� ��
� ����
��

�� ��
 �� ���
	��� �� �� � 	� ���
�	���
	�
�� ��
 �� ���
	��� �� �� � � �� � �� � ���� �����'�
����
	��� �� #���
��
 � ��� � > +�9+��+���
�	�
������� ����� � 	�
�� ������ �� ���
	��� �� � ��� ��

	�
�� ������ �� ���
	��� �� � �� 	
� ��������� �	
�
� � �� � �� ���� �	���� �����	
�� ��� ������
	��
���� �
�	������
	�� 	�
� � �
�	�
�� ������ $����	��
�
���� ���� ��� �������� �� �� ?���� (-*� 3	� �����
�	
�� ���� 	� ���
	��� �������� -� $����	��
������
��� 	����
� ����
�� /� 9 /� � / � +�� ��
�� ���
	���
	��	�� �� "
 	� �	���� ��� ���
� ��

�� �	!� ��
��
��
��
 $����	��
���� ���� ��� ������
 	
� ����
	���
��� 	�
�� �������� �� ����� 	���

�	������� �������
�����

 �
 ���� (-*� 	�
������� ���
��� �	����
	�� �����
�	
��
� ������

�	������� ������ 	�
� �
�	�
�� ������
$����	��
���� ����
��
 ������
�� �
 ���
 � ��

�
� $����	�

��
������ 3�������
�� �	!� ��
�� ��
��
 $����	��
����
���� ��� �
	�� �� ����	�	
	�� 	� ����
	��� � 	�
����
�
	�� ���
��� ��
�	� �����	
��� ��	�� 	� ���� ������
 	� ��
?���'� �����	
��� 	�
�� ��������
	�� ��
�� 	���
 ����
����	��� @����
�� �
 ��� �������� ���
��� 	��	���

�������������� �����	
��
��
 ���� ������� ����	�
	��

� ��
�	� � �
�	�
�� ������ $����	��
���� ���� ����
�
�	������
	��� ()+*� ���	� �����	
�� ���� 	� ����

	��� ��� �����
	���� ����	��� ��A����

�	������
�
��
�	� $����	��
������ 3������� 	
 	� ��
 ����� ����

�� �����	�
	�� 	� ()+*
��

�� ����	�
	� ����������
��� ������ ���������� 	� ������	�� �� ����$����	��
����
�����

8�	���� �
 ���� (1*� �������� �� �����	
�� ��� ����
���
	�� $����	��
���� ������
��

�#�� 	�
� ������

���� �������	
�� �	���
	����	
� ��� ����	�� �� ���� ��
������
 ������ ���	� �����	
�� ������� � ����	������
����� ������
	�� �������� ������ ���� ���#	���
��
 ����
	�
�� ������� ����	� �	
� �$������ ����� �	!� ���
�	���
	�� ��� ���
������ �� ������������ ������ ����
�	
� ��� ���
�� ����
	���� :��� ���
	��� ��� ������
�

�� ���
�� �� ����� �$���� ���
��� ������
��
�
������
� �
�	������
	�� ��
�� ��
	�� ����	�� �	�
������
��
�	������
	�� 	� ������
�� 	�
� � �
�	�
�� ����
��� $����	��
���� ����� =�
��� B	�����
� �
 ���� (2*�

���	���
�	� �����	
�� �� ��	�� ���
������� ����� 	��
�
��� �� �$���� ������ ��	�� �������
���
� ������
�
� ��	��
���	� $����	��
���� ������� ?�
� �����	
���
������� ������ ������� $����	��
���� ������ �	
� �����
������ ������
� ��� ����	�� ���
��� ����
��	� �	����

	�� ��� �	!� �	�
�	��
	��� 3������� 	� ����	�� ���
���
�� �	���
	����	
� 	� ��
 ��	
	��� ���
�� ������� ����	�
��� ������� �����
��� ��	
��� �����	
�� ��� �� ����
�

���
	�� ���
�
�� ������� ��
�� ���� ���#	�� ���
������� ���
�������� �������	�� �� �
�	������� ����
	�
� � $����	��
���� ��� ��� ����� 	����
��
�	�������
��	�� ��� �����
�� �����	
��
� ������� �� ��
��
����	�	�	�� �
��
� ��
�	� �� ����$����	��
���� �����

,��� �
 ���� ()-*� ������
�� ���
��� $����	��
����
����	�� �����	
��
��

�#�� 	�
� ������
 �	���
	���
��	
� ��� ������
 ������ "
 ������
� �
�	������� ����
	�
� � �
�	�
�� ������ $����	��
���� ��� ��	�� �������
	�� ����
� 	�	
	���� ������ ��
�� �������� ����� ��

�� 	���
 ����� C����	��
����� ��� ������
�� �� ����
�	�	�� ���
��������	��
�	������ ��
�� ����
� ����
����
�� ��������
�
�� 	�
��	�� ��
�� 	���
 �����
=���� ����
�	�� ���
������	��� ��������� ��������
��������� �� ���
��������	�� �
���� ��� ���
 ��
��
�������	�� �������� ,�� �	�	
�
	�� ��
�	� �����	
�� 	�

��
 �	���
	����	
� �����
 �� ���	
���	�� ����	��� �� 	�
(1� 2*� �
�����
�� �����	
�� 	� ()-* ���
�� ���� 	�
(1� 2* �� ��
 ����	�� ���
�����
	��� ������ �� ����
�	!� ��� ���� ������
 ������
��� ��� ������
� ����
���� $���	
� $����	��
���� ������ 	� ����
	��� ����	�
��
	����

��� �����	
��� �������� 	� (-�)+�)-*
�#� �
�	�������
���� �� 	���
� ��	��
�� ���� 	� (1� 2*
�#� � ���������
���	�� �� 	���
 ��� ��	�� �
�	������
	�� ��� 	
� :��

��
�� �����	
��� ��� ������
	��
�	������� ������� ��
���� ��
�� �����	
��� 	� (1� 2*� �����
 ���� �	���
��
�	
� 	���� ��
� ��������
�� �� � �	����
� ������
	�� ��
�	����� 3������� ��	�� 	���� �������	��
����	$���� 	

	� ����	���
� 	���
	�� ������� �	�
	��
 �
���
���� �	
�	�
�� 	���� ���
��� ��	�� ��������� ������	��
	��� ���

��	� �������	��� ().*� ?� ��	�� ��������� ������	�
��
	��� ��
���
��� �	�����	�� ��������
�
	���� �� ���
����
� ������ ��� �����	
�� ��� ������
	��
�	�����
��� ��� $����	��
���� ������ �� ��������� ����	��
�
������
��� ����
�� ��������� ������	��
	�� �� ����
	��	�	���� �
���
��� ��
�� 	�����

3. THE ALGORITHM

"�
�	� ���
	��� �� ������
 � ��� �����	
��
� ������

�� ���	
����
�	������
	��� ����	��� �	
� ����
��	���
������ 	�
� � $����	��
���� ���� �� ������� �	!�� ���
�������	�� ������ ������
��	��� �����
� �� ����
���
��
 ���� ��
 ����� ����
	�� �� 	���
 ��	�
� ���
	�����
D�� ��	�
�� ������ ��
��
� ������� ��� �� 	����
��
����� �	
� ��� ����� ��
���� 8
�	��� ��	�
� ���E��
	���
 ��	�
�� 	� �����
� ����
���

�� $�����������

	���� ��� ���� �������� �� ��� �����	
�� ����	�
� ��
�
�	�
�� ������ $����	��
������ �	��
� �� ����
��

��
	�
��	�� �� �
�	������
�� ��������� ���	�� �	
� �����
��� �� $����������
�� �	
� �
 ���
 � ��

�
�9 + $����	�

��
����� �� 	����
	�� �
 ���
 �9+ 8
�	��� ��	�
�� �����
� 	�
�� ������ ��
�	������� �� 8
�	��� ��	�
�� �����

����	��� ���� �	� 	�
�� 	�
��	�� ��
�� ��������� ���	���
D��
� �� ���� ���
� ��
���
�	� �����	
��
� ����
���
 � ����
��	���
�	������
	�� 	�
� � �
�	�
�� ������
$����������
	�� ��
	���	��
�� �	��� ����
��	�
�� ���
�����
	�� ������ �� $����	��
����� 	� �
 ���
 � ��

�
�9-��

��
�	��� �� ��	�� �
 ���
 �9+� 8
�	��� ��	�
�� �����
� 	�
�� ������ �� ������
�� ��������
� 	�
�� ����
����� ��
��
�	������
	���

3.1 Polygonal Regions with Holes

��� 	��� ���	�� ��� �����	
�� 	�
� $����������
�
� ����� ����� ��
�	������ �
 �
	�� ��
	�
�� 	���

�	������
	�� 	� ������
�� 	�
� � $����	��
���� �����
��� ����� ��
�	������ ��������
�
��
�	������
	�� ��
������ �	���� ��������� ���	���
�� ���� �	
� � �����
����
��
� � 1� ������ �� ���
	����� ��	�
�	������
	��
	� ������
�� 	�
� � ���
	�� �� ������
� $����������
	��
��
�� ��������� ���	��� ?� ��	�� � �����	��
��� ��

�� ���� ����� ��
��
�	������
	�� ��� �������	�� 	

	� � ��

����� ����	��� ��� �����	
�� ���
���
	�����
������
�	������
���
��� ��
��
 �� 	����
��
�	������
����	� 	�
�� �����
	�� ��������	
	���

=�
 � ��� � �� �� ������ 	� 8��
	�� +� =�
 � � � ��

�� ������ �� ���
	��� �� � ��� �
�� ������ ��
�	���
���� �� � � ��� ���
 �
�� �� ��� �����	
�� 	�
� ��	�� �
���
�� �����	��
��� � ��
�� ���� ����� � �� � � ���
��� ���� �� � 	�
�� �����
��
 ���
�	�� � ���� ���
�����
�	����� �� � ��� �� ���� ��
����
�� ����� 	�

�� ����������	��
�	������ ����� �� ������
��	����
����� � 	� ��	�
 �� � �����
�����
 ������ ?�8�
����
��� ���
 �� � 	� ��� ���� ����������	��
� �
�	�����
���
�	�	�� � �������� ���� �� � � D�
�
��
 � 	� �
�	����
���� �
�� ����
���
	�� � �
�� �����	
�� ����
��
��
�� ��
 �� �� ��� ����� �� � �
 ����� 	� ��� �����
	 	
6
)
 � � �
 ��� ����� � 	�
�� ���
� �� � ���
��
���
 ���� 	�
�� �	����
�� ���� �
 ����� 6� D��
�
��
�����	
�� ���������
�� ����� �� � ��� ����� �
 �
	��
	� �������	�� ����� �� ���
�� 	���� ��
 ����
 � � �
 ��� =�

���� ����
��
�� �����
 �� � 	 � � �����
�� �	��	��
�� �� ��� �	���
��
�	����� �� � ����������	��
� ��
D�
�
��
 �	��� ��� �	������ ��������	�� ����� ��
���� �� � � ��� ���� ���
�� � 	 ��) � � � �� �� ����
�	���
�� ���
��� ���
�� �
 ���� �� �
 ��������
%� ����
�
�	� ���
��� �� �� ��� 	
� ���
 �� ��� =�

�� ����
�
�� �������� �� � 	������ �� ��� %� ����

��
 	�
�� ��	�	���
�	������
	�� � �
�� �������� ��

����������	 	�
� ����� �� ��� 	�� 	���� ���������
�	
��� �� ���������	�� 	� ��� �����
�	��� �����
�� ����������
�	� ����
�	������ ������	
����� �� ���
��� 	�� 	��� ����� 	� ����� 	� ����
�	����

�����������
� �
�	������
�� ��������� ���	�� �� ����
�	�
	�� �� .
 /
 0
 �� 1 ���
	���� ��	�
�	������
	�� 	�

��� ������
�� 	�
� � ���
	�� �� ������
� $���������
��
	�� �� ���	�� 8
�	��� ��	�
� �	
�	�
�� ��������
�� ��� "�
�� �����
 	� � ������
� $����������
	�� ��

�� ����	� �� ���
�� ���
��� �� 	� ��	�	��
�� ����
� � "�
�� $����������
	�� 	� ��
 ������
��
���� �	��
�� ���� ��� ���
����
�	����� �	
�	�
�� �������� ��
��� ��� ���
 ���� �� ��� ��������
�
�	�
�	����� ���

�� ����	�	�� ����� �� �� ��� ��	�	��
�� ���� � � ���
��
� ��
 ����
 ��� ���� ��� ����
�� ������	����

��

��� �����	
�� ���� 	� ������� ���� ����� ��
�� ���
���	
�� ����	��� ����� ����
��
���� ������
 ������
��� ��	�	��
�� ���� ��
��� ���� � ��� ����
��
�������	�
� ��� %� ����
��
 ��� �����
�� �����
��	�	��
�� ���� � ���	�� � �	��� ������ �
 ���

����
$����	��
����� ��� ����
�� �� ��	�� �
 ���

�� 8
�	���
��	�
�� "� �
��� ������ �� �����
�� ����
	�� �� F���
��� � ����G $����	��
����� ���
�	����� 	�
�� ����	��
�������� ���
�������� �

�� ��� �� ���� ������
��
���
� �� � ��������� �� �
 ����
 ���� ���
��� � 	�

����� ������ ��
	� ��� ����� ��� ��	�	��
�� ���
��
�������	��
�	������
	�� � 	� ������
�� 	�
� � �
�	�
��
������ $����������
	���

?����� �����	�	��
�� ��
�	�� �� ��� �����	
��� ����
����� �� �	�����
�� ����	�� �	
��
	���� �	��
� ���� ��
	� � ���
��� ��
���� ����� ���
�	�	�� �� �� > ����
��� ������ ���
���� 	� � ���������� ��
���� � ���
����� 	� ���
��
�	������
�� ��������� ���	�� �� ���
� ��	�
 	� 	
� 	�
��	��� �� ����� 	� �	����)� 8������
���� �������	�� ��� ��� �����	
�� ��� ����� � 8
�	���
��	�
 � ��
�� ���� � ��
���� �	���� ��� �	��������
�� ����� 	� �	���� +�

�

�����

�����

�� �	�������

�	�������

�	���

!��

Figure 1: The non-empty triangleH.

"�
�� ���
 �	
��
	�� �� ��	�	��
� � ��� ����� ���� � �
��� ���� ��� ��������
� ��
 ����
���� ������
 H
�	
� 	
� 	�
��	�� ��	�
� D�
�
��
 	� � 	� �
 ����� ��
���

�� ���� ����������	��
� H 	� � ���� �
 ����� � �)�
"�
�� ������ �	
��
	��
�� ������
 �	������� ����
��������
� � ��������
� $����	��
���� �� � ��������
�
���
���� 	� ������ ���� ���� � 8
�	��� ��	�
 ��
��
���� 	
 ������ �	
� �	�������� ��
���
��� �
�	���
���� %� ����
�� ������	�� 	����
��
 �������
	���<

���
� ������
�� �� ����
�� 	�� ��� 	��� �� ���
����
� "#$ 	� ������	 	�
����	
���
�	� ��������	
���
����
�	
�� �� ���� 	�	 �� ��	 �������
�� �����%�

����������� ������ ����
 �� �
��
������
� ���� �

��
� ��
 ��
��
� ����� �� ���
� ��
��
 �� �
�
�
��

�
������ �
 �
	
� �� � � �� �
�
�
��
 ��������

��� �

���
� �
	
� �� ���
��� ���
� �� �
��

 ��
�����
����
� �� � �� � �
	
� �� ��
 ���
� ����
������
��� �� ��
�
 �
�
�
��

�
�
��� �
 � �
	
� � � + ��
�
	
� � � - ��
�
� �� ��
� ��� �� ������ �� ��
 ����
����� �
�����������

�
�

�	��������

�

���

!

�	��������

��

���

��

��
��

Figure 2: (a) Degenerate quadrilateral. (b) Degen-
erate pentagon.

����������� ������ � �� ��
� ��
� ���� �
�
�
��
�

�
�
��� �
 ��
�
�� ��
 ���!
� �� ���
� �� �� ��
���� ����
 �
 �
 ����
� "��
 �� ���# ��������

��� �
� ���
 !�� ���� ��
�
 ����
 ���!
�� �� ������
��
���� ���� �����
� ��� �
 �	
 "��
���# �� � �
��
"���# �������
�� ���
	
�� ��
��
� ����� � �� ��

!������ �� �
�
�
��

�
�
���

����������� ������ ����
 �� �������
��� �� ��

������������ �� ��
 ����� �� �� �
 �������� ����
	
�� ��
�
 ���� !
 �
��
 �� ��
 ������������ ���
���
�� �� � �� ����� ������
 �	�������� � �����
�� �����
 �� $
 �� �������� �
����! � ���� ����
��

������� �
�������� ��
 ������ ���	
���� �� ��
 ������
��
����

%� ��� �����	��
�� �
��� 	������� 	� ���� ����� ��

�� �����	
��� ���	��
�� ������ ��
�� �����	�
	���
�� �����
� ���	��� ������ ���
�	�	��
� $���������
��
	��� �� ����� ��������� ���	���� ��	�� ��� �
�
��
�������� ��
�� 	� 8��
	�� -�-� =�
) � 	 � � ��
�� ����
���
 ������
 ����� �� � � %� ���
 ��	�	��
� ��� ������
� �� � ����
��
 �	��� 	� � ��������
� $����	��
�����
��������
� ���
����� �� � �������
�
�	������ D�
�

��

�� ���

��
���� �� ������ �	�� �� �
 ������ 	
 	�)�
�� 	� +� ���
��
�	��
��� �	�� ��� �� �
 ����� 	�

���� �� %������
 �� � 	 �� ����� ����� ���� ��� �
�� �
� �� �	��� �� �
�
�
��
 �������
��� =�

� ��
�� 8
�	��� ��	�
 �� �	���� ��� ��
 �� ��
�� ����
��
�� $����������
	�� ����
���
��
��� ���� 	��	���

�� �� %� ������
 �	��� 	�
� � �
�	�
�� ������ $����	�
��
���� �� ���
���	�� � �����
�� ���� ��� �� ����� 	�
�	���� +�� ���
��� �� ������ � ���� � �

���� �� %������
 �� � 	 �� � ���� � ���� ���� ���
�	��� �� �
�
�
��
 �
������ =�
 �� ��� �� ��
��

�� 8
�	��� ��	�
� �� �	��� ��� ��
 � ��
�� ������
���� �� �	��� ��� �	������� "
 	� �
��	��
�������
�
������
 �	��� 	�
� � �
�	�
�� ������ $����	��
���� ���
� ���
����
�	����� H �� ����� 	� �	���� +�� D�� �

��������
�
�� ���
����
�	������ 	���� �	��� > H� D�
�

��
 �� ���� ����
�� ��� ������ $����	��
����� ��

���� ��
 ��	�	��
�� ��� ����� ���� � � 3������� ����
,������
	�� -�)�+� �� #���
��
 ���� �� �� ��� �� ���
� ����	
 �� ���� � $����	��
����� �����
�� ������ ��
$���� �������� 	�
�	� ���� ����	�� �	
�	�
�� �
�
��
�������

���� �� %������
 �� � 	 �� ���� ��� �	��� ��
����
���� ������
� =�
 �� ��
�� ���
��� �� � ���
��
�
 ����� %� ����	���
�� ������	�� ����� �����
�

�� 	����
��
	��� 	� �	���� - ��� �	���� .�<

��� ���� �� ���
 �� �
��

 �� �� �	������ ��
 �
�
�
��
 �������
��� =�
 � ��
�� 8
�	���
��	�
 �� �	������ ?� ������
	�� �
�
�� ����

�� �� �	������
��
 	� ��
 ��A����

� �� ��
��������� �� 	�
� �
�	����� H ��� � $����	��
�
���� �	
� � ��	�
 	� 	
� 	�
��	�� ��� �	���� -���
��� ��

�� ��� �� $����������
�� 	�
� ��� ������
$���� �	
�
���� 8
�	��� ��	�
� 	� 	
� 	�
��	�� ��
=���� -�+�+� %�
��� ������ � ���� � �
��

�� ��
���� �����
�� �����
��
 ���� �	��
� ��
���� ���� ��	�	��
�� ���� � � ,��� ���	�� �	���
� ��� � ����	
 �� ���� � $����	��
�����
�� ��� ����
��� $���� ����
�� 	�
�	� �
�� #��� �� �	
�	�
��
�
�
�� ������� ��� ���� ���� ��� �����������

�
��
�	����� H�

��� ���� �� ���
 �� �
��

 �� �� �	������ ��
 ������
� "�
�	� �����
�� ����	� �� �� 	�
� $����	��
���� ���
�	� $����	��
���� ���
�	�� �
���
�� �� �� 	� 	
� 	�
��	�� ��� �	���� -�� � ��	��
�� =���� -�+�+�
�� ���	�� ��� �� $���������
��
�� 	�
� ��� ������ $���� �	
�
���� 8
�	���
��	�
� 	� 	
� 	�
��	��� %�
��� ������ � ���
���� ���� � � ���� ����� ���� ���� ��	�	��
��
���� � �

&������	� ���

'������	� 	�
����

��� ���

�

!

� �

�	��� �	��� �	������� �	�������

����� �����

Figure 3: Cases 3a and 3b of Step 3.

� � ���� �� ���
 �� �
��

 �� �� �	������� ��
 ������
� "� �� > ���
���
�� ����	� �� ��

	� � ���
���� ���
�	� ���
���� ���
�	�� � ����

�� �� �� 	� 	
� 	�
��	�� ��� �	���� .��� ���� ��
=���� -�+�.�
�	� ���	�� ��� �� ���������� 	�
�
�
 ���
 �	� ������ $���� ��� ���
�	����� H ��
��	�� �
 ���
 ���� 8
�	��� ��	�
� 	�
�� 	�
��	���
;����� � ��� ����� ���� � � ��� ��
 �� ��� ����
�����
 H� "� �� ���
�	�� � ���������� ��
����
� ��� ������
��� �	��� ��� �	������� ���� �
$����	��
���� �	
� � ��	�
 	��	�� ��� �	���� .���
��	�� ��� �� ���������� 	�
� ��� ������ $����	�
��
����� �� ��	��
���� 8
�	��� ��	�
�� ��	�	��
�
� ��� ����� ���� � � ���� ����� ���� ���� ��	��
	��
�� ���� � 	� �	
��� �����

'������	� 	�
����

�	�������

�	�������

�	�������

�	���

�	�������

� �����

�	�������

�	�������

�	�������

�	���

�	�������

� �����

���

����� �����

���

Figure 4: Cases 3c and 3d of Step 3.

��� ���� �� ���
 �� �
��

 �� �� �	������� ��
 ����
���� ������
� "� �� > ���
���
�� ���
��	� �� �� 	� � ���
���� ���
�	� ���
���� ����

�	��
�� ���
	��� �� �� 	� 	
� 	�
��	��� "� ��

���
�	�� � ���������� ��
���� � ��� ������
���

�� ����	� �� �� 	� �
�	����� ���
�	�
�	���
��� ���
�	��
���� ���
	��� �� �� 	� 	
� 	�
��	���
"� �	
��� ����� �� ��� �� ���������� 	�
�
��
$����	��
������ ���� �	
� � ��	�
 	� 	
� 	�
��	�� ��
�������< ��� � 8
�	��� ��	�
 ��
�� ���� ������
�� �	���� ��� �	������� ��� ������
 	

�
��
���
�� �� �	����
��
 	� ��
 ��A����

� 	
 ���
�	���� .��� ?� =���� -�+�+� ���� $����	��
����
��� �� ���������� 	�
� ��� ������ $���� ��	��

���� 8
�	��� ��	�
�� ;����� ��� ����� �� �� ����
� � 3���� �
�
�� �� ����� ����� ���� ��	�	��
��
���
�� ������ $����	��
����� ���� ����
�� ���
	�� ����� 8
�	��� ��	�
�� "�
�� ���
 ����� ��

�� �����	
��� �	������� �	�� �� � ��������
�
$����	��
���� �� ���
�����

����������� ����!� &��
� ��
�� '�� �
 ����
� ����
���
	
�� ���
 � 	 �������� �	��� ��
���
� ������

�� �
�
�
��
 �������
��� � ��
 ���
� ��
� � ��
 ���
 �� �
��

 ��

���� !� ��� ���
 �
�� ��	�	��
�� ��� ����	�	�� � 	 ���
���� ,������
	�� -�)�.� ���
�� ���

��
 � 	� � ?�8

���� 	
 �������
��

�� ���� ����	��� ��������
	��� ���
�� ���
���� �����	��� 	�
�� �����
��� ������

!�� %������
 �� � 	 �� ���� ��� �	������ ��
�
�
�
��
 �������
��� =�
 �� ��
�� ���
���
�� � ���
�� �
 �� > ����� I��
���
�� 8
�	���
��	�
 � �� �	���� �����
�� $����������
	�� ����
	��	���

� 	
� 8
�	��� ��	�
 �� ������ 	� �	����
����������
�� ���	�� �� 	�
�
�� ������ $����
��� �
�	����� H ��A����

�
�� ������ ���� ��
�	���� ��� �	������� ��� �	���� /��� ��	�	�
��
� � ���� � ��� ��
 �� ��� ��������

��
�	�
����� H� ��� ����	
 �� ���� � $����	��
���� ��
� #����
�� ������ �� ������ $���� �	
�	�
��
�
�
�� �������

����� �

�����

&������	� ���

�	�������

�	���

�	���

�

�

!

�	�������

��

�	�������

�	�������

�	���

�	���

�	�������

�	�������

�����

�

��� ���

Figure 5: Cases 4a and 4b of Step 4.

!�� %������
 �� � 	 �� ���� ��� ���� �� ���

�� �
��

 �� ��	�� ��
 �� ��
�� ���
��� �� �
���
�� �
 �� > ���� ��� �����
� �	���� /�� "�
�� ���
�	�� �� ���� ��
����
�� ����� � ���
������
��� �� ������ � ��� ����� ���� ���
��� ���� ���� ��� 	�
�� �������
�
�	�����
����������	��
�
�� �������� �� ��� �	
�
��
����
� ���
�� �� �� 	�
�� 	�
��	�� �� 	
� ����	�
��� �	����)�� "�
���� 	� �� ���������� ��
����
� ��� ������
��� �� =���� -�+�-�
�� ����	�
�� �� ��� �� ����	�	��� 	�
�
�� ������ $����	�
��
����� ��� ���
�	����� H ��A����

�
�� ����
������ �� �	���� ��� �	�������� �� ���	�� ���
8
�	��� ��	�
� ;����� � ��� ����� ���� � � ���
���� �� ��� ��������
� H�

! � �	������
������
 �� � 	 �� ���� ��� ���� ��
 ���
 �� �
��

 �� =�
 �� ��
�� ���
��� �� �
���
�� �
 �� > ����� "�
�� ����	� ��
��
�	�
������
�� $����	��
���� �� ������ �� �	��� ���
�	������ 	� �
�	�
�� �������
��� �� ������ �
��� ���� ���� � � ,
����	��� ��
 �� ��
�� ����

��� �� � ���
�� �
 �� > ������� ��� ����
�	���
�� ������	�� ��������� �����
� �	���� 0�
�	���� 1� ��� �	���� 2�<

	� �	���� �� �
�
�
��
 �������
��� D�
�
��

�� > �� ���
�	� ���� ������� � 	� � ?�8
����
I��
���
�� 8
�	��� ��	�
 �� �	���� �����
��
$����������
	�� ���� 	��	���

� 	
 ��
��

��

����	� �� �� 	� ��� � �������� ?� =���� -�+�)�

�	� ���	�� ��� �� ����	�	��� 	�
� �
 ���
 ����
������ $����	��
����� �� ��	�� �
 ���

����
8
�	��� ��	�
� 	� 	
� 	�
��	��� ��	�	��
� ���
��
����� �� �� ���� � �

&������	� ���
��� ���

�����

�

��

�����

�

��

�	����
�	�������

�	���

�	����
�	�������

�	���

Figure 6: Cases i and ii of Step 4c.

		� �� �� ���
 �� �
��

 � �� �	���� �� �����
��
� ,��� ���	�� �� > �� ���
�	� ����� ������
�����
�� ����	� �� �� 	� � ���
����� %� �����
=���� -�+�-� �����
�� ������ ���� �� �	����
��� �	������� 	� ���	���
�� ��
�� F��
��	��G
����� ����� �� ����
�� �	
��
	���� �	��
�
��
����	� �� �� 	� ����	�	��� 	�
�
���� ������
$���� ��� ���
�	����� H ��A����

�
�� ��
���
	�� ���� �� ��	��
�� 8
�	��� ��	�
�� 8������
��
����	� �� �� 	� ����	�	��� 	�
� ���� ������ $����
�� ��	��
���� 8
�	��� ��	�
�� ��� �� ��	�� �	��
��
�� ��
��	�� ����� "�
�� ���
 �	
��
	��� ��
������ � ��� ���� ���� � � ��� ��
 �� ��� ����
�����
 H� "�
�� ������ �	
��
	��� �� ������ ���
����� �� �� ���� � � ��� �	������� ������� �
��������
� $��� �� � ���
���� 	�
�� ���
 �����
��
�� �����	
���

��

�

��

�

��

�

�	����

�	���

�	���� �	����

�	��� �	���

�� �� ���� � ��

Figure 7: Case iii of Step 4c (dashed edges are
cross-edges).

			� �� �� ���
 �� �
��

 �� �� �������� �� �
��
"� �� > ���
�� ����	� �� �� 	� � ��������
�
��	�� �� ����� =���� -�+�)� "� �� > ���
���

�� ����	� �� �� 	� � $����	��
����
��
 ���
�	��
� ���
�� �� �� 	� 	
� 	�
��	���
� ��	�� �� �����
=���� -�+�+� "� �	
��� ����� �
 ���
 ��� ������
$����	��
����� ��� ����
�� �� ��	�� �
 ���

����

8
�	��� ��	�
� 	�
�� 	�
��	�� �� ��� ;����� ���
����� �� �� ���� � �

	�� �� �� ���
 �� �
��

 �� �� �������� ��
���
 �� �
��

 �� ��� �	&����
 ����	�	�	
	�� ���

�� ����� �� ��� ���	��� ����
�� ���

��
 �
	� � ?�8
���� �� ����� ��� 	����
��
�� 	� �	��
��� 2< J���� ��K�� ����������
� � ���
����
�	
� � ��	�
 	� 	
� 	�
��	���
� ��	�� �� ���
��� =���� -�+�.� "� ����� ��K���
�� �������

����� �� �� �� ��� �� ��� �� 	�
�� ������ ����
�������
� � $����	��
���� �	
� � ��	�
 	��	���

� ��	�� �� ����� =���� -�+�+� �	������ ����
�� �����������
� � ���
�����
� ��	�� �� ���
��� =���� -�+�/� "� ��� ������ �� ������ ���
���� �������
 ����� �� �� ��� �
 ���
 �	� ����
��� $����	��
����� ��� ����
�� �� ���	�� �
 ���

���� 8
�	��� ��	�
��

 �
�� ��� � � + ������ ���� ���� ����	�� ��
�
�� ��
�
��
 ����
 � � �
 �� ��� ��� ���
�� ���
�� ��
� �� ��� ��
��� ����	��� �������
�� "� �� ��� �� ��� �������
��
����� 8
���)K- ��� 8
�� .�
� �� ���
��� ��� "

	� ����
� ����
��
 ���
�� ���� ����	�	�� �����
	� � ��� �	
���
�� �	����
�� ���
 ����� ��
�� ���

���� ��� ��� ��	��� ��
�� ���
 ���� ���
�� ��	��
����� ��� ����	� �� � 	�
��� �	
��� �
�	������ �
$����	��
����� � ���
����� �� �
�	����� �	
� �� 	�
��
�	�� ��	�
� "�
�� ���� ��
�� $����	��
����� ���� 	�
���
��� 8
�	��� ��	�
� ��������� 	
 	�
� ��� ������ $�����
"�
�� �
��� ������ �� ��� ��� 8
�	��� ��	�
 ��
�	��

�� �������� �� �
�	� 	� �����	����� �������
��
�������� �� � ��� ��� ���	
��
� ��
�	� ����
�����
�� ��� ������ $���� ��	�� !���� ���� ��
���� 	�
�����
8
�	��� ��	�
�� ������
	�����

�

��

�

��

�

��

�

��

�

��

�

��

��
����

��

����

��� ��� ��� ��� ��� ���

Figure 8: �� for case iv of Step 4c (dashed edges
are cross-edges).

"������ ������ (�	
� �������� �
���� �� �����!��
���� ��
 �� ���
 �������� ���
�� �� �����������
� �� � ���� � ������
�� ��
 �������� �
����!
� !
���

���	
��� � ���� �������� ���	
� ������������ �� �
���� � ���� � ��

�
� 9 + �������
��� !� ����� � ����

�9 + ��
��
� ������� ��
��
�� ��
 �� ����� ��
 ������
��
 !������ �� ��)�
 �������� ���� �� ��� ���

�� ���
�

*����� "� ���� �
�� �� ����� 	 ��
�� �����	
�� ���
���	��� ������ �
 ���
 � 8
�	��� ��	�
� ��� ����� ���

����� � ����� ��	�	��
�� ���� � �

�� ���� ���
 �
���
�	
��� ��� ���� 8
�	��� ��	�
 	� ����� A��
 ��
�	��

�� �������� �� �� ��
�� ���� ��� ����� �	
�	� ��
����������
��
�
�� ������ �� 8
�	��� ��	�
� ����� 	�
�
 ���
 �9+� ���
�������� ��� �����
�� ����� ��	��
	��
�� ���� � � �
 ���

���� �
�	�
�� ������ $����	�
��
����� ��� ����
���
���

�� ���� ���
 �
���
��
���	
	���� $���� ��� �� ����
���
��� ��	� �	��� ��

�� ����� ����� �� � ��

�
�9+ ���
�� ������ �� �
�	�
��

������ $����	��
����� 	�
�� $����������
	���

��
��� �� ����� 	 ��
�� �����	
��� ��� ����� ��
�� ��
 ��
���� ���� ��	�	��
��� ��� �����
�� ���
� ��
��
���
��������� �� �
 ����
 ���� ���
�������� ����� 	 ��
��
�����	
�� ����	��� ����
�� ����� �
 ������ 	
 	 �)

��� 	 � +� "� �
��� ������ ���� ���� 	� � ��
� �����
	��� ���� � ����
��
 ������ ��
	���� ����������
��
�����	
�� ���� 	� ���
	��� ��� ����� ��$�	�����
�
��� ������� ��� �� �����

3.2 Small Polygonal Regions

"�
�	� ���
	��� �� �	�
 ������� ������ ���
�	�	��
�
�
�	�
�� ������ $����������
	��� �� ����� ��� �	����
��������� ���	���� 	���� ���	��� ����	�
	�� �� .� /� 0� �� 1
�������� ����� ��� �� ������ � ���� 	�
�� ����	���
���
	���
���� ���
� ��� ���������
� �����
�� ������
�
���� �� ��� �����	
��� %� ������ �
�
�
�� ������
����� I����� ��� ��	

�� ���
� ���# �� ����� ��� ���

�	�� 	� (0* ��� ()/*��

#���� ������ +,- & �
���� �� !
 �
������
� ����
� ���� ���� ���	
� �������
��� !� ����� � ����
���

 ��
��
� ������ �� ��� ���
�����

#���� ������ +,- & �������
�� ���� ����� �� ���
���
���� �� !
 �
������
� ���� � ���� .	
 ���	
�
�������
��� !� ����� � ���� ���

 ��
��
� ������ ��
��� ���
�����

��� ��������� ���	��� ������� �� �� ��� ������ ��
������ ��� ��
�� �������� ����� 	� ���	���
�� �� ��
��������
��
� ��� ��
��	�� ���� 	� �	����
��
�	���
����
	�� ���� ��
����
�� ���
 �� ���
��� �� ��� 	
�
�����
 	�
�� �����	
�� �����	��� 	�
�� ����	��� ����

	���� %��� $����������
	��
�	� ���	��� ��� 8
�	���
��	�
� �����
 ��� ��� ������ 	�
�� 	�
��	�� ��
�� �����
���� ��� ��� 8
�	��� ��	�
 ��� �� ������ ��
�� ��
�
��	�� ����� ��� �����
	�� $����������
	�� ����	�
� ��
�
�	�
�� ������ $����	��
������ ����	��� �	
� ��� ���
�
����
�	����� ��A����

�
�� ��
��	�� ����� ��� ����
���	�� ������ �
�
�
�� �������
 ���
� ��������<

$�������� ������ /
� � !
 �
����� �� �
� � !

�
��
 �� � � (�	
� ����������� � �� � ���� ���
�� > �� � � �
�
������ �������� �� ���

 ������
�� ���
�� ����� �

�� �� � � %�� �� ��
�

�� ���
� ���
	
����
� �� �������� ������ �� � ���� ��
 �����
������
� �
���
� !� �
��
� ������
� �����
����
� ��

��
 � �� ��� �� !
 �� ���
 ' ���� �
��
�� �� � �� ��
�� ��

��
 �� � ���
� ���� ��
 �
��
� ������
 �� � �
 � � �� ��� �� ���
 ' �� � �� �0�
�� �� ��
 ���
 '

��
� �� �� ��� �� !
 �� ���
 � ���� �
��
�� �� � � � �
�� �
���
� �� ���
 ' ��� �� ���
 �� ��
� � �� �����
�� ��
��
 ������ 	
��
� �� �� ������
� �� � �� �� ��� ��
!
 �� ���
 ��

#���� ������ +'1- /
� � !
 �
����� �� �
� � !

��
 ��������
��
 �� � �)�
�� ��	
� �� �����������
� �� � ���� ��� �� > �� � �
 �	
 ��
 ���������2
�'� � � �� �� ���
 ' ���� �
��
�� �� � � ��
 �
����� �

�� !
 �
������
� ���� ��� ���	
� �������
��� ��
��
 ������
 �0�
�� �� � !� ����� ��
 ��
��
� �����
�����
 � � ��� � � �� �� ���
 � ���� �
��
�� �� � � ��
� �

�� !
 �
������
� ���� ���

 ���	
� �������
��� ��
��
 ������
 �0�
�� �� � !� ����� ��� ��
��
� ������
�����
 � � ��� � � �� �� ���
 � ���� �
��
�� �� � ��
��
� �� !
 �
������
� ���� ���� ���	
� �������
���
!� ����� ��� ��
��
� ������ �����
 � �� ��
 ���

�� ��

��
 ��

#���� ����!� +'1- /
� � !
 �
����� ���� �����
�� ��� ���
���� �� �
� � !
 ��
 ��������
��
 �� � �
)�
�� ��
 �
����� � �� !
 �
������
� ���� � ����
��� ���	
� �������
��� �� ��
 ������
 �0�
�� ��
� !� ����� � ���� ���� ��
��
� ������ �����
 � �

"� ��� �����	
��� � ��������� ���	�� � ������� ��
����� ����� 	� ��
�	��� ����
�� ���
��� �� 	� � ��
�
�� ��� ������ �	
�
�� �	���� ���� ��
�� ���
 �� ���
��	� 	�
�� ���� ����
��
 �����
� 	� � ���
����� ���

�� ��
��	�� ���� 	� ������
�� ���� �� � ������	��
�

�� ������
 ����������	��
�
�� �	���� ���� �� ���

#���� ����%� +'1- /
� � !
 �
����� ���� ��� �
����� ����������� � � ���� �� > �	� ����
 ���
���� �� ���� /
� ��

��
 �� � ������
� �� ��

�����
 ������
 �� � !
 ��
 ��������
��
 ��)�
�� �
�� !
 �
������
� ���� ��� ���	
� �������
��� ��
��
 ������
 �0�
�� �� � !� ����� � ���� ��
��
�
������ �����
 ��

3.3 Constrained Quadrilateral Meshes

,�� �����	
�� ��� ������
	�� $����	��
���� ������ ��
��������� ���	��� �	
� ����� ��� �� ��
����� 	� �
�
��	��
������� ������
� ���# �	
� ���	
���� ����
�
��	���
�	������
	���� ��� ��	�	
�
� ������ ����
	���
 	� ��	
	��� ��� ��� 	���� ���	�
��
	�� ����	��
	��
�����	��� 	� 8��
	�� /� �� �� ����
� ����
���
 $����	�
��
���� ������ �� ��������� ������	��
	��� �� ���	�
�
���
����
��
 ��� ������� �� ���
�� ��������� ���
�	��� ��� �	����)6�� ?�
�
�� 	�
��	�� ���
�� ���

��	�� �� ���� ��������� ���	�� �����

�� ��
��	�� ��

�� ��
�����
 ���� 	�
� �� ������ ��� 	
 	� 	����
��

� ������

�� �������	�� ��
�� ��������� ���	��� 	�

�� $����������
	���

=�
 � �� � �	��� ����
��	���
�	������
	�� �	
� �

�	������� =�
 � ��
�� ���� ����� �� � � ����
��
 	������ � ���� ���� ����
�� ����������	��
�	�
������
	�� ���� 	� � ����
��	�
�� ��� ��
 � ��
��
������ �� ������
�� ��������
� �� �� "� �����

� ����
���
 � ������ $����������
	��
��
 ��
	����

�� �	��� ����
��	�
�� �� ��	��
�� �����	�� �����

� >
��
 ��
 � � �
 �
� �� � ��� ��� ��� �����	
�� ��
���� ��� ��� ���
 ���� �� ���� �� ��������
� �
�	�����
��A����

� � �������� ����
��	�
� ���� �� ��
�� ���
�����	��
�	������
	�� ��� =�
 �� ����
�
�� ������ ��
����� 	� ��� ����
�� �����	
�� ��� ������� -�)�)�
	
 �������
��
 �� ��� �� $����������
�� �	
� �
 ���

� ���

�
� 9 + $����	��
����� ��	�� �
 ���
 �� 9 + 8
�	���

��	�
�� D�
�
��
 	� �� 	� ���� ��� 8
�	��� ��	�
 	�
������ ��
�� ����
��	�
 �� ���
�� ��A����

�	������
��� ���	��� ������	����� ��
��

�� ������ �� �����
��� ����� �� ������� ����� "� �	
��� ����� �� ����

��

��
�
�� ������ �� �
�	�
�� ������ $���� 	�
��
����
��	��� $����������
	�� 	� �
 ���
 � ��

�
�9-�� ���

�	��� �� ��	�� �
 ���
 �9 +� 8
�	��� ��	�
��

3.4 Implementation and Results

%� 	�������
�� ��� �����	
�� ��	�� J99 ���
��
���� ������ 3���������� (
��
��� �� &���������
/�!��� JL =� ����� �	����� �������������	
������
�	���� 5� ����� �
�	������� ���� �	
� --.0
�	���
���� ������
�� ��)�����
� ��	�� 	� � ����
��	��� ���
������
�	������� ���� ������
�� �	
� $���	
� ����
�
��	�
�� ()0*� �	���� 5� ����� � $����	��
���� ����
�	
�)10+ $���� ��
�	��� ����
�� ���� 	� �	����
5� ��	�� ��� �����	
��� ��	� �����
	�� 	� ���� �	!�
�� ����
 06M ��� ���� �������� 	� �����
 ��� ���

��
 ������ �	���� 5� �	���	��
�
�� 	���

�	�����
��� ���� ����	�� ��������
	��
��
 	� ���� ������
 	�
(-�)-*� ,�� �����	
�� ���� ��
 ����	�� ���
�����
	���
������
�� �� ���� ������
 ������ ��� 	
 ��� 	�����
������
� ������ �	
� � ��� ������������� $����	��
�
������ %� ��� ���
��� 	������ ���� $���	
� �� ���
	�� ���
��������	�� ��
���� �

�� ������� �� ���
	��
��� ���� �	!�� �	���� 5� 	����
��
��
�� �����
 �� ���
�
�������	��
�� ���� 	� �	���� 5� ��	�� �����������
����
�	��� ()1*� ���
������	��� ��������� ()2*�

4. MESHES FROM IMAGES

I�������� ������	��
	��� �� �
���
���� 	� �
���
�	����	���� 	���� ��� �� ��
�	��� �� �������	��
��
�����
	��� ��
�� 	���
 	����< 	���� ������
�
	��
��� �������� ������	��
	��� ��
 �
��
������ 	�

�� ������� �� ����	�	�	�� �� 	���� 	�
� 	
� ����
	
���

���
�� ().*� ��	� �����
	�� ��#�� 	
 ����	���
� ��
���

�� ������
	�� �� ��� �	���� ����������	��
� � ���
	�����
�
���
��� �� �� 	����� ��� �������� ������	��
	��
�����
	��
�#�� �� 	���

�� ������
	�� �� �	���� �� �
���
	����� ������
�� �
���
���� �������� ���
�� �	����

��
�� �
���
��� ��������� ��
���
�
�� ������ ������
���� ������ ��������� ������ ��
�� ��
��	�� ���
	���
��� ����� ��
�� �������� �	����� ���
��� �	���	�
���
���� ��������� ������� ��� �	���	���
	�� ��� ��
����	�� ��
 �� ��	�� � ��������� ����� �	���	���
	��
�����	
��� ()5*�

���

���

���

Figure 9: (a) Triangular mesh of “Lake Superior”.
(b) Quadrilateral mesh of Lake Superior. (c) Mesh
in (a) after post-processing.

��� �����
 �� �����	�� ������
�
	�� ��� �������� ���
����	��
	�� �����
	���
� �� 	���� 	� � �	������� ��
���
��� ��������� �� ��������� ����
��

�� ���
����
�� ���
�� �������
	�� �	������� ������ ����� ��� ��
���� ��������� ���	���� ���� ��������� ���	�� 	� ��
������	��
	�� �� � �	�
	��
 ������
�� �
���
��� ��
��
	����� �� ��� ����	�� �����	
�� ��� ��������� ���	���
��� �� ����
� ������
� � ���� ��
�� ��
	�� 	����
���� 	
� ��
 �� ���
����� �	����)6 �����
�� ��
 ��
���
���� ��
�	��� ���� �
����	����	���� ��	�� �� �
������
�� ����� ���	� 	���� �������

Figure 10: Contours of a human brain image.

5. AN APPLICATION

 ��
 �
��������� 	�
�� ������� �� ���	�� � ���
	��
��	�����
 ��
����
�� 	����� ��
��
 ����������	��
���
���� ��� ���	�� �� ����
��� (+6*� ��	� ���
	�� ��	���
���
 	� ������� ���	���� �� � ����	��
	�� �� �	�	� ���
�����	�	� 	����
���������
	���� ��� ������ 	� ����

� �������� ��	��
�� 	����� ��� 	
 ������
� ���
�����
��
	���� ��� ��
�
	���� �	&�������� ��	��
�� ��

�� 	�
����
� ���	�	!�
�� ���	���� �	�	���	
� ��
���� ����
�������	�� �
���
����� "���� ���	�
��
	�� ��� ������
� ���� 	����
��

��� ��� 	���� ������	�� ������
����
	�� ��� �	����	!�
	�� 	� ���	��� ����	��
	����

?��	
� (+)*� ��������� � ��
��� ��� �����	�	� 	����
���	�
��
	�� 	� ��	�� ��� 	����� ������� �� �� �����

	� ���
	����� 	� ������
� ��
��
�� ����������
�� ���
���� =�
��� L�� ��� ?�A���� (++*� �������� �
���	�
	���� ��� ������	�	�
	� ��������#
� �����	�����
�����
� � ��	
� ������
������ ����
	�� ���
�� ���	��

��
	�� ������� ��	�� ?��	
'� ��
���� � 	��������

�
	�� �� L�� ��� ?�A���'� ��������# 	� ���	����� 	�

�� ���� ������ "��	��
 8�����
�
	�� ��� ;��	�
��
	��
����#	
 "�N�� ������������������ ��������� ��
��
D�
	���� =	����� �� :��	�	�� D=:�� ��	� 	��������

�
	��
�#�� �� 	���
 � ��	� �
�� �� 	����� ��� �
���� ��� 	���� �� ��� ��
��
� �� 	���� �� �����
	��
���� ����	�� 	���� �
� ��
��
�� ���������� �� 	��
��� �� �	����)) 	����
��
��
�� �������� 	���� ���	��

��
	�� ��
��� 	�������
�� 	� "�N� 3���� �� ����

�� "�N 	�������
�
	�� �� L�� ��� ?�A���'� ��������
	���� ���	�
��
	�� ��������#
� ������
�
�� $���	
�
�� $����	��
���� ������ �������� �� ��� �����	
�� 	�
8��
	�� -� �� ���� ��
�� $���	
� ��
��	�
�	�������
����
�����
� ��� ������� ���
������� ��	�� ��
���
	�
����� ������
�� ��
�� ���	�
��
	�� ���
�����

%� ��
 �� �� �����	���
 ��� ���	�
��	�� � ��	� �
��
�� +� 	����� ��
�� ����� ���	� 	� ��	�� � ��� �
������� :; 	���� �	
� �	����	��� �$���
� +/0�+/0
�	���� ��� � ���
�� �����
 �� �����	�� � ���	� �������

�	�� ����
� �� D��
� �� ����
�� �������� 	� 8��
	��
.
� �����
� � ��������� ������	��
	�� ���
�� �
����

���� �� 	�
����
 	� 	���� �� ��� ������
�� �������

�	������� ��� $����	��
���� ������ ���
�	� ���������
������	��
	��� %� ���� ��	������ ()0*�
� �������
����
�	������� ������ �����
�	������ ���� �	�	���
������ �� +6�� +/�� -6�� ��� --�� ���� �� ��������
$����	��
���� ������ ����
����
�	������� ������ ���
	��
�� �����	
�� 	� 8��
	�� -� D��
� �� ��
�	���
���� ���� $����	��
���� ������ �� ����
�	�� ��� 	��
����	��
��
������� ��
�� ����	��� ���� ������� %�
���� ���� �� 	�
����� ��������� �	
�	� "�N
� ������
�
���� ������� ��	�� �� 2� 2� .� .� +� +� ���)�)��	���
������
�� �����) �����
�� ������ �� ������
�� ����

	���� ��� ����� �� ��� ������ ���� 	� ��� �����	���
�
:�����)K. ���
�	������� ������ �	
� �	�	��� ���
��� +6�� +/�� -6�� ��� --�� ������
	����� :����� /K2
��� $����	��
���� ������ ������
�� ���� ������)K.�
:����� 5K)+ ���
�� �����
 �� ���
��������	�� ������
/K2� :�����)-K)0 ��� ���
������� ��	�� �� 2�2� .�.�
+� +� ���)�)��	��� ������
�� ������
	�����

��� ���

��� ���

Figure 11: (a) Source image. (b) Target image and
its associated mesh. (c) Image resulting from warp-
ing image in (a). (d) Subtraction of (c) from image
in (b).

�	������ �� ���	�
���� 	���� �
� 	���� � +6
	����
���� ���	�
��
	�� ����
�� ���� ��	� �
�� �� 	�����
��� � ���� ���� �����)� :�����)K. ���� ����
�	��
����� ��� ������ /K)0 ���� ���� ���� ����� ��
�	�
������ ��� $����	��
����� ���� -������ ��� .������

�	���� ������
�� ������
	����� ���
�� ���	�
��
	��� ���
	�� $����	��
������ ���� 	�
����
	�� ��	�
� ���� ����
��
�� �� �����	��� 	�
����
	�� ���������� ���
��
���	�
��
	��� ��	��
�	������� �� ����) ��� - 	�
�����

	�� ��	�
�� �� ���	�
��
	��� ��� ��� +6 	
���
	��� ��
� IJ �	
� �� "�
�� I��
	�� """ ��������� ��� +/0:?
�� ; : ����	�� %	����� 52� %� ������
��
�� ���
���
� ��
�� ���	�
��
	��� �� �������
	��
�� ���
�����
�$����� ;:8� �	&������ ��
����
�� 	�
���	
� ����
��� ��
�� ����������	�� �	���� ����
�� ��
	�� ����	�
�� 	����� �� ��� �� ����� + ������	!��
�� �����
�
��
�	��� ����
�� +6 ���	�
��
	����

&��� '(������ ')���� �� '(����

) +5+)).1+ .-5+

+ -/.5)156 /--2

- .5). +.2) 1-5.

. 2+/. .)1-)+.+0

/)0./)0/1 --6)

0)5.))5/1 -251

1 +/2) +06/ /)2/

2 .-)2 .-0. 202)

5)11-)12/ -//1

)6 +61- +625 .)0)

)) +1.1 +11) //)1

)+ ..55 ././ 56.-

)-)6+.)625 +))+

). .650 .++/ 2-+6

)/)0-2.)00.) --6+.

)0 0//-0 006.5)-)/2.

Table 1: Size of the meshes 1–16.

����	��
	�� ��
�� �����
� 	� ������) ��� + ������
�
��
��
��

�� ������
�� �	!� �� � ���
	�����
��� ��
�����
�� �������
�� �����	�
�� ;:8� "� ���	
	���
$����	��
���� ������ /K2 ���� ����
��� 06M ��
��
������ �� ������
� ��
��	�
�	������� ����
�����
��
������)K.� ��� ��� �� ���
��������	��
����	$���

� ��
�	� ������ 5K)+ ���� ������ /K2 ��������
������ �	
� ������	��
���)6M ���� $����	��
������
���� ���
�� ������ �� $����	��
����� 	� ������ 5K
)+ 	� �
	�� ����
��� 0)M ��
�� ������ ��
�	������
	� ����������	�� ������)K.� ����	
�
�	� �����
	��
	� ���� �	!��
�� ;:8 �����	�
�� �	
�
�� $����	��
�
���� ������ ���
��	� ����
�����
� ��� �����������
��� ;:8 �����	�
�� �	
�
�� $����	��
���� ������ 	�
������� ���� ����� ��� ���� ����� ��
�� ;:8 ���
���	�
�� �	
�
��	�
�	������� ����
�����
� �������
�	
�) ��� - 	�
����
	�� ��	�
�� ������
	����� D�
�

��
 ���
��������	��
����	$��� 	� ������� 	�������

�� $����	��
���� ������� ��� ���
	�� �����	�
�� �	
�

�� $����	��
���� ������� �������� 	� �	����
���
��

��
��
�	������� ����
�����
�� ��	� 	� ���
�
�� ���

��

�� ����������
� �����
�
�� ��	
� ������
 �����

	�� ��	�� .������ $����	��
����� ��� ���� ������	��

���
�� �	���� ���� �����	�
�� �	
� -������
�	���
�����

&��� *��� ���� +
����� ,�- +&�

)))6)1�5/

) -)1)1�+/

+))+)1�-/

+ - +))0�52

-))1)1�+6

- - -6)0�2)

.) -+)0�12

. - /+)0�0+

/ . +))1�01

0 . +.)1�)+

1 . --)0�5-

2 . /5)0�02

5 . +-)1�..

)6 . +1)1�.1

)) . -/)0�5+

)+ . 0+)0�00

)- .)+)2�/0

). . .0)0�55

)/ . +6/)0�))

)0 .)66))/�5-

Table 2: Summary of the registration results.

C����	��
���� ������ 1 ���)) ���� ����
 1/M ��
���� $����	��
����� ��
�� ������� ���
������� ��	�).�
��
 ��
� ������ ���� � ������� ;:8� ��	� 	� �� �����
��� �� � ���� 	� ��	�� ���� �������	
� ��� �����������
������
� ����� ���� ��
 ������
� ����	�� � ��

��
�����
� ��� ���	�
��
	�� ��
��� 	� ���� ����	
	�� �����

�� �������� �� �	�
	��
 �
���
���� ��� �	����))���
��� �������	�
��� ������ ������ ��� ����	�� � ��

��
�����
� �	����)+ �����
�	������� ���� -� �	�����)-�
���)-� ����
�� $����	��
���� ���� 1 �������� ����
���� - ��
�� �����	
�� 	� 8��
	�� -� ��� $����	��
�
���� ����))
��
 	�
�� ����
��� ���
������	�����
	������� ����	�� �� ���� 1� ������
	�����

6. CONCLUSIONS

%� ������
�� �� �����	
��
� ������

�	������
	���
�� ��������� ���	��� �	
� �� �	
���
 ��������� �����
	�
� �
�	�
�� ������ $����������
	���� ,�� �����	
��
��� � ���
	�� �	���� 	�
�� ������ ��
�	������ ��
��
	���

�	������
	��� �&��� ��

�� ������
��� �	��
	��� �����	
��� (-*�
��
 ���� ������� �
�	�
�� ����
��� $����	��
���� ������ �� ������� �	!�� ��� 	� �	��
���� ��� ���
��
��� �����	
���
��
 ������� ��

��
$���	
� ������ 	�
���� �� ������
 ������ ��������
	
� ��� �	���
	����	
� ���
���� �

�� ������� �� ����

	��� (1�)-� 2*� %� ���� ������
��
�� $���	
� ��
��
������ ������
�� �� ��� �����	
���
��	�
�	�������

����
�����
� ��� ������� ���
������� ��	�� �	
� ���
����

�
�� ����������� �� � �������� 	���� ����
	�
��
	�� ��
���� ,�� ������
	�� ������
��
��
��

��� $����	��
���� ������ ����
� ��	��
�� ���� �����
��
� ���	�
��
	��� ���� �������� �	
�
���� ��
�	���
��	�� ���
������� ��	�� �� �	�	��� �	!�� ��� ���� ����

� ����
	��� ���������� �	
�
�� ���� ��
�	��� ��	��

��	� ������
�	������� ����
�����
��

��
��� ���# �	�� ����� ��
�� 	����
	��
	�� ��� ����
���	!�
	�� ��
�� ����
	����	� ��
����
�� $���	
� ��

�� 	���

�	������
	�� ���
�� $���	
� ��
�� ������
�����	�� ��
��
 $����������
	�� ��
�	��� �� ��� ���
���	
�� �	
� ������

� $���	
� �������� ���� �� ���
��� ������� �
�� %� ���� 	�
���
� ��
���
�� ���
���	���
 	� 8��
	�� /
� 	������ �� �����	
��
��
 	�
#����
� ������
� ����������� $����	��
���� �������
���� ��
�� ���� 	� (1�)-� 2*� �� ���� ��
� 	����
	��
�
�� ��
���	�� �� ��� ����	�� �����	
��
� ������� ����
������� ������ ��
���� ������ ���������
	��� �� 	����
�������� � ������� �	���
�� ��
	��
�� �� ����	��
	���
	� ���	��� 	���	���

ACKNOWLEDGEMENTS

%� ����� �	#�
�
���#
�� ��������� ���	����� ���

��	� ������
�� ��� ���
 ��
���'� �������� 	� ���
	����
������
�� �� D8� L���
 D�� JJ;�6+6.+5-� ���
��
������ ��
��� 	� ���
	���� ������
�� �� JDI$� ?��!	��

References

()* 8������# @� F%��
 	� � L��� =	���� ������
O
"�
������
	��� J���	
	��	��� ��� C���	
� :���
������G *����))�
 45� ���))/K)+0� +66+

(+* ?��� :�� ����
�	� �� F:��� L�����
	�� ��� ,��

	��� ��	������
	���G �� 3����� ��P� ��� ��	�

���� 3�������� �� %�����
� (
��
���� %����
8�	��
	���)55+

(-* �����

 3�� =�����
 %�� ,������� :�� 8������
��� Q���
	� @� F8
�	�
�� J����� C����	��
����	!��

	��� �� I��������G *���� .�
 3�� 3���� 3����
(
���� ��� 11K2+�)55+

(.* ?��� :�� ����
�	� �� FC����	��
���� :���	�� ��
J	���� I��#	���G *���� 0�
 45� ��� 1K)5�)551

(/* ;�������	 8�� ;���� I�� ������	�
 L� FJ���
���
	�� ��	������
	���
� C����������
	����G
3���������� (
��
���2)�
��� �� &������
������ ���� 5� +/1K+10�)552

(0* ?������ ��� 3��
��� ��� ;�������	 8�� 8���
�	�
R�� B� F8���� J����� C����������
	��� ��
I�	�
 8�
��G *���� ���� ���� �� &��������� ��
3��������� � �&&3�� =DJ8 +++-� ��� 0+-K0-/�
8��	����B������ +66)

(1* 8�	���� N�� =	�� @�3�� "
�� �� FC����	��
����
:���	�� �	
� �	���
	����	
� J��
���
������
��
I��#	�� �� 8$���� J�����G *���� 1�
 45� ��� 0)K
10�)552

(2* B	�����
� D�� 8�	���� N�� "
�� �� FC����	��
�
���� :���	�� �	
� �	��
���� ��� �	���
	����	
�
J��
��� �	� J���� I��#	�� �� ;��
������� J�����G
*���� 5�
 45� ��� +)1K++/� +666

(5* :����
���� �� L���
�� %� FJ������
	�� 8
���
�� Q��
���
���� :����� :��� �� ��	������ ���
C����	��
������G *���� 0�
 45� ��� .-1K..1�
)551

()6* 3��
���� Q�� N������ �� F ���
 ����	
�� ���
L�����
	�� =���� ��
�������� -� �	�	
� ������

:����� ���� :����
	� ;�������� ����������G
*���� %%% $6 &� ���)2.K)5+�)552

())* =��	� � F��������	�� ��������� ���	��� 	�
�
������ $����	��
������G *���� &34 ����� 3����
(
���� ��� 51K)60�)52/

()+* @����
�� ?�� 8���	��� @�� N����	# � F �
��
��
	� J������	�� �� ��	������� �	�	
� :�����
�
C����	��
���� :������G ���� 7� ��� 8��� 4
�����
�� %���� ���� -)� ���)� 01K2.�)55)

()-* ,��� 8�� 8
�
�� :�� J����� 8�� 8�	��� 8� FC�
:����< � "��	���
 �������
� �����	��
����
 C��� :���	���G ���� 7� ��� 8��� 4
���
��� �� %���� ���� 5� ��� ..�)-)1K)-.6�)555

().* L��!���! ;�� %���� ;� 9����� ��
 *���
������
 ��	����%������ +�� ��	
	��� +66+

()/* ;�������	 8�� 8	$��	�� :�� 8������� ��� L���
�	�� @�� L�� @� FC����	��
���� :����� ��� ���
?���� "���� ;��	�
��
	���G ����� ;��� :8�J"8�
6-�)0� �����
���
 �� J����
�� ��� "������
	��
8�	����� Q�	����	
� �� I���������	�� I�	������
��	�� I � Q8 � +66-

()0* 8������# @� F��	�����< ���	����	�� � +� C���	
�
:��� L�����
�� ��� �������� ��	������
���G '��
$��:���� �� &����
� 3���� (
���� ���)+.K)--�
I�	�������	�� I � Q8 � :��)550

()1* P��� ��� 8�	���� N� F � �����?���� �������

� �����	����	���� :��� 8���
�	���G *���� 5�

 45� ��� -1-K-2.� +666

()2* N	���� I� FJ����Q�< "�����	�� C����	��
����
�	�	
� ������
 :������G *���� 0�
 45� ��� ..5K
.0)�)551

()5* 3���������� @�� 8����	�# @� F8����	�� Q�
��
��������I���#�� =	���8	���	���
	�� ����	
���G
*���� 1�� ���� ����� �� ����� 9� ;�������
����)� ���)-.K).-�)55+

(+6* 3�A��� @�� 3��#�� ��� 3	�� �� 4
���� ��
 5
��
��������� J;J I����� +66)

(+)* ?��	
 J� <����� 5
��������� �� 9
����
� ��
�
�� I����
���	�� �����
���
 �� "������
	��
��� J����
�� 8�	����� Q�	����	
� �� I���������
�	�� I�	�������	�� I � Q8 �)52)

(++* L�� @�� ?�A��� ;� F����
	� :�
��	��< J��
	����
:�����	��� ��� I�����	�	�
	� �����	��G � �����
��	
��� 6��� $������ �����	� I�����)555

Figure 12: Triangular mesh with minimum angle
-6�.

Figure 13: Mesh 7.

Figure 14: Mesh 11.

Invited Speaker

Michael Garland
University of Illinois at Urbana-Champaign

Abstract:

Surface Approximation and Remeshing in Computer Graphics

Efficiently managing complex surface geometry is of fundamental importance in
almost all graphics applications dealing with real-world data. At the heart of many
of the problems encountered in such applications is the need to automatically
adapt surface triangulations produced by laser scanners, isosurfacing of volume
data, and similar systems. This talk will explore some of the primary techniques
developed in this area, particularly surface simplification and
remeshing methods. We will focus on the close connections between
simplification/remeshing, parameterization, and graph partitioning.

Session 2A
Surface Meshing

MESHING OF DIFFUSION SURFACES FOR POINT-BASED
TENSOR FIELD VISUALIZATION

Ralf Sondershaus, Stefan Gumhold

WSI/GRIS, University of Tübingen, Germany, {sondershaus/gumhold}@gris.uni-tuebingen.de

ABSTRACT

The visualization of 3D vector and tensor fields in a 2D image is challenging because the large amount of information will either
be mixed during projection to 2D or lead to severe occlusion problems.
In this work we segment from the symmetric 3D tensor field regions dominated by stream tubes and regions dominated by diffusion
surfaces. The diffusion surfaces are integrated with a higher order Runge–Kutta scheme and approximated with a triangle mesh.
Our main contribution is to steer the integration with a face-based coding scheme, that allows direct compression of the integrated
diffusion surfaces and ensures that diffusion surfaces of any topology can be created.
Finally we sample the stream tubes and diffusion surfaces with points. The points from different entities are colored with different
colors. We lit the points during rendering with a lighting model adapted to the tensor field. The resulting visualization of symmetric
3D tensor fields is sparse because of the sampling on points and allows for a deeper view inside the volumetric tensor field but also
allows the simultaneous visualization of a dense set of tubes and surfaces.

Keywords: Tensor Field, Surface Integration, Surface Meshing, Visualization, Point Rendering, Diffusion Surfaces

1. INTRODUCTION

The visualization of 3D vector and tensor fields in a 2D im-
age is challenging because the large amount of information
will either be mixed during projection to 2D or lead to severe
occlusion problems.

A lot of work has been done to visualize vector fields. Stream
lines and stream surfaces are popular visualization tech-
niques. A stream line is a curve where for every point on
the curve the associated vector is tangent to the curve. One
can imagine a stream line as the path that a particle takes
through the vector field. Stream lines do not intersect each
other except for points where the vector field vanishes or is
undefined.

A stream surface is the path that a curve takes through the
vector field and can be thought of as the dense collection of
stream lines, all starting at a given curve.

The situation changes slightly if we look at symmetric 3D
tensor fields. Throughout this paper we use the term ten-
sor for symmetric 3D tensors. Symmetric 3D tensors play

a great role in physics or medicine as for example diffusion
tensors are symmetric 3D tensors. At every point a tensor
field contains a (symmetric) tensor, i.e. a symmtric3 × 3-
matrix, instead of a single vector.

Eigenvector decomposition of the tensor is a popular ap-
proach to analyze a tensor. A symmetric tensor can al-
ways be decomposed into a diagonal matrixΛ with the three
eigenvaluesλ1 ≥ λ2 ≥ λ3 on the diagonal and an orthonor-
mal rotation matrixV with V V t = 1, with the unit matrix
1:

∀T ∈ R3×3 with T = T t :

∃V, Λ ∈ R3×3 with V V t = 1, Λij = 0 ⇐ i 6= j :

T = V ΛV t.

The columnsvi
def
= V.i of V form an orthonormal basis

of R3 and are called the eigenvectors. The combination of
eigenvectors and eigenvalues(V, λ) is called the eigensys-
tem of the tensor. If a unit sphere is scaled in the direction of
the eigenvectors with the eigenvalues we obtain an ellipsoid
that can be used to visualize the tensor. In the case of diffu-
sion tensors the ellipsoids describe for any possible direction

the rate of diffusion. Particles would have to be traced in
all possible directions with speeds given by the ellipsoid. A
diffusion tensor can be imagined as a description of how a
spherical water drop is diffused into an ellipsoid. The terms
stream line and stream surface can therefore not so easily
applied to tensor fields.

Diffusion tensors often degenerate over large regions, such
that their ellipsoids look like cigars or like pancakes. In
the case of a cigar we speak of linear anisotropy, when one
eigenvalue dominates the other two. In the other case we
speak of planar anisotropy and two eigenvalues are much
larger than the last one. If all eigenvalues are of similar
size the corresponding region of the tensor field is called
isotropic.

The eigenvector with the largest eigenvalue is called the ma-
jor eigenvector, the eigenvector with the smallest eigenvalue
is called the minor eigenvector, and the eigenvector with the
medium eigenvalue is the medium eigenvector.

Given the anisotropy of tensors, the domain of a tensor field
can be partitioned into linear, planar, and isotropic regions.
Every region only contains tensors of the one specific type
of anisotropy.

Within linear regions, a tensor field can be interpreted as a
vector field formed by the major eigenvectors. Thus, we can
define stream tubes as tubes whose middle axis is a stream
line. Every point on the stream line is tangential to the major
eigenvector of the tensor at this point. The cross section of
the tube is defined by the medium and minor eigenvectors
which are perpendicular to the major eigenvector.

Within planar regions, a diffusion surface can be defined as
surface whose tangential plane for every point is the plane
defined by the major and medium eigenvectors, i.e. it is nor-
mal to the vector field of the minor eigenvectors. We use the
term diffusion surface here because the term stream surface
may be misleading to what a stream surface is for a vector
field.

We segment from the symmetric 3D tensor field regions
dominated by stream tubes and regions dominated by dif-
fusion surfaces. We reconstruct a dense set of stream tubes
and diffusion surfaces and point sample them in way that
the distance between two points is inversely proportional to
the diffusion rate. Thus the points are closely spaced along
a stream tube and sparsely orthogonal to it. On a diffusion
surface the points are closely spaced over the surface but the
surfaces are further apart from each other. The human eye of
the observer will automatically merge close points to tubes
and surfaces. The points from different entities are distin-
guished by their color. We lit the points during rendering
with a lighting model adapted to the tensor field. The re-
sulting visualization of symmetric 3D tensor fields is sparse
because of the sampling on points and allows for a deeper
view inside the volumetric tensor field but allows on the other
hand the simultaneous visualization of a dense set of entities.

2. RELATED WORK

Isosurfaces The marching cubes algorithm [1] can extract
an isosurface from a scalar field. An isosurface is thereby
defined as the collection of points with equal scalar values.
The marching cubes algorithm creates a triangular mesh that
approximates the isosurface. For every vertex of the triangu-
lar mesh, a normal is calculated to perform lighting during
rendering.

The basic algorithm loops over all (small) cubes whose cor-
ner points are in the center of eight voxels of the discrete
scalar field. For every such cube the isosurface is located
within the cube. There are28 = 256 ways how the sur-
face may intersect with the cube. Every case is triangulated.
A surface intersects an edge of the cube when one vertex is
outside and the other vertex is inside the surface.

Stream Surfaces Stream surfaces from vector fields can
be represented as parametric surfaces. A simple approach
to construct such parametric stream surfaces is to place a
number of seed points onto the original curve, to trace these
points along their stream lines, and to connect the resulting
stream lines. Remember that stream lines of vector fields can
never cross each other.

This approach has many drawbacks. For example, consider
converging or diverging stream lines. Connecting diverging
stream lines may result in slivers or even don’t approximate
the surface correctly because of the large area that is approx-
imated linearly by the triangle.

Hultquist [2] improves this parametric stream surface ap-
proach. An initial set of stream lines is traced and as the
tracing proceeds, additional stream lines are introduced in
the case of diverging stream lines, or stream lines are re-
moved on cases of converging stream lines.

Scheuermann et al. [3] presented an algorithm that is re-
lated to Hultquist. The stream surfaces are calculated for
tetrahedral grids. A surface is propagated through a tetra-
hedra, calculating the intersections between the surface and
the tetrahedra. The surface within a tetrahedra is a ruled
surface, which means that the surface is generated by two
stream lines that are blended by line segments. All calcu-
lations are done in barycentric coordinates of the tetrahedra
which simplifies the formulas.

Van Wijk [4] models stream surfaces as implicit functions in-
stead of parametric surfaces. A stream surface is given by the
implicit function f(x) = C whereC is a (scalar) constant.
The difficulty is to find the functionf . Oncef is found,
a family of stream surfaces can be generated efficiently by
varyingC.

Van Wijk calculates f from the convection equation for in-
compressible flow withf as the transported quantity and~v
as the velocity.

∂f

∂t
= −∇f · ~v

A range of values is placed along the boundary as initial
(boundary) values. The convection equation is then solved
over time using some numerical integrator until a steady state
is reached. One can imagine this process as inserting vary-
ing concentrations of ink along the boundary of water. Af-
ter some time, this ink is distributed (not necessary evenly!)
within the water and the stream surfaces are the areas of
equal concentration. Once the implicit function f is calcu-
lated, the isosurface for a particular value C is extracted and
rendered with the marching–cubes algorithm.

In the case of diffusion surfaces the implicit approach is not
possible. In the implicit approach the surface normal cor-
responds to the gradient∇f of the implicit function. The
diffusion surfaces are defined to be orthogonal to the vector
field of the minor eigenvectors of a tensor field. Therefore,
we are given∇f and need to findf . From the Helmholtz–
Hodge decomposition follows that this is possible only if the
rotation of the vector field of the minor eigenvectors van-
ishes. As the rotation does not vanish for arbitrary symmetric
tensor fields, the implicit approach is not possible. Figure 7
shows the diffusion surface of a tensor field with a planar
region where the minor eigenvector field has quite a lot rota-
tion.

Diffusion Surfaces There hasn’t been much work done
yet to extract diffusion surfaces from tensor fields. Zhang et
al. [5] presented a technique to extract stream tubes and dif-
fusion surfaces from volumetric diffusion tensor MR images.
Stream tubes are extracted in linear regions and diffusion sur-
faces in planar regions. So stream tubes represent structures
with primarily linear diffusion while diffusion surfaces rep-
resent structures with primarily planar diffusion. Additional
information is encoded in the color and cross section of the
stream tubes.

Our approach of extracting diffusion surfaces is similar to
[5]. That’s why this approach is discussed in more detail.
Zhang et al. generate a dense set of stream tubes and diffu-
sion surfaces and cull them later using a set of metrics.

Linear regions are interpreted as vector fields formed by the
major eigenvectors of the tensors. Thus the trajectory of a
stream tube is a stream line through this vector field. The MR
images are interpolated using tricubic B-Splines to get ten-
sors not only at the sample points of the MR images. Zhang
et al. generate seed points for every sample point within a
linear region and jitter them within the voxel. The stream
tube starts at a seed point and follows the major eigenvector
field both forward and backward. An second-order Runge-
Kutta integrator is used to track the stream line.

Diffusion surfaces1 are extracted from planar regions. The
major and medium eigenvectors of a tensor at a point in space
define the tangential plane of the surface at this point. Again,

1Zhang et al. call the diffusion surfaces stream surfaces. We
prefer the term diffusion surface to avoid confusion with the term
stream surface from vector fields.

the seed points are placed into the voxels by jittering the sam-
ple points.

Starting from a seed pointv, six initial search directions
are distributed evenly aroundv. Every search direction is
tracked and thus follows the shape of the surface. A triangle
is created for every pair of neighboring edges. This first step
creates a triangle fan consisting of six triangles.

From every vertexu new search directions are created by
projecting the triangles that are adjacent tou onto the tan-
gential planeP (u) and the initial directions inP (u) that are
not covered by triangles. This is repeated for every newly
generated vertex.

The new search directions of a vertexu are traced through a
vector field which is defined as the linear combination of the
normalized major and medium eigenvectors which lies on a
PlaneP1 that is both perpendicular to the tangential plane
P (u) atu and contains the search direction.

The extension of the diffusion surface stops if it gets out of
the data boundary, hits a low planar region, enters a region
of low signal–to–noise ratio, or incurs a high curvature term.

While rendering, color is mapped onto the surface to repre-
sent the planar anisotropy.

3. POINT-BASED TENSOR FIELD
VISUALIZATION

3.1 Volume Segmentation

As already mentioned in the introduction, the tensor field do-
main is partitioned into linear, planar, and isotropic regions.
We use three quantities of a (diffusion) tensor to define this
partition as suggested by [6]:

cl =
λ1 − λ2

λ1 + λ2 + λ3

cp =
2(λ2 − λ3)

λ1 + λ2 + λ3

cs =
3λ3

λ1 + λ2 + λ3

wherecl measures linear anisotropy,cp planar anisotropy,
and cs isotropy. Note thatcl + cp + cs = 1. λi are the
eigenvalues of the tensor withλ1 ≥ λ2 ≥ λ3. The greatercl

is the more the ellipsoid looks like a cigar (and the smallercp

andcs are). Similarly, the greatercp is the more the ellipsoid
looks like a pancake. Finally, ifcs equals1, the ellipsoid
becomes a sphere (all eigenvalues are1 andcp andcl are0),
see figure 1.

After this segmentation of the volume, we can trace stream
lines in linear regions and diffusion surfaces in planar re-
gions. We use thresholds oncl andcp to classify regions.

a) b) c)

Figure 1: A tensor can be classified as being isotropic (c l = 0, cp = 0, cs = 1), planar (cl = 0, cp = 0.61, cs = 0.39), or
linear (cl = 0.57, cp = 0, cs = 0.43).

3.2 Distributing Points

We render stream tubes and diffusion surfaces as collections
of points. Different colors are used to distinguish points from
different entities. The tubes and surfaces shall be point sam-
pled with the density described by the inverse of the diffusion
rate given by the symmetric tensors.

Depending on the entity, that points were sampled from, the
points are lit differently. Points from stream tubes are lit with
the lighting model for lines as proposed by Zöckler et al. [7],
whereas points on the diffusion surfaces are lit with the stan-
dard Blinn-Phong lighting model provided by OpenGL.

3.3 Stream tubes

Similar to [5] we look at the tensor field in linear regions
as a vector field consisting of the major eigenvectors of the
tensors. This vector field is traced.

We subdivide the volume into a regular grid which may be
given automatically by the resolution of the image data. Oth-
erwise, the resolution of the grid is specified explicitly.

To create stream tubes, we first create a stream line for every
stream tube. This stream line is the trajectory of the latter
stream tube.

We place a seed point into every grid cell. The tensor of this
seed point needs to have linear anisotropy. We integrate a
stream line starting at the seed point into both forward and
backward direction using a second-order Runge-Kutta inte-
grator [8]. A stream line consists of a list of ordered points
pi and is linearly approximated as a line segment between
two successive pointspi−1 andpi.

We want to place the points along a stream line such that the
density of the points on a stream line represents the linear
anisotropy of the tensors involved as described above.

To realize this behavior, we control both the arc length of the
integration process and the step width of the second-order
Runge-Kutta integrator.

The integration of the stream line stops if any of these cases

happens:

• Outside of data volume.

• Left region of linear anisotropycl > Cl whereCl is
the threshold for linear anisotropy.

• Extended point is ”too” close to a previously calculated
point.

The third point is motivated by artificial datasets where a
stream line may be a (closed) circle. In order to stop the in-
tegrating process, the integrator needs to check if it reaches
a part of the stream line that was previously integrated. For a
fast local access to the points and line segments of the stream
line, we sort the extended points into an octree. The integra-
tor just needs to look up the octree to find proximate points.

A stream tube follows the trajectory defined by the stream
line. Our approach is to render the (extended) points of the
stream line only instead of rendering the whole tube around
the stream line.

3.4 Diffusion surfaces

A crucial point for our visualization technique is to distribute
the points across diffusion surfaces. We want the points to be
distributed according to the diffusion rate over the diffusion
surface. The higher the diffusion rate, the closer have to be
the points. Remember that we want to render points instead
of shaded surfaces. The human eye connects points that lie
closer together and therefore follows automatically the more
likely diffusion direction.

Although we are only interested in rendering points, for the
integration of the diffusion surface it is advantageous to also
build a triangle mesh to ensure a proper diffusion surface.
Furthermore the connectivity information allows for smooth-
ing and successive remeshing steps.

Although the diffusion surfaces do not have to be isosurfaces
of an implicit function, they have to be manifold for differ-
entiable tensor fields. This can be easily shown from the def-

inition. The diffusion surface is restricted to the subdomain
of the tensor field, which is classified planar. Therefore, the
minor eigenvector is defined everywhere and varies continu-
ously over the planar subdomain as we supposed the tensor
field to be differentiable. As the minor eigenvector uniquely
defines the normal direction of the diffusion surface, the dif-
fusion surface has to be manifold with border loops at the
border of the planar domain.

4. DIFFUSION SURFACE INTEGRATION

As the diffusion surface has to be manifold with border, the
integration process that approximates the diffusion surface
via a triangle mesh is very similar to the encoding or rather
decoding process of a faced-based compression scheme. We
used exactly the same building scheme to build the triangu-
lar diffusion surface. There are three advantages with this
approach. Firstly, we can re-use the minimum set of build-
ing operations that allow to create manifold meshes of arbi-
trary genus. Secondly, we can re-use the data structures used
for face-based coding such that the implementation of the
diffusion surface integrator becomes very simple. And the
third advantage is that we can directly encode the triangular
diffusion surface into a space efficient representation, such
that we can easily build in-core a large number of diffusion
surfaces of high resolution.

We used a face-based compression scheme similar to the cut-
border machine [9] and the edge-breaker [10] (see also [11]
for an introduction to face-based coding) for coding and to
steer the integration. A short review of the method and the
basic building operations are given in the next subsection.

4.1 Face-Based Coding of Triangle
Meshes

Face-based coding techniques compress triangle meshes
which consist of a list of vertices and a list of triangles, each
triangle containing three vertex indices and the indices of the
edge-adjacent triangles.

The schemes are based on a region growing traversal of the
triangle mesh. The traversal begins for example with an ar-
bitrary seed triangle. The border of the growing region is
called thecut-border. It divides the mesh into theinner and
theouter part, which contain the already processed and the
untouched triangles respectively. Triangles are added to the
inner part at a distinguished current cut-border edge which
is called thegate. After each addition of a triangle the gate
moves on to another cut-border edge, until all triangles of an
edge-connected component of the triangle mesh have been
compressed. This is done for each edge-connected compo-
nent. The choice of the next gate location defines thetraver-
sal orderand steers how the cut-border grows over the mesh.

The face-based coding scheme encodes a bit-code each time
a new operation is added. The decoding performs the same
traversal and builds the face according to the encoded oper-

C
R L

E S

old /

cut-border

untouched
processed

current face
untouched

active vtx
processed

H

M

(a)

(d)

(g)

(b)

(e)

(c)

(f)

new gate

old / new

Figure 2: The different cut-border operations in which
the processed triangle can be incident to the cut-
border.

ation. The different possible operations by which the next
triangle is incorporated into the inner part at the gate are il-
lustrated in figure 2. Thecenteroperation C in (a) adds a
new triangle to the growing region that is incident only to
the old gate and to a new vertex. The gate is moved to the
right newly added cut-border edge such that it cycles around
its target vertex. The current face in theright/left operation
R/L in (b/c) is incident to the gateandthe next/previous edge
on the cut-border. The neighborhood of the pivot vertex is
closed and a new pivot vertex is chosen with the new gate
location. In theendoperation E in (d) all edges of the cur-
rent face are incident to the cut-border and the cut-border
closes. The other growing operations describe cases when
the third vertex of the current face is on the cut-border. (e)
shows thesplit operation S, where the cut-border grows into
itself and is split into two loops with two gate locations. One
cut-border loop is pushed onto a stack and processed after
the other one is eliminated by anend operation. In order
that the decoder can replay the split operation the position
of the third vertex relative to the gate is encoded. Thehole
operation H (f) merges the current cut-border with a border
loop. We will handle border loops in a different way as done
by the cut-border machine [9]. We encode a border opera-
tion B, whenever the gate is a border edge of the mesh. As
triangle meshes describe two dimensional surfaces in three
dimensional space, two cut-border loops can grow together
again, actually once for each handle of the triangle mesh.
The operation which unifies two loops is calledmergeop-
eration M (g). It merges the current cut-border loop with
another cut-border loop and takes two indices, the index of
the other cut-border loop and the location inside that other
loop.

The cut-border data structure consists of a stack of doubly
linked lists of cut-border edges. Each cut-border edge stores

Input: seed locationx

integrate edge fromx to y
init cut-border to(x, y)
while cut-border not empty

choose gate
decide operation
apply operation to cut-border

Figure 3: Structure of the integration algorithm.

the indices of its start vertex and of its adjacent triangle in
the inner part. The initialization creates a cut-border with
three edges. Each C,S or M operation inserts a cut-border
edge after the gate. The R and L remove the next or previous
cut-border edge and the E operation closes the loop on top of
the stack.

4.2 Cut-Border Based Surface Construc-
tion

As the face-based coding scheme can encode any manifold
mesh, one can also build any triangulated diffusion surface
during the integration.

The input to our diffusion surface integrator is a seed loca-
tion in a planar region of the volumetric domain of the ten-
sor field. We integrate the diffusion surfaces with the face-
based building operations C,L,R,E,S,M,B. Opposed to the
face-based scheme we start the building process with a sin-
gle edge and initialize the cut-border to a loop of two cut-
border edges around the edge like the face-fixer proposed by
Isenburg [12]. This first edge is created by integrating from
the seed location in the direction of the major eigenvector of
the tensor field. The integration of a new edge is described
in the next subsection in detail.

The diffusion surface is built from the initial cut-border by
extending it at one of the cut-border edges, which is called
the gate. The choice of the gate steers how the cut-border
grows the diffusion surface and is described in subsection 4.4
in detail.

We summarized the integration algorithm in figure 3. Af-
ter the cut-border has been initialized from the seed location
we successively select a gate edge, decide which of the op-
erations C,L,R,E,S,M,B to perform and apply it to the cut-
border until no cut-border edges are remaining. This can
either happen, when the diffusion surfaces closes up or when
all cut-border edges were transformed into border edges of
the mesh by a B operation at the boundary of the planar do-
main of the seed location. Figure 4 illustrates the growing
process for a spherical diffusion surface.

In this subsection it remains to explain how we decide for
a given gate location, which operation has to be performed.
We first propose one of the operations E,L,R,B or C and then
check for E,L,R or C if we should not have performed an S

gate

�0
�1

L

gate

C

�0

a) b)

C C S

c)

Figure 5: a) angles measured to decide for L, R or E
operations b) integration direction c) check for split or
union

or M instead.

First we decide if we should propose an L,R or E operation
based on the exterior angles between the gate edge and the
previous or next edge on the cut-border as depicted in Fig-
ure 5 a). If one of the anglesα0 or α1 is smaller than a
threshold angle, that we set to seventy degrees, we decide
for an L or R operation. When the length of the current cut-
border loop is only three, we decide for an E operation in-
stead of L or R.

If both angles are larger than the threshold, we try to propose
a B operation by trying to integrate the left edge of the new
triangle as shown in Figure 5 b). The direction for integra-
tion should be in the planar case always sixty degrees. For
curved surfaces this is not possible anymore. Here we chose
to subdivide the angleα0 into k equal parts such that the re-
sulting angle is closest to sixty degrees. In the example of
Figure 5 b)k is two such that we chose the directionα0/2
away from the gate.

The integration process is in the next subsection. It returns
a target location or reports failure if the integration left the
planar domain. In case of failure we decide for a border
operation B, that will always be performed. Otherwise we
can construct with the target point a new triangle labeled with
C in the Figure 5 b).

Now we either perform a border operation or propose a new
triangle added by E,L,R or C. This triangle can intersect a
distant cut-border part as illustrated in Figure 5 c). Here we
should rather perform a S or M operation with the vertex
closest to the gate. Whether S or M is performed can be
decided by the cut-border data structure from the vertex to
which the gate will be connected. To find out if an S or M
has to be performed, we entered all cut-border edges in an
octree and checked for the proposed E,L,R and C triangles if
they cover other cut-border edges. In order to also connect
to close outside cut-border vertices we enlarge the proposed
triangles by 30% before we checked in the octree. From the

a) b) c) d)

Figure 4: Illustration of how a diffusion surface is grown.

covered cut-border edges and vertices we selected the cut-
border vertex closest to the center of the gate and proposed
an S or M operation. See Figure 5 c) for an illustration of
this process.

4.3 Integration of New Edges

For every search direction, we define the search plane as the
plane that is orthogonal to the tangential plane at the start
point, contains the search direction vector and the start point
itself. This approach is similar to [5].

Every search plane defines a vector field along which we in-
tegrate from the start point. A vector of this vector field is,
simply spoken, defined by the cut of the search plane and
the plane which is spanned by the major and medium eigen-
vector of a tensor. The length of this vector is just the dis-
tance between the location of the tensor and the cut point of
the search plane with the ellipse defined by the major and
medium eigenvector, see figure 6.

To perform this operation quickly, we use the following sim-
ple mathematics. Letn be the normal of the current search
plane, andT be the tensor matrix at the current point. The
vector field is then defined by the following operations:

ñ = T tn

n⊥ =

(−ñ1

ñ0

0

)
vt = Tn⊥

We transform the normal vector of the search plane into the
coordinate system defined by the eigenvectors. That is just
a matrix–vector multiplication. Because we want the vector
to lie in the plane of the two largest eigenvectors, we project
the vector into this plane by setting the last coordinate to
0. Then, an orthogonal vector is set up by multiplying the
vector to a90 rotational matrix. This can be done explicitly
by just changing the coordinates. This orthogonal vector is
then transformed back into the world coordinate system to
be the vector of the vector field within the search plane.

The step width for the integration process of one search di-
rection is adapted to the eigenvalues in order to distribute the

v1

v2 vt

Search Plane

Figure 6: A vector of the vector field defined by the cut
of the search plane and the ellipsoid within the plane of
the two largest eigenvectors.

points according to the anisotropy of the tensor field

h = C

√∑
i

w2
i n2
⊥i

wheren⊥ is the vector orthogonal to the normal vector of
the search plane as defined above,h is the step width, andC
is a user-controlled constant which can further influence the
density of the points. The weightswi are chosen to represent
the proportional behavior to the anisotropy as

wi =
1

λi

4.4 Traversal Order

In order to avoid a large number of S or M operations
we used a similar strategy as proposed by Alliez and Des-
brun [13]. The method is based on the observation that S
operations arise very seldom at cut-border edges that are in
a convex region. Therefore we measured for each cut-border
edge the two exterior anglesα0 andα1. The smaller these
angles are, the more convex is the region around this cut-
border edge. As it is already fine if one of the angles is small,
we sorted the cut-border edges according to the minimum if
the exterior edges into a priority queue. Each time a new gate
has to be chosen, we extracted the most convex from the pri-
ority queue. After each basic operation we updated also the

cut-border edges adjacent to newly added or removed ones
and re-positioned them in the queue. Figure 4 illustrates that
the cut-border stays nicely shaped during the integration pro-
cess.

5. RESULTS & ANALYSIS

We tested our algorithm with tensor fields that include sin-
gularities which need to be bypassed by the integration and
meshing process. We created artificial tensor fields to simu-
late different behavior.

The Spiral example has singularities on the z axis. The ten-
sors have planar anisotropy around the z axis, see figure 7.
The diffusion surfaces are rendered as triangular meshes to
show how the mesh generation follows exactly the diffusion
surface and thereby bypasses the singularities.

The Sphere dataset, figure 4 d, presents the ability to han-
dle self–intersections. If the mesh grows into a previously
integrated region, the algorithm detects this intersection and
connects the boundaries to build a triangular mesh.

A dataset similar to sphere, see figure 11, demonstrates the
usefulness and power of the point–rendering approach. The
interior stream lines are completely enclosed by a mesh but
they remain visible.

The Sinosoidal example shows both stream tubes and stream
surfaces within a dataset that varies anisotropy very fre-
quently. Figure 9 shows a simple preview of the dataset
displaying the major, medium, and minor axes of the ten-
sors within a 10x10x10 grid. The color encode the differ-
ent anisotropies. Green is planar anisotropy, red linear, blue
isotropy, and gray is undefined. Figure 9 shows the point–
rendered stream tubes and diffusion surfaces.

The crucial part of the performance of our algorithm is the
integration process itself. Thus the step width of the integra-
tion step is the limiting factor and needs to be adapted very
carefully to the anisotropy of the tensor field.

Note that the distribution of the points over the diffusion sur-
face may not be optimal. We did not implement an optimiza-
tion algorithm for placing the points. We can ensure that the
whole diffusion surface is extracted because our approach
starts with an initial triangle and grows it’s border until it
reaches a non–linear region, and that the distance between
points along edges that were integrated is optimal in terms
of that this distance accords to the diffusion rate along this
edge. But there may be edges that were not integrated but
artificially inserted by the cut–border operations. The opti-
mal distribution of points over a diffusion surface is topic of
further research.

6. CONCLUSION

We presented an algorithm that tracks stream tubes and diffu-
sion surfaces of tensor fields according to the anisotropy of

Figure 7: The diffusion surface is a spiral around the
singularities at the z axis.

the tensor field. The resulting points are rendered as point
clouds where different entities are distinguished by color.
Because the points of an entity are much closer than the dis-
tance between the single entities, the human eye is able to
differentiate between these entities, additionally to the color
coding. Furthermore, the point rendering enables a deeper
insight into the volumetric information of the tensor field.

The generation of the diffusion surfaces is very similar to
the decoding process of a faced-based compression scheme.
Exactly the same building scheme can be used. This allows
for a simple implementation and a compact representation of
the generated mesh. The diffusion surface can thereby be of
arbitrary genus.

References

[1] Lorenson W.E., Cline H.E. “Marching Cubes; A High
Resolution 3D Surface Reconstruction Algorithm.”
Computer Graphics (Proceedings of SIGGRAPH’87),
vol. 21, pp. 163–169. Jul 1987

[2] Hultquist J.P. “Constructing Stream Surfaces in Steady
3D Vector Fields.” RNR Technical Report RNR-
92-025, NASA Advanced Supercomputing Division
(NAS), Aug 1992. URLhttp://www.nas.nasa.
gov/Research/Reports/Techreports/
1992/rnr-92-025-abstract.html

[3] Scheuermann G., Bobach T., Hagen H., Mahrous K.,
Hamann B., Joy K.I., Kollmann W. “A tetrahedra-
based stream surface algorithm.”IEEE Visualization
2001 Proceedings, pp. 151–158. 2001

http://www.nas.nasa.gov/Research/Reports/Techreports/1992/rnr-92-025-abstract.html
http://www.nas.nasa.gov/Research/Reports/Techreports/1992/rnr-92-025-abstract.html
http://www.nas.nasa.gov/Research/Reports/Techreports/1992/rnr-92-025-abstract.html

[4] van Wijk J.J. “Implicit stream surfaces.”Proceedings
of the Visualization ’93 Conference, pp. 245–252. Oct
1993

[5] Zhang S., Demiralp C., Laidlaw D.H. “Visualizing
Diffusion Tensor MR Images Using Streamtubes and
Streamsurfaces.”IEEE Trans. Visualization Computer
Graphics, p. (in press), 2002

[6] Westin C.F., Peled S., Gubjartsson H., Kikinis R.,
Jolesz F. “Geometrical diffusion measures for MRI
from tensor basis analysis.”Proceedings of ISMRM.
1997

[7] Zöckler M., Stalling D., Hege H. “Interactive Visual-
ization Of 3D-Vector Fields Using Illuminated Stream
Lines.” Proceedings of the Visualization ’96 Confer-
ence, pp. 107–113. Oct 1996

[8] Press W.H., Teukolsky S.A., Vetterling W.T., Flannery
B.P. Numerical Recipies in C: The Art of Scientific
Computing. Cambridge University Press, Cambridge,
England, second edn., 1992

[9] Gumhold S., Straßer W. “Real Time Compression of
Triangle Mesh Connectivity.” M. Cohen, editor,SIG-
GRAPH 98 Conference Proceedings, Annual Confer-
ence Series, pp. 133–140. ACM SIGGRAPH, Addison
Wesley, Jul. 1998. ISBN 0-89791-999-8

[10] Rossignac J. “Edgebreaker: Connectivity compression
for triangle meshes.” Technical Report GIT-GVU-98-
35, Georgia Institute of Technology, Oct. 1998

[11] Gotsman C., Gumhold S., Kobbelt L. “Tutorials on
Multiresolution in Geometric Modelling.” pp. 319–
362, 2002

[12] Isenburg M., Snoeyink J. “Face Fixer: Compress-
ing Polygon Meshes with Properties.”SIGGRAPH’00
Conference Proceedings, pp. 263–270. 2000

[13] Alliez P., Desbrun M. “Valence-Driven Connectivity
Encoding for 3D Meshes.”Eurographics’01 Confer-
ence Proceedings, pp. 480–489. 2001

Figure 8: The preview for the dataset shown in Figure 9. Green is planar anisotropy, red linear. Shown are the axes of
the eigenvectors.

Figure 9: Stream tubes and diffusion surfaces rendered as point clouds.

Figure 10: A classic approach for visualizing tensor fields is to render ellipsoids. Note the lack of visibility due to
occlusion of the ellipsoids.

Figure 11: The power of point rendering. The interior stream lines are still visible although they are encapsulated by a
closed surface.

GEODESIC-BASED SURFACE REMESHING

Oren Sifri Alla Sheffer Craig Gotsman

Center for Graphics and Geometric Computing
Technion – Israel Institute of Technology

{orensi/sheffa/gotsman@cs.technion.ac.il}

ABSTRACT

Generation of surface meshes remains an active research problem despite the many publications addressing this topic. The main
issues which must be treated by a good remeshing algorithm are: element quality, sizing control, approximation accuracy, robust-
ness and efficiency. One reason surface meshing is such a challenging problem is the fact that using the Euclidean metric to
measure distances between points on the surface can generate large discrepancies between the original surface and the con-
structed mesh. We solve this problem by using geodesic distances on the surface. The ability to accurately and efficiently com-
pute geodesic distances, and propagate them across the mesh, permits us to generate quality surface meshes which closely ap-
proximate the input without using costly parameterization techniques.

Keywords: Triangle mesh, surface meshing, geodesic distances.

1. INTRODUCTION

3D models are used in applications ranging from animation and
cinematography to heavy industry and scientific visualization.
However, most existing surface mesh models can hardly even be
called satisfactory. Most of them are not sampled properly and
their basic elements — triangles — have poor, almost random
shapes because of the 3D mesh acquisition process. Whether this
is done using interactive solid modeling software or semi-
automatically using a scanning device, it remains a tedious and
error-prone procedure. Models generated by CAD software usu-
ally reflect regular sampling of the underlying parametric do-
main instead of the model features. The process of simplifying
scanned models with millions of points is primarily concerned
with preserving model geometry and topology and does not
emphasize the quality of sampling and triangles. This results in
meshes which usually cannot be used as-is for 3D applications.
An intermediate step, correcting the basic mesh geometry and
connectivity, while preserving features, is required. Such correc-
tions, commonly known as remeshing, are a fundamental com-
ponent in the field of digital mesh processing.

Remeshing tries to accurately approximate the model geometry
with well-shaped elements. It also adjusts the sampling rates
locally to match the amount of detail present. High-quality
meshes are necessary for engineers performing numerical com-
putations, such as finite element analysis that, for example, cal-
culate mechanical stress, solve heat and flow differential equa-
tions or simulate such systems. A high-quality mesh conditions
the system well, eliminating numerical errors and singularities
that might otherwise arise. Hence, within the engineering com-
munity the emphasis is on quality. The computer graphics and
modeling community, on the other hand, is concerned with an-
other aspect of remeshing. Their focus is on the tradeoff be-
tween the visual quality of the result, the speed of the remeshing
operation, and the optimization of the number of polygons in
order to achieve interactive rendering speeds.

Over the last decade, an abundance of remeshing algorithms
have been proposed. One group of algorithms, e.g. [10,11], is
based on partitioning the 3D mesh into patches, and treating
each patch separately, usually with subdivision techniques.
While these techniques yield reasonable results, they are very
sensitive to the patch structure, and the vertex sampling (or dis-
tribution) is difficult to control. More recent remeshing algo-
rithms, e. g. [2,9,12,14] are based on global parameterization of
the original mesh, followed by a resampling of the parameter

domain. After this, the new triangulation is “projected” back
into 3D space, resulting in an improved version of the original
model. The main drawback of the global parameterization meth-
ods is the sensitivity of the result to the specific parameterization
used. Embedding a non-trivial 3D structure in the parameter
plane severely distorts this structure, and important information,
which is not specified explicitly, may be lost on the way. Even if
the parameterization minimizes the metric distortion of the 3D
original in some reasonable sense, it is impossible to eliminate it
completely. Moreover, global parameterization is very slow,
usually involving the solution of a large set of (sometimes
nonlinear) equations. Because of the size of the system, this
solution may be numerically imprecise, especially in regions
where the connectivity has bad isoperimetric ratios. These re-
gions correspond to protruding extremities in the 3D mesh (e.g.
the legs of an animal), and they may be lost in the process. Ad-
ditionally, 2D parameterization requires the surface to be cut to
a disk-like topology, both to parameterize closed surfaces or
surfaces with genus higher than zero, and to reduce the paramet-
ric distortion. These cuts introduce visible artifacts in the mesh.
The main alternative to global parameterization is to work di-
rectly on the surface. Remeshing algorithms using this approach
[2,8,16,18] usually involve difficult, inefficient and limited op-
timizations in 3D. For example, Frey and Borouchaki [8] per-
form local modifications in the tangent plane. In a subsequent
work, Frey [7] uses a paraboloid to obtain a better approxima-
tion of the surface. These complex approximations are ex-
tremely slow and not always robust.

The common denominator of all the meshing algorithms is that
they use Euclidean metrics, in the sense that the distance be-
tween points, even on the surface, is measured as the Euclidean
distance between them. Since in most cases we should actually
be using the geodesic distance, i.e. the distance between the
points along the surface, this may introduce error culminating in
distortion. The Euclidean distance may be considered a good
approximation to the geodesic distances only at short ranges and
in regions of low curvature. Otherwise it is quite different.
Nonetheless, the published methods use Euclidean distances
because they are much simpler to compute.

Assuming a constant sizing function, the vertices of the new
mesh should be positioned on the surface such that the distances
along the surface between close vertices are approximately
equal. One way of achieving this is to build a "front" of vertices
which advances across the surface at uniform "velocity" [3,17].
The front forms strips of triangles as it advances. The main
problem with this method is that the front may meet itself, hence
split and merge as it propagates. This complicates matters sig-
nificantly, and a number of heuristics are required to control the
process. The fact that Euclidean distances are employed here as
well results in suboptimal results. Figure 1 shows the result of an
advancing front technique implemented in a commercial pack-
age. The loss of high curvature features is a typical artifact. The
result of applying our method on the same model with similar
uniform sizing is shown in Figure 2(e). Due to these difficulties,
advancing front techniques are not considered to be very attrac-
tive.

Figure 1: Horse model (left). Original (right). Advanc-
ing front remesh, produced by an anonymous com-
mercial mesh generator. Note how the details of the
ears and hooves are lost.

1.1 Our Contribution
This work introduces a novel remeshing method which operates
directly on the 3D surface in a manner similar to the "advancing
front" methods. So on the one hand, it does not involve any
costly parameterization methods. On the other hand, it avoids all
the pitfalls of the existing advancing front methods. Firstly, it
uses geodesic distances instead of Euclidean distances. Sec-
ondly, it does not have to deal with major topological changes in
the advancing front. This is achieved by segmenting the mesh
into regions such that the treatment of each region is relatively
straightforward. This also allows us to process meshes with
arbitrary topologies.

2. ALGORITHM OVERVIEW

Our mesh generation procedure avoids the need for costly planar
parameterization by computing accurate geodesic distances di-
rectly on the surface. The geodesic distances are computed using
the "fast marching on triangulated domains" technique of
Kimmel and Sethian [13]. We provide a brief overview of the
technique in Section 3.

The basic meshing technique we use was first proposed by Adi
[1]. It is based on generation of equidistant curves on the sur-
face. An equidistant curve is the locus of all points on the sur-
face at some fixed geodesic distance from a given point. Adi
computed such equidistant curves from a single root point on the
surface and then simply triangulated the strips between consecu-
tive curves.

The difficulty with this simple approach, as with the advancing
front techniques, is that equidistant curves may have complex
topologies. The saddle regions where a single curve splits into
several components can have arbitrary shape (Figure 2(a)).
Without special treatment, the mesh in such regions will both
disobey the sizing requirement and contain badly shaped trian-
gles (Figure 2(b)). Adi did not provide a satisfactory solution to
these problems, hence he was able to generate good meshes only
for very simple models. We avoid this pitfall by first segmenting
the surface into regions, such that the distance function is mono-

tone inside each region and therefore does not contain saddle
points. Once the regions and the equidistant curves inside them
are computed, each strip between two adjacent equidistant
curves is meshed using a Voronoi tessellation of vertices dis-
tributed on the two curves. The next four sections describe the
main components of the algorithm:

1. Computation of geodesic distances and equidistant curves.
2. Mesh preprocessing.
3. Segmentation into regions.
4. Triangle generation within each region.

The various stages of the algorithm are illustrated in Figures 2
and 4.

3. COMPUTING GEODESICS

The easy, but inaccurate, way to compute a "geodesic" distance
between two vertices of a triangle mesh surface is to run a short-
est-path algorithm on the mesh graph, where the weight associ-

ated with an edge is its length. Efficient algorithms, such as the
Djikstra algorithm [15], can compute these path lengths very
efficiently, but can be shown to produce paths quite different
from true geodesic paths. This is because the geodesic path does
not necessarily pass through the mesh vertices, rather takes
shortcuts through edges. See Figures 3(a) and 3(b) for a com-
parison. In our work we utilize the "fast marching on triangu-
lated domains" algorithm of Kimmel and Sethian [13]. It com-
putes approximate geodesic paths between two vertices in
O(nlogn) time per path (n is the number of vertices in the mesh).
Unfortunately, this algorithm does not always guarantee a cor-
rect result, in particular when the mesh contains triangles with
obtuse angles. Kimmel and Sethian offer a solution to this prob-
lem, but it is rather complex and not always correct. Alterna-
tively, the problem may be reduced by a preprocessing step
which reduces the relative number of obtuse triangles in the
mesh. The standard way of doing this is to refine the obtuse
triangles so that most of the affected area is covered by smaller,
but less problematic triangles. This is not guaranteed to remove
all obtuse angles, but removing just the worst cases suffices to
produce reasonably accurate geodesic distance computations.
Fortunately, obtuse triangles do not occur so frequently, so the

(a) (b) (c)

(d) (e) (f)

Figure 2: The effect of mesh segmentation on geodesic remeshing with uniform sizing of the horse model of Figure
1(a). (a) Geodesic curves and zoom on a saddle region. The root vertex is on the back left foot (marked by a star) (b)
Resulting mesh with artifacts in saddle regions. (c) Segmented regions. The centers of leaf regions are highlighted by
circles. (d) Geodesic curves formed with two-site distances on segmented mesh. Note that the saddle of (b) has
disappeared. (e) Resulting mesh with no artifacts. (f) Mesh after post-processing.

algorithm produces quite good results in general, even without
these two workarounds, although we employ them both.

The fast-marching method can also be adapted to non-uniform
geodesic distances. The input may contain an arbitrary weight
per vertex, where larger weights mean that the region surround-
ing that vertex is "harder" to pass through. The geodesics then
take this information into account. This is a feature which is very
useful to us, as we will see later.

We use the fast-marching method to compute the equidistant
curves. This is done by computing the geodetic distance from
the source to all other vertices of the mesh. The equidistant
curve is then formed by connecting linear segments between
points on the edges at a given distance, these too interpolated
linearly between vertex distances. This approximation is obvi-
ously not correct when large triangles are involved, since the
equidistant curves will be quite different from what they should
be. See Figure 3(c); the equidistant curves on a plane are not
circles, as would be expected. Here too, a possible solution,
which we adopted, is to refine the mesh to contain many smaller
triangles, forcing the algorithm to output more detailed geodetic
information. Obviously, this increases the computation complex-
ity.

(a) (b) (c)

Figure 3: Shortest paths between the two yellow verti-
ces. (a) Dijkstra. (b) Geodesic. (c) Equidistant curves
based on geodesic distances.

4. MESH PRE-PROCESSING

Our meshing algorithm supports different sizing requirements on
different regions of the mesh. Curvature-based sizing defined for
each vertex is usually used to provide more accurate geometry
approximation. Other per-vertex sizing data, such as those de-
rived from analysis requirements, can be incorporated similarly.
This data is sent as input to the fast-marching method, which
conveniently, is able to use it.

We approximate the curvature at the mesh vertices using the
method described in [5]. The sizing is then based on a combina-
tion of Gaussian and mean curvature. The relative weight of the
two components is controlled by the user. In addition the user
also controls the contrast or the gradient of the sizing gradation.
This is achieved by transforming the sizing by some polynomial
magnifying function.

The required number of triangles determines the desired edge
length in the case of uniform sizing. This in turn determines the
distance between consecutive equidistant curves on the surface.

This distance Cd is the desired edge length scaled by 4/3 (the
ratio between the height and the side in an equilateral triangle).

Now the root vertex for the distance computations is located. We
compute the two vertices on the surface forming the maximal
surface distance between them (the diameter) and select one of
them as the root r. The computation of these two vertices is done
using the following well known iterative procedure [6]:

1. Set r to some arbitrary vertex. Set Dmax to zero.
2. Find the farthest vertex t from r. Set Dt to the distance

between r and t.
3. If Dt > Dmax, set r := t, Dmax := Dt, and goto 2.

This procedure is actually not guaranteed to find the mesh di-
ameter, as it might get stuck in a local minimum, but for rea-
sonably well-behaved meshes, this is rare. The root vertex r and
the maximal distance Dmax are used in the following stage to
segment the mesh into regions. Figures 2(a) and 4(b) show the
root vertex and the equidistant curves surrounding it for the
horse and cactus models.

5. REGION SEGMENTATION

Once the root vertex r is found we compute the geodesic dis-
tance D(v) from r to every other vertex v on the mesh. D(v) is
then used to segment the mesh into regions to avoid mesh arti-
facts like those seen in Figure 2(b). The regions are constructed
such that each equidistant curve within the region will be well-
behaved. To guarantee this, each region must be a simply con-
nected region. See Figures 2(c) and 4(f).

The regions form a tree structure containing three types of re-
gion nodes: leaves, interior nodes, and a root. The distinction
between different types of regions reflects the properties of the
distance function D. Leaf regions are formed around the maxima
of D. Interior regions roughly correspond to the saddle points of
D, and the root region is formed around the root vertex r (the
global minimum of D). The tree construction algorithm runs in
two stages. First the topological structure of the tree (Figure
4(e)) is determined, and then the mesh regions corresponding to
each node are computed (Figure 4(f)).

Tree structure construction: The set of vertices L which are
the local maxima of D define the tree leaves (Figure 4(c)). Ini-
tially each leaf defines a degenerate tree consisting of a single
node, producing a forest. A bottom up construction is performed
with groups of trees connected by interior region nodes. Finally
all the trees are joined into a single tree with a single root region
node.

The tree construction uses a front propagation procedure on the
surface starting from the set of leaf vertices L. The front propa-
gation is based on the distance metric D. The fronts emanating
from the leaf vertices are propagated so that at each step the
vertex with smallest value of D is added to the front of the ap-
propriate leaf l. When two fronts meet at a vertex, an interior
region node is added to the tree as the parent of the two leaves
(Figure 4(d)). The vertex is stored for further processing. The
two fronts are merged, and the new front continues to advance
using the minimal distance D from among its leaves. Whenever
two fronts meet, interior nodes are created joining the sub-trees
(Figure 4(c)). When only one front remains, i.e. all the leaves are
connected into a single tree, the root node is introduced as the
common parent. At the end of this procedure a region tree

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)

Figure 4: Algorithm stages. (a) Input cactus model. (b) Root vertex (highlighted by star) and curves equidistant from
it. (c)-(e) Computing the region tree structure: (c) Maxima of distance from root. These are leaves of the region tree.
(d) Propagating regions around maxima till regions 1 and 2 meet at interior region 4. (e) Continuing propagation of
regions 4 and 3 until they meet at root region 5. (e) Resulting tree structure. (f) Resulting mesh regions. Regions 1, 2
and 3 are leaves, region 4 is interior, and region 5 is the root. (g)-(i) Computing equidistant curves within the regions:
(g) Propagating equidistant curves down regions 1 and 2. (h) Propagating equidistant curves down region 4. (i) Com-
plete set of strips. (j) Mesh after strip triangulation. (k) Final mesh after smoothing.

structure (Figure 4(e)) is defined, but the boundaries of the re-
gions still need to be determined.

Tree regions construction: The region boundary definition
proceeds yet again bottom up, from the leaves to the root. When
considering a region, the top of the region is defined as:

• the center vertex l for a leaf region;
• the boundary curve between the region and its children for

an interior or root region.

The region boundary construction proceeds as follows:

While not all the boundaries have been constructed, find an inte-
rior node at which both the following hold:

• the top boundary is not defined,
• in both of its sub-trees the top boundaries are defined for

all the nodes.

Note that at the beginning of the procedure all interior nodes
with two leaf children satisfy this condition. Let t1 and t2 be the
tops of the root nodes of the sub-trees. The vertex v at which the
fronts of the sub-trees meet is known from the tree structure
construction stage above. We now use it to compute the top
boundary of the interior node which is the parent of the two sub-
trees, as follows:

 Compute the equidistant curve C at distance D(v) from the
root r. Note that C will contain v.

 Find two vertices v1 and v2 on C at minimal distance from t1
and t2 respectively.

 Compute the two equidistant curves C1 and C2 at distance
Cd⋅D(t1,v1)/Cd from t1 and at distance Cd⋅D(t2,v2)/Cd
from t2 respectively. This distance roundoff makes the dis-
tance from the tops of the two sub-tree root node regions to
their bottom a multiple of Cd. It will result in an even curve
distribution inside the regions at the meshing stage.

2

3

1

4
V

5

2

3

1

4
V

2

3

1

5

4

2

1

3

 Connect C1 and C2 into a “spectacles” shape using the
shortest path between them which passes through v. This
provides a single loop as the top boundary of the parent
node.

 The procedure is continued upwards inside the tree until all the
region boundaries are computed. Figure 4(b)-(e) illustrates this
procedure on the cactus model, resulting in the regions in Figure
4(f). Figure 2(c) shows the regions for the horse model. Note
that many leaf patches on the head and legs of the latter are gen-
erated around minor local maxima. As a result D(l,v)<Cd and the
patch degenerates to its center vertex l.

6. MESH GENERATION

We now proceed to place equidistant curves inside each region.
The distance from the top of each leaf or interior region to its
bottom is, by construction, a multiple of Cd. Hence curves can be
spread evenly within each such region. Within the root region an
error of up to Cd/2 can occur. The algorithm spreads it equally
during curve distribution by slightly increasing or decreasing the
curve offset. This is illustrated in Figure 4(g)-(i). The equidistant
curves constructed during this process are incorporated into the
surface and used to generate the final mesh.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 5: Meshing strips on the cactus model. (a) Sim-
ple strip. (b) Strip with original triangles and new
mesh vertices (circles). (c) Voronoi cells with new ver-
tices as sites. (d) Dual Delaunay mesh. (e) "Specta-
cles" strip (f)-(h) Delaunay meshing. The T-junctions
are marked by arrows.

After the curves are computed the mesh can be generated using a
final bottom-up sweep thru the tree. Starting from the leaves,
vertices are distributed along each equidistant curve at edge
length intervals. These curves are the boundaries of the strips
(and spectacles). These vertices are added to the surface mesh
(Figure 5(b) and 5(f)), When distributing vertices on spectacles
they are first placed at the T-junctions, which are the meeting
points of two or more equidistant curves (Figure 5(f)). The verti-
ces placed on the curve connecting these form vertices interior to
the strip. The vertex placement is then adjusted to optimize the
element shape. The final mesh is constructed by triangulating the
strip between consecutive curves. To generate the triangles, the
algorithm computes the Voronoi cells around each vertex using

geodesic distances (Figure 5(c),(g)). The Delaunay triangulation
dual to this Voronoi cell structure is computed and used as the
mesh for the strip (Figure 5(d),(h)). The meshing stage can pre-
serve surface features by incorporating feature edges into the
mesh (see the gear model in Figure 7). Feature edges are de-
tected using a dihedral angle criterion. The features are handled
similarly to equidistant curves, with vertices distributed along
them. Vertices are placed at intersections of feature edges with
equidistant curves and the vertex distribution is adjusted accord-
ingly. When meshing the strips, each piece of a feature edge
which falls inside a strip is handled as part of the strip. The re-
sulting strip triangulation contains both vertices distributed
along the curves forming the strip and vertices distributed on the
parts of feature edges overlapping the strip.

Once all the strips are meshed, the resulting mesh (Figures 2(e)
and 4(j)) can be improved further using standard smoothing and
local edge flip techniques (resulting in Figures 2(f) and 4(k)).
This final stage distributes the vertices better on the surface,
removing the visual "lines" formed by vertices placed along the
equidistant curves. Even though these techniques improve the
mesh regularity, they cannot be used excessively as they also
cause damage to the mesh fidelity to the original.

7. EXPERIMENTAL RESULTS

We demonstrate the results of our remeshing method on several
examples (in Figures 6 and 7). Figure 6 also compares to the
result from the algorithm of [7]. The statistics for the resulting
meshes are summarized in Table 1.

The sizing gradation control is demonstrated on the Venus head
model (Figures 6 and 7). Our algorithm can successfully mesh
both smooth and CAD-type models with corners and creases, as
demonstrated by the foot and gear models. The foot model also
demonstrates our method’s ability to handle significant sizing
gradations resulting from large variations in curvature across
short distances.

Figure 6: Remeshing methods comparison. All models
contain approximately 5,400 vertices. (Left) Local
technique [7]. (Right) Our method. The statistics for
both appear in Table 1.

The example models showcase the method's ability to correctly
capture sock-like shapes such as the animal's legs without re-
quiring global parameterization. As is evident in the griffin and
figure eight models, our method does not require any special
treatment to handle models with genus greater than one. This, in
addition to generating seamless meshes is yet another advantage
of this technique over methods which utilize a parameter domain
[2,9,12,14]. Our advantage over local methods [7] is in the mesh
quality (Figure 6), with only a slight penalty in approximation
error in some cases.

Both approximation and quality measures are shown in Table 1.
The quality is demonstrated by the statistics of the minimal an-
gle. The angles in the inputs are arbitrarily bad, but in most of
the results, not many angles are less than 30o and the average
angle is consistently above 50o. The statistics also include the
Hausdorff distance from the original model measured using the
Metro tool [4]. This is approximately 0.5% of the bounding box
diagonal for most models, which is quite negligible. The superi-
ority of using geodesic distance based advancing front instead of
classical advancing front techniques in terms of approximation is
clearly demonstrated by the horse meshes in Figure 1.

Input

Angles (deg.)
Result

Angles (deg.)
 Input

size
(#ver)

Result
size

(#ver)

Con
tras
t Min %<30 Avg. Min %<30 Avg.

Appr
Error
(%)

Horse 19,851 2,205 0 1.60 24.9 35.8 22.9 0.14 51.5 1.48
Eight 766 985 0 21.4

0
37.7 47.9 32.9 0 51.9 0.48

Foot 10,016 5,421 0.5 2.07 27.7 37.7 10.0 0.63 51.2 0.27
Foot [7] 5,427 3.6 9.45 42.1 0.21
Venus 1 8,268 5,269 0 0.24 34.2 34.7 25.6 0.01 52.2 0.73
Venus 2 5,300 0.3 23.5 0.02 52.1 0.82
Venus 3
(Figure 6)

5,385 0.6 24.9 0.01 51.2 0.54

Venus [7] 5,319 0.24 23.81 37.4 0.21
Griffin 49,864 10,50

8
0.6 3.83 15.9 40.0 21.8 0.04 51.8 0.71

Dino 14,070 10,29
2

0.5 1.47 32.0 35.4 16.8 0.12 52.0 0.45

Camel 39,074 20,15
7

0.3
5

0.55 40.3 47.9 22.3 0.13 52.5 0.34

Gear 3,721 11,15
2

0 0.04 85.4 18.5 12.8 0.64 51.3 0.46

Tree
(without
segmenta-
tion)

13,778 988 0 3.2 42.7 30.3 0.07 5.7 46.6 2.1

Tree (with
segmenta-
tion)

13,778 1,009 0 14.0 0.7 50.0 1.8

Table 1: Statistics on some remeshed models. Con-
trast indicates the impact of curvature on sizing. Ap-
proximation error measures the Hausdorff distance
between the resulting mesh and the input as a percent
of the bounding box diagonal.

The advantage to doing mesh segmentation as opposed to none
at all is illustrated on the tree model in Figure 8. The corre-
sponding statistics for the two results, as shown in Table 1,
shows that the segmentation allows the algorithm to achieve a
better result, both in terms of mesh quality, and in terms of ap-
proximation quality.

The run-time for the models varies between 60 seconds for the
horse model to 600 seconds for the griffin on a 1.7 GHz Pentium
4 PC with 512 MB RAM. The time reflects the input and output
sizes as well as the level of complexity which determines the
number of regions generated by the algorithm. As demonstrated
by the examples, the main advantage of our method is the ability
to generate the number of triangles desired by the user while
simultaneously approximating the input well and generating
high quality elements.

8. CONCLUSION

We have presented an efficient remeshing method which oper-
ates directly on the model surface without resorting to any sort
of parameterization. At the heart of our algorithm lies conven-
ient segmentation of the mesh according to geodesic distances.
This allows us to incorporate any sizing function to control the
distribution of mesh triangles. Each segment is meshed inde-
pendently, and the result delicately smoothed. The results seem
to be superior on all the models we have tested.

Future work will extend this method to mixed quad and triangle
meshing, as well as pure quad meshing.

REFERENCES

[1] L. Adi. Fast computation of geodesic distances: Graphic
applications. MSc. Thesis, Computer Science, Technion,
2002.

[2] P. Alliez, M. Meyer,and M. Desbrun, Interactive geometry

remeshing, ACM Transactions on Graphics. Special issue
for SIGGRAPH conference, 21(3)(2002), pp. 347–354.

[3] R.J. Cass, S.E. Benzley, R.J. Meyers and T.D. Blacker.

Generalized 3D paving: An automated quadrilateral surface
mesh generation algorithm. International Journal for Nu-
merical Methods in Engineering, (1996).

[4] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: Measur-

ing error on simplified surfaces. Computer Graphics Forum
(1998), 17(2):16-174.

[5] N. Dyn, K. Hormann, S.-J. Kim and D. Levin, Optimizing

3D Triangulations using discrete curvature analysis, Inno-
vations in Applied Mathematics, Vanderbilt University
Press, (2001).

[6] A Fischer, A. Manor, Y. Barhak. Adaptive parameterization

for reconstruction of 3D freeform objects from laser-
scanned data. Proceedings of Pacific Graphics (2002).

[7] P.J. Frey, About surface remeshing, Proceedings of 9th

International Meshing Roundtable, (2000), pp. 123–136.

[8] P.J. Frey and H. Borouchaki, Geometric surface mesh op-

timization, Computing and Visualization in Science, 1
(1998), pp. 113–121.

[9] X. Gu, S.J. Gortler and H. Hoppe, Geometry images, ACM
Transactions on Graphics. Special issue for SIGGRAPH
conference, 21(3), (2002), pp. 355–361.

[10] I. Guskov, K. Vidimce, W. Sweldens, and P. Schroeder,

Normal meshes, Computer Graphics. SIGGRAPH 2000
Proceedings, (2000), pp. 95–102.

[11] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald and W.

Stuetzle, Mesh optimization, Computer Graphics. SIG-
GRAPH ’93 Proceedings, 27 (1993), pp. 19–26.

[12] K. Hormann, U. Labsik and G. Greiner, Remeshing triangu-

lated surfaces with optimal parameterizations, Computer-
Aided Design, 33 (2001), pp. 779–788.

[13] R. Kimmel and J.A. Sethian. Computing geodesic paths on

manifolds. Proceedings of National Academy of Sciences,
95(15) (1998), pp. 8431-8435.

[14] A. Sheffer and E. de Sturler. Parameterization of faceted
surfaces for meshing using angle based flattening, Engi-
neering with Computers, 17(3), (2001), pp. 326-337.

[15] S. Skiena. The algorithm design manual. Springer, 2000.

[16] V. Surazhsky and C. Gotsman. Explicit surface remeshing.

Proceedings of the ACM/Eurographics Symposium on Ge-
ometry Processing (2003), pp. 17-27.

[17] J.R. Tristano, S.J. Owen and S.A. Canann. Advancing front

surface mesh generation in parametric space using a Rie-
mannian surface definition. Proceedings of the 7th Interna-
tional Meshing Roundtable, 1998.

[18] G. Turk. Re-tiling polygonal surfaces. Computer Graphics

26:2, SIGGRAPH 1992 Proceedings, pp. 55-64.

Venus

Gear

Figure Eight

Dino
Figure 7: Remeshes. Left: Input mesh. Middle: Remesh. Right: Zoom on remesh (except the Venus model which has a
different contrast).

Camel

Griffin

Foot

Figure 7 (cont.): Remeshes. Left column is the input mesh. Middle is the remesh and right is a zoom.

(a) (b) (c) (d)

Figure 8: The effect of segmentation. The statistics of the results appear in Table 1. (a) Input tree mesh. (b) Remesh
without segmentation. (c) Segments generated by our algorithm. (d) Remesh with segmentation.

TOWARD QUALITY SURFACE MESHING

Jean Cabello

EDS/PLM Solutions, 2000 Eastman Dr, Milford, OH, USA jean.cabello@eds.com

ABSTRACT

This paper presents recent progress and extensions to TriQuaMesh (TQM) [1], targeted at providing good quality surface
meshes: Increased robustness of the 1D mesh generator to handle highly non linear size variations; interior node generation
driven by a size variation interpolation domain; improved mesh distortion reduction between the parameter space and the
physical space. The concepts of Size Control, Size Map and Triangle Map are introduced to increase the flexibility and the
control on the final mesh. These concepts are general and apply to any meshing algorithm, although they will be illustrated with
TQM.

Keywords: surface mesh generation, triangular, size map, curvature adaptation.

1. INTRODUCTION

The most common tetrahedral meshing algorithms,
advancing front and Delaunay, require the surface mesh to
be generated first, prior to filling in the interior with
tetrahedral elements. For volume skin surfaces with
geodesic distances between two points on the surface high
compared to the Euclidian distance (i.e. narrow and high
curvature passageway), adaptation of the surface mesh to
the curvature might be critical to the success of an
automatic volume mesher by preventing geometrical
surface mesh intersection. The success and the quality of
the volume mesher is then directly impacted by the success
and quality of the surface mesher.

Although tremendous progress has been made with regard
to meshing algorithms in both two and three dimensions, it
still remains a difficult task to surface mesh any collection
of surfaces with good quality and size control.
Many approaches are available depending on the surface
definition available (continuous or discrete).
For CAD parametric surfaces, a 2D parameter space
representation of the surface is available and surface
meshing is reduced to a 2D meshing problem. However,
the surface can be poorly parameterized leading to high
distortion when mapping the mesh back from 2D to 3D
space. Some methods have been presented to account for
the distortion between the 2D and 3D space using the CAD
Riemannian surface evaluators [2].

 Most CAD systems can export an STL or facetted
representation of any parametric surface. This is a lower
level definition of the surface that has the advantage of a
simple and common format independent of the CAD
system.

For discrete data representations of the surface (STL data
or legacy data), some techniques work directly on the 3D
discrete data to obtain a good quality mesh [3] while others
use a divide and conquer approach to select a region and
derive a parameter space to reduce the surface meshing

problem to 2D. The two most common techniques used to
derive a parameter space are: projection techniques, for
example Maximum Area Plane (MAP) in I-DEAS, and
flattening techniques based on angles [4] or based on
lengths [5].

Adaptive meshing based on error estimation is another
instance where controlling the mesh size variation to refine
in areas of high error and coarsen in areas of low error is
critical to obtain a good solution with reduced node and
element count.

In this paper a simple method to account for the distortion
between the 2D and 3D space for a surface represented by
STL data is presented. Adaptive meshing based on discrete
surface curvature is also presented in order to increase the
mesh fidelity to the original surface at an economical cost
compared to a constant size mesh.

1. TQM MESHING ALGORITHM IN A
NUTSHELL.

The TQM algorithm is a divide and conquer meshing
algorithm. Boundary loops are discretised using a 1D mesh
generator. They are then joined into one single contour loop
resulting in a loop of nodes. The contour loop is
recursively subdivided into two sub contour loops along a
“best split line” until the sub contour loop has been reduced
to a trivial loop i.e. a loop with 3 points for a triangles or a
loop with 4 points for quadrangles. All the details can be
found in reference [1][6]. The remainder of this section
recalls the two main points of interest for our discussion.
• Generation of contour points: Let’s assume that we

have a curve Γ parametrised using the arc length with
total arc length L. Let’s assume that we have a
continuous grading function g(s) that represents the
grading (or size) value along the parameter location.
The 1D mesh generation problem can be stated as 1)
how many points (nPoin) to generate? 2) Compute the
parameter location for these points that will satisfy the
grading function requirements. In [1] a solution was

proposed assuming a) Grading function is known
discretely at (nSample) sample or basis points b) the
grading function is assumed to be piecewise harmonic
(fig. 1a).

()
()

[] 2;1,0

cos.
22

)(

1,

1

11

≥−=∈

−

−−
+

+
=

+

+

++

nSamplenSamplejsss

ss
ssgggg

sg

jj

jj

jjjjj π

 (1)

()∫ ∑
=

=
−

−

+

−
==−

L nSamplej

j
jj

jj
tete

gg

ss
C

ds
sgC

nPoin
0 1

1

1

2
1

1
)(

111

 (3)

In equation (3) the number of sample points, their
parameter locations and their grading values is known.

is computed by rounding the result of equation (3)
to the nearest integer. The parameter locations of the 1D
mesh points (fig.1b) are obtained by solving the system:

nPoin

S

g0

g(s)

g3

g2

g1

s1 s3 s4 s0

() ()
.Ls;0s

1nPoin1,i
gg
ss

gg
ss

nPoin0

i1i

i1i

1ii

1ii

==

−=∀
+
−

=
+
−

+

+

−

−

 (4) g4

derived from the equidistribution equation (2). More details
on the solution of equation (4) are given in section 2.1.

Once the boundary loops have been discretised, boundary
nodes are assigned grading values. The loops are joined
into one single contour loop. A “best split line” criterion is
used to join the loops and the 1D mesh generation
technique is applied to determine how many points and
their locations along the split line. The sample points are
the two end points of the split line where the grading values
are known. This process is applied recursively.

s2
Fig. 1a – grading piecewise harmonic interpolation

Given nSample points, their respective parameter locations
and grading values ()jj gs , , the number of points is

derived by requiring to meet “at best” the equidistribution
for each interval:

()
nPoiniC

gg

ss te

ii

ii ,1

2
1

1

1 =∀=
+

−

−

− (2)

 s

g0

s0

 g(s)

F

•

F
T

m
to
q
li
lo
p
m
in
a

Fig. 1b –Nodal point distribution

Notice that in the equation above and are

unknowns as well as . Summing equation (2)
over all the intervals we obtain:

nPoin is
)(ii sgg =
 8
 7-Q
 α4 α3 6

1

 α1 α2 5

 3-P
 2 4

ig. 2 – Parameters for the best split line (P-Q) and polygon
diameter

 Best Split line: Given a point P, we find the set of
admissible points Q that are visible from P. The best
split line from P is the line [P,Q] that minimizes the
objective function :

(n)W)(W)(W(Q) nPoinLengthangleP δδαδ ++= l

),,,(4321

he weight factors W are constants. The first term, is

inimal when the angles αααα (fig. 2) tend
 multiples of 60 or 90 (respectively for triangles and

uadrilaterals). The second term is minimal when the split
ne length tends to the minimum diameter of the boundary
op (i.e. the diameter of the smallest inscribed circle

assing through two boundary points). The last term is
inimal when the round off in equation (3) to obtain the
teger is minimal. Other choices for the function

re possible, see [6], [7].
nPoin

2. TQM MESHING ALGORITHM
SHORTCOMNGS

In this section we try to highlight some of the limitations of
the TQM approach as it is currently implemented in I-
DEAS.

2.1 1D Boundary discretisation

Given , their location is found by solving the non-
linear system of equations (4). One has to find the solution

 that satisfies the system of non

linear equations:

Npoin

,,2,1 sss L)(1−= nPoinS

 (5) 1,1;0)(−=∀= nPoiniSfi

11)(+− ×+×+×= iiiiiii sUsDsLSf (6)

)()(2)((
)()(;)()(

11

11

+−

−+

+×+−=
+=+=

iiii

iiiiii

sgsgsgD
sgsgUsgsgL

Using Newtown-Raphson method for the non linear system
of equations reduces to solve the tridiagonal system of
equations:

RHSST =δ. (7)

)1()(
1

11
1

1,

1,

1
1

1,

;)(;

)(

)()(

)(

−
+

−+
+

+

−

−
−

−

−=−=−=∆

∆×′−=
∂
∂

=

∆−∆×′+=
∂
∂

=

∆×′+=
∂
∂

=

nn
iiiii

iii
i

i
ii

iiii
i

i
ii

iii
i

i
ii

SSSSfRHSssswith

ssgU
s
f

T

sssgD
s
f

T

ssgL
s
f

T

δ

The index n represents the iteration number. The system is
solved using LU decomposition with forward-backward
substitution. The initial solution is taken as uniform
distribution of the interior points. The convergence of the
system depends on the matrix T condition number, which
is not known. However, notice that if the system is
linearised, setting , the matrix becomes well
conditioned and is diagonally dominant. Based on this
observation, a strategy is described in section 3.2 that
improves the robustness of the 1D boundary mesh
generation.

0)(=′ sg

2.2 Boundary driven control only
The TQM algorithm first creates nodes along “best” split
lines and then creates the elements. The node distribution
along the split line is mainly driven by the grading value at

the end points. The effect is that the boundary mesh is the
main driver for the interior mesh, and undesirable boundary
effects can propagate in the interior. The user has a good
control on the element size variation on the boundary, but
the control in the interior and the mesh transition is more
difficult. For example, in I-DEAS, the user can input a
local element length in the interior, but he cannot control its
radius of influence. Also, when the surface exhibits
curvature in its interior but its boundaries are flat there is
no easy way to automatically refine the mesh with respect
to the curvature. In most cases the user will have to
manually add interior local element lengths in these areas
to get the desired effect. To overcome these drawbacks and
provide a mean to automatically refine the mesh in the
interior of a surface, with no user interaction, TQM was
extended to work with a background mesh, presented in
section 3.2.

2.3 High distortion
TQM is a 2D mesh generator that generates a triangular or
quadrangular mesh in a parameter domain. This parameter
domain can be developed directly from a CAD parameter
space or indirectly through projection or flattening
techniques. In many cases, the mapping between the
parameter domain and the physical domain is not isometric
and elements size and quality need to be adjusted in the 2D
domain to result in the desired mesh size and quality in the
3D domain. There are many approaches available to
account for the local mesh distortion during the mapping.
The most common approach [2] relies on the CAD query of
continuous operators such as Curvature. These can turn to
be expensive queries.
Currently in I-DEAS, to minimize the computational cost
and account for length distortion between the 2D and 3D
space, each split line is sampled with nSample (10)
interior points. These points are mapped back in 3D space
and we compute the variation dsd /υ where υd is the
arc length variation of the curve poly-line in 3D space and

 is the corresponding variation of the split line in 2D
space. This local scaling factor is then used to map the 3D
mesh size to a corresponding 2D mesh size in the parameter
domain. This is a very simple and robust approach,
however one main drawback is that the scaling is
unidirectional (along the split line). In section 3.3, a
different approach to account for the local distortion is
discussed.

ds

3. TQM EXTENSIONS AND
ENHANCEMENTS

The main usage of TQM in I-DEAS is for structural
analysis with a constant mesh size. In this range the
software performs fairly well. For boundary curvature
adaptation the process is automated but might sometimes
become unstable, resulting in poor node distribution
transition. The interior surface curvature adaptation is not
automated and has to be done through user input of interior
local element sizes.

3.3 Distortion correction From now on, a stitched tessellation representing
“accurately” the 3D surface or surfaces to be meshed (for
example an STL representation from a CAD system) is
assumed to exist. The corresponding 2D tessellation in the
parameter domain, thus a discrete one to one mapping
between 2D and 3D space, is also assumed to exist. In
short, a triangle map, discuss in section 6, is available (see
figures 7a, 7b).

Our approach to account for the local distortion is to first
create a sample mesh in the 2D domain, map it back to 3D
space using the facet triangle map and compute the length
distortion at the sample points. This gives a length scale

factor ∑∑
∈∈

=
)(

3

)(

2 /
iSj

D
ij

iSj

D
iji llλ at each sample points,

that multiplied to the 3D grading value represents the 2D
grading value. S(i) represent the ring of first neighbor
nodes to node i. The length scale factor provides a local and
isotropic estimate of the size distortion, is computationally
inexpensive. One drawback is that there is no attempt to
create stretched elements in the 2D space, only size varies.
Given the 3D size variation, the scaling factor is applied.
For example, a 3D constant size in 3D space will result in a
varying element size in 2D space. The 2D mesher is then
instantiated again with the 2D sample mesh as the
background mesh with computed 2D sample grading values
that drive the resulting final mesh. The 2D final mesh is
mapped back to 3D space using the facet background grid.

They are many possible answers to the critical and common
adaptive sampling questions: How many sample points?
Where? What size? One answer could be to delegate the
responsibility to the user. To get the desired sampling
adaptation to the curvature both on the boundary and on the
surface, it is proposed to leverage the surface STL
representation. For the boundary curves, the facet points
provide an adaptive sampling of the boundary curvature
(see fig. 4).

3.1 1D boundary discretisation
For uniformly distributed and smoothly varying grading
values, the non-linear tridiagonal system (7) exhibits a
unique solution because the non-linear terms cancel out and
the matrix is still well conditioned. However, when using
an adaptive sampling point strategy with high grading
values gradients, the system becomes ill–conditioned and
might never converge to a solution. The solution algorithm
has been enhanced by monitoring the convergence of the
non linear system and when the solution oscillates and does
not converge, after a fixed number of iterations, we restart
the solution using the current solution but this time solving
the linear system rather than the non linear one. This
approach has proven to be very robust and is able to handle
highly non-linear distributions and grading variations, even
extreme cases with noisy input data. This strategy has the
desired effect to smooth out the non-linearity due to high
frequency input data.

3.4 Mesh transition
For constant size meshing, using the interpolation domain
to determine the grading values along the split line can lead
to sudden jumps in mesh size. One could smooth out the
field of mesh size to get a smoother distribution. Instead, a
parabolic distribution of the mesh size was simulated by
keeping the two end points of the split line and adding a
sample point half way with grading value equal to the
global size. The grading at the sample points along the
split line is then obtained as the minimum value from
interpolation and the harmonic interpolation using the
grading values at the end points and the midpoint along the
line. This strategy proved to be valuable in cases where the
split line connected two small features (i.e. end points have
small grading values) so that the small feature size did not
propagate along the split line.

3.2 Flexible background mesh approach
4 SIZE CONTROL In order to provide better control over the interior element

size variation, as is necessary in surface curvature
adaptation, the TQM algorithm was enhanced to work in
conjunction with a background mesh that provides an
interpolation domain for the size variation. There are two
type of background meshes used: 1) a background mesh
resulting from the flattened faceted representation that is
used as an interpolation domain for the 2D to 3D mapping
function (see fig. 7d) and 2) a background mesh resulting
from an initial sample mesh (see fig. 7e).

There are various types of size control that a user may
want, each one with different computational cost. Three
types are defined, ranging from the lower cost to the higher
cost: None, constant, curvature.
• No size control: The sample mesh is a coarse mesh

formed by the boundary nodes and with no additional
interior nodes. This approach is fast and can be used if
the quality/distortion of the final mesh is not critical or
if the space strategy used produces very little
distortion (fig. 8b, 8c, 8d).

The split line node generation was modified. As was
discussed in section 2.3, the split line is still sampled with
10 uniformly distributed sample points, however, the
grading at the sample points is determined by interpolation.
As the nodes are equally spaced along the straight line, the
interpolation is quite fast since the result of the previous
node triangle location is used to start a triangle walk to
locate the next one. Also, special attention has been given
to the robustness of the triangle walk algorithm in order to
handle highly stretched, even flat, triangles that often occur
in STL data.

• Constant size control: The sample mesh is the initial
mesh obtained without any account for the distortion.
Distortion at sample points is computed leading to a
2D size interpolation domain that drives the 2D
mesher. This is the preferred approach if the final
mesh quality/size control is critical for a given
constant size (fig. 8e, 8f, 8g)

• Curvature size control: The sample mesh is the same
as in the constant size control case but this time the 3D

Extra sample point mesh size is computed as a function of the curvature
(fig. 9b, 9c).

gj gj+1

Although, we discuss a self-contained approach with the
sample mesh internally generated, all the concepts are
general and the sample mesh could be provided as input
with the field of 3D sizes derived from an analysis, as is the
case of adaptive meshing to a solution. With that data as
input, the mesh generator will provide the desired mesh.

Smart size control [8] is another important variation on the
size control that has not yet been implemented.

4.1 Curve Size Control
In order to adapt the boundary to the curvature we first
need to compute the curve curvature. Two options are
possible: line curvature or surface curvature.

4.1.1 Line curvature

Fig 4. Poly-line formed by STL facet points
(ruled surface : line curvature =surface curvature)

The line curvature does not take into account the adjacent
surface curvature. The curve has a poly-line representation
formed by facet points (fig. 4). At each interior point, to the
curve, the line curvature is computed as the inverse of the
radius of the circle passing through 3 consecutive points.
When these 3 points are collinear, the radius is set to
infinity. At the curve end points, the curvature is computed
by extrapolation. Furthermore, the minimum line curvature
at end points is taken from all curves that share the vertex.

4.1.2 Surface curvature
In section 5 we will present discrete surface operators to
evaluate curvature. The minimum radius of curvature is
used at the boundary points to estimate the local surface
curvature.

4.1.3 Line curvature versus surface
curvature.

Either type of boundary curvature, line or surface, an
average or a minimum can be chosen depending on the type
of adaptation the user wants. The line curvature tends to
highly refine small holes in flat areas. These can be very
small geometry features compared to the mesh size that
only need to be represented with a minimum of 3 to 4
points (fig. 6b). In all examples presented in this paper,
only the surface curvature has been used.

4.1.4 Sampling refinement

Fig. 5 – Under sampled boundary curve

For curvature size control, the facet point representation of
boundaries near long flat regions close to fillets (fig. 5)
need special attention. In a sense, these boundaries are
“under sampled” and sample points need to be added to
properly capture the flatness of the curve. The algorithm
works as follows :

• Given a curve , the arc length parameter

location t of its sample points and a global

mesh size

C
j

S
jP

g

• Loop over segments [], 1+jj tt
o Compute it length jL
o Segment grading average

()12
1

+

−

+= jjj ggg

o If jlgjg LSg λλ <<
−

 Add extra sample point at the
mid point.

 Assign grading value equal to
at this extra sample point. gS

The parameter gλ is a constant representing the grading

ratio between the local grading and the global size, while
the parameter lλ represents the inverse of the minimum
number of intervals desired. The first part of the inequality
states that the grading at the segment end points is very
small compared to the global size. The second part of the
inequality states that the segment length is large compared
to the global size. By adding a point halfway, a parabolic
node distribution will result. In the examples, values of

0.4=gλ and 3/1=lλ have been chosen.

5 SURFACE SIZE CONTROL

For a constant size control the 3D mesh size is a field of
constant values. For a curvature size control the mesh size
becomes function of the local surface curvature evaluated
at the sample points.

5.1 Continuous surface operators

Given a surface , the two principal curvatures and

of the surface along the two orthogonal principal

direction vectors (

S

1e

1K

2K
), 2err

are the extrema values of all the

normal curvatures. The normal curvature
)(αNK

to the

surface at a point P with unit normal along a unit

tangent vector
r

is defined as the line curvature of the

curve formed by intersecting the plane

S N
r

, NP
αe

),(αer
r

 with

the surface S . The mean curvature is defined as the
average of the normal curvature:

HK

∫π

.K

π2

0
K

2

2
1

1K

(K
2
1

1 +

)

3

i

D
k

P

N

(
)(i

θ

α

∑
∈

=
)(

3)(
iSk

D
kiP αθ (12)

with)(iPθ representing the total vertex angle.

The Radius of curvature at a point along the direction

of the edge is:

iP

ji PP

><
=

jii

ji
ij PPN

PP
,

||||
2
1 2

rρ (13)
= αα)(dK NH

 (8) and the minimum radius of curvature at point Pi :

ij
j

i ρρ min=
The Gaussian curvature is defined as the product of
the two principal curvatures:

GK

 At each point P one can compute the vertex angle excess
)(2 Pθπ − that also represents the (total) Gauss

curvature at an interior point:
KG =

 (9)

and the mean curvature is expressed as the average of the
two principal curvatures :)(2 PdAKG θπ −=∫∫ (14)

The discrete gaussian curvature at point P can be
approximated by:)2KK H =

 (10))(/))(2()(PVorPPKG θπ −= (15)

with computed as the voronoi area at a point if
all triangles are acute and for obtuse triangles the
containment circle is used instead of the circumscribed
circle criteria (i.e. instead of joining adjacent edges
midpoints to the center of the circumscribed circle they are
joined to the midpoint of the (opposite) longest edge (fig.
5).

)(PVor
5.2 Discrete surface operators

Given a triangle map, the first and second order attributes
of the surface (normal vector, mean curvature ,

Gaussian curvature) can be approximated [9], [10].
HK

GK The discrete normal curvature is derived from the formula

))(cot(cot
2
1)().(2 33

)(
ji

d
ij

d
ij

iSj
H PPdAPNPK

rrr
−+= ∑∫∫

∈

βα

3D space

2D space

 Vor(Pi)

 ti

2d
 l0

2d

 β3d α

1
 Pi α0 Ti

3d l0
3d

 α3d α

2
Pj

 (16)
with ijα and ijβ the two angles opposite to the edge

in the two triangles sharing the edge (see fig. 5).)jP,(iP
The discrete mean curvature normal is given by :

))(cot(cot
)(2

1)(33

)(
ji

d
ij

d
ij

iSji
iH PP

PVor
PK

rrr
−+

×
= ∑

∈

βα

 (17)
and the approximation of the normal curvature is obtained
as:

||)(||

2
1)(iHiH PKPK

r
= (18) Fig. 5 Triangle map 3D to 2D space (Voronoi area with

modification for obtuse triangles)
 All the above formulas are the discrete counterparts of the

continuous first and second order attributes of the surface. First we compute the discrete normal as an angle weighted
average of the normals to the facets surrounding the point. r

Sk
T

iN
k∑

∈=
r

 (11)

In [11] a measure of the deformation of a triangle between
2D and 3D space is proposed :

)(2
||||cot||||cot||||cot

)(

2

22
2

3
2

22
1

3
1

22
0

3

23

D
i

D
i

D
i

D
i

D
i

D
i

D
io

D
i

D
i

tArea
lll

tTDef

×
++

=→

ααα

By summing over all the triangles, this formula provides a
measure of the total distortion induced by the mapping used
in the triangle map between the 2D and 3D space. The
global measure could be used as criteria to select the space
development strategy with least distortion and/or to
improve an initial parameter domain by minimization of the
global distortion measure. Currently the curvature
adaptation strategy only considers the minimum radius of
curvature, but experimentation with other criteria is
underway.

The mapping between the discrete curvature and the 3D
size is as follows [10]:

• Given ε a percent deviation to the original
geometry.

• Given a global size globalS

• Compute the constant)1(εεγ −=

• Look up in the triangle map for the minimum
radius of curvature, iρ .

• Compute local 3D size:

γρ ×= i
D

iS 3

• Bound , D
iS 3

global
D

iglobal SSS <<× 3

dLenRatio
1

A value of was chosen to control the
minimum size allowed during curvature adaptation.

10=dLenRatio

6 TRIANGLE MAP

The triangle map keeps a map between the 3D mesh and
the 2D mesh and also provides a wealth of information
about the surface. There are two triangle maps that we use.
The STL triangle map (fig. 7a, 7b) and the sample mesh
triangle map. One starts with a given STL of a surface to
mesh (fig. 7a). The node coordinates in 3D space and the
mesh connectivity are stored in the triangle map. Using a
space development strategy (in all the examples presented a
flattening strategy is used), the 2D parameter domain (fig.
7e) is created and the map x(u,v), y(u,v), z(u,v) is stored for
the facet points. The 2D parameter domain is an
interpolation domain for the mapping between the 2D space
and the 3D space. Next, all the discrete operators are
computed as well as the distortion between the 2D space
and the 3D space. The STL triangle map is always used to
map the nodes back to 3D space. Another use of the STL
triangle map is during the boundary node generation with
curvature size control.
 As mentioned in section 4.1, we use the surface curvature
that we obtain directly in the look up table of the triangle
map. The boundary nodes were generated in 3D space and

they need to be mapped to their corresponding 2D space
value. To do so one could perform an exhaustive 3D point
in triangle location. Instead, as the curve is represented by a
poly-line of facet points, we store the parameter location of
the facet points along the curve. For a mesh point generated
along the boundary curve at the parameter location t, we
find the facet point interval [ti, ti+1] that contains t and use
a linear interpolation to find the corresponding 2D
parameter location (u,v). The 3D boundary node loop is
then mapped to the 2D plane. The grading value at the
boundary nodes is computed as an average of the two
adjacent edges length at the points. This gives us the “real”
2D size that already accounts for distortion.
The sample mesh is generated in 2D space using the TQM
meshing algorithm with the desired mesh size. At this
stage, the size map has not been created yet. The grading
values along the split line are computed using the piecewise
harmonic interpolation (equation 1). The sample mesh is
mainly uniform (unless we are using no size control) and
provides a sampling field of interest for the given mesh
size. The 2D mesh is transformed back to 3D space using
the STL triangle map, and a sample mesh triangle map is
created. This latter triangle map provides a look up table to
compute for each point in the sample mesh, its distortion,
its surface curvature etc …The data (distortion, curvature
etc…) is computed at once for the whole mesh and stored
in the triangle map.
The boundary discretisation of the sample mesh and the
final mesh are identical and need not be regenerated. The
size map is created and will be used as a size interpolation
field for the final mesh.

7 SIZE MAP

The size map is a combination of the size control and the
triangle map. The size control provides the 3D size
variation on the surface for the sample mesh while the
triangle map provides the size distortion. The size map
combines both data into one single value. For example, for
a constant 3D size mesh, the size control has a field of
constant values and only the distortion factor varies at each
point of the sample mesh. The 2D scaled mesh size is the
product.

8 EXAMPLES

Fig. 6a - Small hole

Fig. 6b - Small hole zoom

Figure 6 : smooth size transition for small
features.

8.1 Smooth transition from small holes to
large constant size

Figure 6a represents the final mesh for a square with a
small hole. The diameter of the hole is 1 while the square
size is 100. A mesh size of 12.5 has been used. The hole
has been represented by 5 elements and the mesh
transitions smoothly from the small to the large size (fig.
6b).

Fig. 7 a –3D STL of an hemisphere

8.2 Developed space distortion comparison.
Figures 7 (b,c,d,e) illustrates the advantage of the flattening
technique [5] over the Maximum Area Plane (M.A.P.)

projection used in I-DEAS. Figure 7a represents the STL of
half a sphere. Figure 7b represents the 2D parameter space
resulting from the projection technique. Notice the high
distortion along the boundary where triangles have been
“squashed”. Figure 7c represents on top the 2D final mesh
and on the bottom the corresponding 3D mesh obtained
with the option of constant size control. Highly distorted
elements are generated along the boundary. Clearly, a
projection technique is not satisfactory in local areas where
the normal to the surface is orthogonal to the direction of
projection and a small change εd in the 2D space tends to
infinity in the 3D space.
Figure 7d represents the flattened STL mesh. This time the
lengths have been preserved along the boundary and the
highest distortion seems to occur around the pole. The final
mesh with constant size control is presented in figure 7e.
The flattening space strategy produced a more isometric
mapping leading to the good mesh quality.
Projections techniques are computationally inexpensive but
they are restricted to domains that can be projected and
therefore work well with low curvature domains. On the
other hand, flattening techniques, depending on the type of
domain at hand, result in more isometric mapping (works
well for developable domain independent of the curvature)
but are in general more computationally expensive. They
also have their own limitations (cannot flatten a closed
surface without cutting it), but they are less stringent than
projections techniques.

Fig. 8a – 3D STL of a damper

8.3 Size Control comparisons.
This example illustrates the results obtained with various
types of size control. The mesh size is 5 in all cases.
Figure 8.a represents the initial STL. In figure 8b and 8e
the sample meshes for no size control and constant size
control options are presented. Figures 8c and 8f provide a
comparison of the resulting 2D final meshes for
respectively no size control and constant size control. The
mesh in fig. 8f has a smoother variation of the the size than
the one in fig. 8c, due to a richer sampling of the curvature
variation and therefore a richer interpolation domain for
the distortion scaling factor..

Fig. 9a – 3D STL of a bracket

8.4 Curvature adaptation.
Figure 9a represents a bracket with fairly complex
curvature patterns. Figure 9b demonstrates how the 2D
mesher is able to accurately adapt to the curvature pattern
and figure 9c shows that the refinement, when mapped
back in 3D space did occur in the correct locations. Notice
also, the 1D boundary curvature adaptation and how the
holes in flat regions were not refined as the surface
curvature, not the line curvature, was used in these
examples.

Fig. 10a- 3D STL of another bracket

Figure 10a, 10b and 10c is another example of curvature
adaptation. Notice in figure 10b that the 2D mesher
accurately captured the high curvature areas and started to
pick up the lower curvature of the rear flaps both on the
boundary and the interior.

9 CONCLUSION

Recent progress and extensions to increase TQM flexibility
to handle large variations in mesh size all across a surface
have been presented and demonstrated.

An approach that uses the surface STL data as sample
points for the boundary discretisation and automatically

generates a sample mesh for the interior has also been
presented. A natural way of getting the sample mesh, based
on the final mesh global size, proved to be a good sampling
strategy. The price to pay for the additional quality is the
cost of meshing the surface twice. It is the user’s choice
whether to incur this extra cost.

The curvature adaptation presented is robust and transitions
smoothly between high and low regions of curvature.

Finally, we have tried to isolate independent concepts such
as size control, triangle map and size map that put together
provide tremendous flexibility.

This work is still at a preliminary stage with emphasis on
flexibility and surface mesh quality. Future work should
include smoothing techniques that are “adaptation
preserving”, a study of the viability of using the STL as
sample mesh, smart sizing, and study and development of
“best practices/strategies” to get a good quality surface
mesh at lowest cost.

10 ACKNOWLEDGMENTS

The author expresses his sincere thanks to his colleagues at
EDS/PLM solutions for their active support. In particular,
Michael Hancock, Nilanjan Mukherjee, Hui Xiao, Radhika
Vurputoor and Kirk Beatty for their active involvement.

11 REFERENCES.

[1] A.J.G. Schoof, L.H.Th. M. Van Beukering and
M.L.C. Sluiter, “A general purpose two-dimensional
mesh generator”, Advances in Engineering Software,
Vol 1(3) pp.131-136 (1979)

[2] J.R. Tristano, S.J. Owen and S.A. Canann,
"Advancing front surface mesh generation in
parametric space using a Riemannian surface
definition",Proc. 7th IMR, pp 429-445 (1998).

[3] R. Lohner, "Regridding surface triangulations",
Journal of Computational Physics, Vol 126, pp.1-10
(1996)

[4] A. Sheffer, E. de Sturler, "Surface parametrization
for meshing by triangulation flattening", 9th IMR,
pp.161-172 (2000).

[5] E.C.Sherbrooke, M.R. Lauer and D.C.
Gossard,“Membrane surfacing : A triangulated G1

representation for feature-based design”, NTI
technical report 00-1, (2000)

[6] J.A.Talbert and A.R. Parkinson, "Development of an
automatic two-dimensional finite element mesh
generator using quadrilateral elements and bezier
curve boundary definition", IJNME, Vol 29, pp.
1551-1567 (1990).

[7] J. Sarrate and A. Huerta, "Efficient unstructures
quadrilateral mesh generation", IJNME, Vol 49, pp.
1327-1350 (2000).

[8] A. Cunha,.S.A Canann and S. Saigal, "Automatic
boundary sizing for 2D and 3D meshes", Trends in

unstructured mesh generation, ASME, AMD-Vol
220, pp.65-72 (1997)

[9] M. Meyer, M. Desbrun, P. Schroeder, A.H. Barr,
"Discrete differential geometry operators for
triangulated 2-manifold", VisMath (2002)

[10] P.J. Frey and H. Borouchaki, "Criteres geometriques
pour l’evaluation des triangulations de surfaces",
Rapport de recherche INRIA, N0 2951 (1996)

[11] K. Hormann, U. Labsik and G. Greiner, "Remeshing
triangulated surfaces with optimal
parameterizations", CAD, Vol 33, pp.779-788
(2001).

Fig. 7d – 2D flattened STL.

 Fig. 7b – 2D projected STL using Maximum Area
Plane (M.A.P.)

Fig. 7c – M.A.P., constant size control. Top: 2D final
mesh. Bottom: 3D final mesh

Figure 7e - Flattening, constant size control. Top:
2D final mesh. Bottom: 3D final mesh

Figure 7 : Developed space distortion comparison
between (left) Maximum Area Plane and (right)

flattening.

Fig. 8b -2D sample mesh, size control none. Figure 8e - 2D sample mesh , size control constant

Fig. 8c – 2D final mesh, size control none Fig. 8f - 2D final mesh, size control constant

Fig. 8g - 3D final mesh, size control constant Fig. 8d –3D final mesh , size control none.

 Figure 8 – Size control comparison between (left)
size control none and (right) size control constant.

Figure 10b – 2D final mesh Fig. 9b - 2D final mesh, curvature size control

Figure 10c – 3D final mesh
Fig. 9c - 3D final mesh, curvature size control

Figure 10 – Curvature adaptation of a bracket
around high and low areas of curvature.

Figure 9 – Curvature adaptation of a bracket with
complex curvature patterns

ISOTROPIC REMESHING OF SURFACES:
A LOCAL PARAMETERIZATION APPROACH

Vitaly Surazhsky1 Pierre Alliez2 Craig Gotsman3

1Technion, vitus@cs.technion.ac.il
2INRIA Sophia-Antipolis, pierre.alliez@sophia.inria.fr

3Technion, gotsman@cs.technion.ac.il

ABSTRACT

We present a method for isotropic remeshing of arbitrary genus surfaces. The method is based on a mesh adaptation process, namely,
a sequence of local modifications performed on a copy of the original mesh, while referring to the original mesh geometry. The
algorithm has three stages. In the first stage the required number or vertices are generated by iterative simplification or refinement.
The second stage performs an initial vertex partition using an area-based relaxation method. The third stage achieves precise
isotropic vertex sampling prescribed by a given density function on the mesh. We use a modification of Lloyd’s relaxation method
to construct a weighted centroidal Voronoi tessellation of the mesh. We apply these iterations locally on small patches of the mesh
that are parameterized into the 2D plane. This allows us to handle arbitrary complex meshes with any genus and any number of
boundaries. The efficiency and the accuracy of the remeshing process is achieved using a patch-wise parameterization technique.

Keywords: surface mesh generation, isotropic triangle meshing, centroidal Voronoi tessellation, local parameterization

1. INTRODUCTION

Mesh generation has received a great deal of attention by
researchers in various areas ranging from computer graphics
through numerical analysis to computational geometry.
Quality mesh generation amounts to finding a partition of
a domain by elements—typically, triangles or quads. The
shape, angles or size of these elements must match certain
criteria (see [4, 5]). In most cases the boundary of the
domain is given, as well as an importance map that must
be discretized. The problem of surface remeshing, being of
particular interest for reverse engineering, is different in the
sense that the input domain is itself discrete. The mesh is
often highly irregular and non-uniform, since it generally
comes as the output of a surface reconstruction algorithm
applied to a point cloud obtained from a scanning device.

Isotropic sampling leads to well-shaped triangles, and thus
high-quality meshes when the notion of quality is related
to the shape of the triangles. Such meshes are important
for simulations where the quality of the mesh elements
is critical. For digital geometry processing [35], most
scanned models must undergo complete remeshing before
processing. Many geometry processing algorithms (e.g.,
smoothing, compression) benefit from isotropic remeshing,
combined with uniform or curvature-adapted sampling.

1.1 Related Work
Parameterization-based remeshing techniques [2, 3, 15] have
benefited from recent renewed interest in efficient parameter-
ization methods for surface meshes [7, 19, 23, 29]. Here, the
key is to parameterize the original mesh to obtain a bijective
mapping and minimize the distortion due to the flattening
process. The sampling and meshing stages are then consid-
erably simpler on the (planar) parameter space. This allows
both undersampling and oversampling with a high level of
control by the user. Despite their recent popularity, these
remeshing techniques (so-called “global approaches”) have
many drawbacks:

• surface cutting: each patch should be homeomorphic
to a disk, therefore, closed or genus> 0 models have
to be either cut along a cut graph to extract the polyg-
onal schema [20], or decomposed into an atlas [23].
Finding a “smart” cut graph is not only known to be
a delicate procedure [10, 15, 30], but also introduces a
set of artificial boundary curves, associated pairwise.
These boundaries, sampled as a set of curves (i.e., 1-
manifolds, while the surface has to be sampled as a
2-manifold), generate a visually displeasing seam tree.
Some authors propose to apply a local mesh adaptation

process to hide the seam a posteriori [2] but this solu-
tion is not fully satisfactory. Another solution to reduc-
ing the influence of the seam [19] consists of comput-
ing a globally smooth parameterization by decompos-
ing the surface into patches and minimizing the distor-
tion simultaneously across all patches. Although ele-
gant, the latter solution does not remove the need for
handling the patch boundaries during a global sample
partitioning process.

• parameterization and overlapping: instead of con-
straining the user to fix the boundary onto a predeter-
mined convex polygon, two recent methods minimize
the distortion due to the parameterization by letting the
solver find the “best” boundary while solving a linear
system [7, 23]. Even though the gain in term of distor-
tion is obvious, this approach does not solve the over-
lapping issues, contrary to other methods that may in-
troduce additional seams [30] or generate an atlas [31].

• numerical issues: despite recent efforts for efficient
computation of global parameterizations [23], the lat-
ter remains a time-consuming process for large mod-
els. Moreover, models with bad isoperimetric proper-
ties (e.g., sock-like shapes) are numerically intractable
for most state-of-the-art techniques.

• lack of guarantees: the conformal parameteriza-
tion [7, 9, 23, 27] has often been the method of choice
for irregular surface remeshing, isotropic [2, 3] or
anisotropic [1]. Unfortunately, there exist triangu-
lations for which this parameterization is not valid
(see [18]), even when the boundary is fixed to be con-
vex. Although the triangulation can be enriched by ver-
tex insertion to produce a valid embedding, it is still
unclear how many additional vertices are needed and
what the guarantees are when using a scheme with a
free, possibly concave, boundary.

The main alternative to global parameterization is known
as the mesh adaptation process. It consists of perform-
ing a series of local modifications directly on the mesh,
in embedding space. Remeshing algorithms using this ap-
proach [12, 13, 16, 17, 28, 36] usually involve computation-
ally expensive optimizations in 3D. To improve efficiency,
Frey and Borouchaki [13] use a less accurate optimization
in the tangent plane. In a subsequent work, Frey [12] uses a
paraboloid to obtain better approximation. The main issue of
this approach is the fact that the mesh vertices must remain
on the original mesh during the adaptation process. Other-
wise, fidelity is quickly lost because of error accumulation.
To solve this problem, the new optimal vertex positions are
projected back to the original surface. Projecting the ver-
tex involves a complex, computationally expensive and inac-
curate computation that may even lead to topological errors
during the remeshing process.

2. MAIN CONTRIBUTIONS AND
OVERVIEW

In light of the drawbacks listed in the previous section, our
main contribution is to combine the mesh adaptation process
with a set of local, overlapping parameterizations. This
allows us to handle large meshes of arbitrary genus. Another
motivation of this paper is to formulate the issue of isotropic
surface sampling using the concept of centroidal Voronoi
tessellation. This way we shift from the so-called unit length
paradigm used for numerical analysis [14] to the unit cell
tiling paradigm, well suited for our application, i.e., sam-
pling of 2-manifolds. The first technique aims at generating
meshes with unit edge length measured in a control space
metric, while our algorithm aims to partition the surface with
unit density integrated over the cells of a centroidal Voronoi
tessellation. In particular, we show how the latter property
is directly related to the notion of isotropic surface sampling.

Our technique uses two meshes: one is the piecewise smooth
geometric reference, which we call the geometric mesh MO

(see Section 3). The second mesh M is initialized with a
copy of the original mesh and evolves during the remeshing
process until the desired mesh properties are achieved. Our
technique falls into the category of local adaptation methods
since remeshing is performed by a series of well-known
local modifications: edge-flip, edge-collapse, edge-split and
vertex relocation. The modifications are always applied
sequentially to achieve desirable mesh characteristics.

The technique has three main stages: complexity adjustment,
vertex partitioning and precise vertex placement. The first
stage achieves the required number of vertices by applying
iterative mesh simplification or refinement on the evolving
mesh (see Section 4). The second stage uses a novel area-
based remeshing technique to approximately partition the
vertices in accordance with a density function specified on
the original mesh (see Section 4). The second stage performs
a precise isotropic placement of the vertices by constructing
a weighted centroidal Voronoi tessellation (see Section 5).
Section 7 shows some experimental results and Section 8
concludes.

3. GEOMETRIC BACKGROUND
The input to our remeshing scheme is a 2-manifold triangle
mesh MO of arbitrary genus, possibly with boundaries.
We consider MO to be a piecewise linear approximation
of a smooth surface, which is C

1-continuous except at
boundaries and a set of curves specified by feature edges.
These feature edges can be provided by the user or computed
automatically by feature detection techniques [40].

Surface reconstruction requires normal information at the
mesh vertices. If the normals at the mesh vertices are not
given, we use a method similar to [26, 28] to generate them:
Every vertex is assigned a normal which is the weighted av-
erage of the normals of the faces adjacent to it. The weights

are proportional to the angles of the corresponding faces at
the vertex and sum to unity. Normals of a vertex lying on
feature edges are not the same within all its adjacent faces.
They are also defined by the weighted average of the face
normals but as if the mesh was cut along the feature edges at
the vertex.

3.1 Surface Approximation
Similarly to [34], we perform an estimate of the smooth sur-
face in the vicinity of a mesh triangle. This may be ob-
tained by reconstructing an approximation of the surface us-
ing triangular cubic Bézier patches for every face of MO .
Vlachos et al. [37] presented a simple and efficient, yet ro-
bust and accurate, method to construct such curved patches
called PN triangles. The triangle vertex normals together
with vertex coordinates are used to construct a PN trian-
gle. PN triangles usually (but not always) maintain a G

1-
continuous surface along adjacent triangles when their com-
mon vertices have identical normals. The normal of any
point within a PN triangle is defined as a quadratic interpola-
tion of the normals at the triangle vertices. Although Walton
and Meek [39] presented a more complex and computation-
ally expensive method to create triangular patches that guar-
antees G

1-continuity on the patch boundaries, we use PN
triangles as a good tradeoff between accuracy and efficiency.
Given a point q inside a triangular face f = (q1, q2, q3), the
corresponding point on the surface of the PN triangle of f ,
as well as the normal at this point, can be uniquely defined
by the barycentric coordinates of q with respect to f .

3.2 Controlling Fidelity
Our remeshing scheme performs a series of local mesh
modifications. To ensure fidelity of the new mesh to the
geometry of the original mesh, two measures are used to
evaluate the distance between the two meshes. These mea-
sures are evaluated for every local modification on the region
of the mesh affected by the modification. The modification
is applied only if it does not violate the error conditions
defined by the measures. The measures we use are con-
ceptually similar to those of Frey and Borouchaki [13] are
defined for a face instead of an edge. These measures were
formulated in [34]. We briefly describe the measures and
discuss their advantages.

Let f = (v1, v2, v3) be a face whose error is to be estimated.
The first measure Esmth captures the degree of smoothness
and should not exceed some threshold angle θsmth:

Esmth(f) = max
i∈{1,2,3}

〈Nf , Nvi
〉 < cos θsmth. (1)

where Nf and Nv are unit normals of f and its vertex v,
respectively; 〈·, ·〉 denotes the dot product. Nv is taken from
the original surface. Intuitively, Esmth describes how well f

coincides with tangent planes of the surface at the vertices of
f . The second measure Edist captures the distance between
f and the surface:

Edist(f) = max
i∈{1,2,3}

〈Nvi
, Nvi+1

〉 < cos θdist. (2)

Vertex indices are modulo 3; θdist is a threshold angle.
A larger value of the maximal angle between the normals
of two face vertices corresponds to a more curved surface
above face f , and thus, to a greater distance. The beauty
of these two measures is that they involve only normal
directions. In addition to their computational efficiency,
when used together, these two measures are also robust and
accurate.

4. INITIAL VERTEX PARTITION
To achieve the target mesh complexity, we apply local
refinement or simplification operations. We perform a series
of edge-collapse or vertex-split operations until the required
number of vertices is achieved. Edges whose faces have
minimal/maximal error metrics are simplified/refined first.

The heart of our remeshing scheme is the construction of the
weighted centroidal Voronoi tessellation on the 3D mesh to
achieve precise vertex placement (see Section 5). However,
being optimal both in terms of sampling and isotropy,
generating the weighted centroidal Voronoi tessellation is an
extremely slow iterative process. This process first brings
the mesh to the required sampling prescribed by a density
function, then the mesh isotropy is optimized. It turns out
that the first stage of the process is even slower than the
second one, in contrast to many other iterative processes.
The reason is that the process inherently maintains the local
isotropy during resampling. To accelerate this process we
first generate a coarse, initial sample partition by using a
novel efficient area-based relaxation technique.

Alliez et al. [2] introduced an algorithm based on error
diffusion that efficiently finds a good initial sampling.
Unfortunately, this algorithm cannot guarantee fidelity of
the resulting mesh to the original. Features that are not
specified explicitly may be easily lost by this algorithm. In
order to guarantee the mesh fidelity of the initial sampling
we use an “area-based remeshing” technique, which is based
on a series of local mesh modifications, while validating the
mesh fidelity by the error measure described in Section 3.2.

The area-based remeshing technique was first introduced by
Surazhsky and Gotsman [33, 34]. It is based on the idea of
locally equalizing the area of triangles or bringing the areas
to the ratios specified by the density function. After this, it
remains to achieve a precise isotropic vertex placement.

5. PRECISE VERTEX PLACEMENT
Our goal is to isotropically sample a density function speci-
fied on the original surface mesh MO . There are, thus, two
terms (sampling and isotropy) to be defined:

• Sampling: to partition a density function among a set
of samples. The density function is defined over a
bounded domain, which must be partitioned so that
we obtain a tiling, or tessellation, where each tile cor-
responds to exactly one sample, without overlapping

or holes. The density partition must be done so that
we obtain the so-called equal-mass enclosing property,
namely, each tile contains the same amount of density.

• Isotropy: the shape of each tile is not biased with re-
spect to any particular direction. In other words, each
cell is as compact (i.e., as “round”) as possible. In the
uniform case the ideal tile is a disk, which maximizes
the compactness, but does not produce a tiling of the
domain. The hexagonal lattice better conforms with
uniform tiling along with optimal compactness. The
non-uniform case leads to a tradeoff between compact-
ness and partition of the density function.

5.1 Centroidal Voronoi Tessellation
The initial triangulation gives us a vertex partition, which
defines a tiling of a 2D parameter space. Each triangular tile
corresponds to three samples (the vertices of the triangle)
instead of one as desired. We, therefore, use the dual of the
triangulation, i.e., the tessellation in which each tile is now
associated with exactly one sample. We aim at obtaining
a special class of Voronoi tessellations, the so-called
centroidal Voronoi tessellation, with the two properties
mentioned above, i.e., equal-mass enclosing and isotropy.

Given a density function defined over a bounded domain
Ω, a weighted centroidal Voronoi tessellation [8] (denoted
WCVT) of Ω is a class of Voronoi tessellations, where each
site coincides with the centroid (i.e., center of mass) of its
Voronoi region. The centroid ci of a Voronoi region Vi is
calculated as:

ci =

∫
Vi

xρ(x)dx∫
Vi

ρ(x)dx
(3)

where ρ(x) is the density function. This structure turns out
to have a surprisingly broad range of applications for numer-
ical analysis, location optimization, optimal partition of re-
sources, cell growth, vector quantization, etc. (see [8]). This
follows from the mathematical importance of its relationship
with the energy function

E(z, V) =

n∑
i=1

∫
Vi

ρ(x)|x − zi|
2
dx (4)

where V ∈ Ω and z ∈ V . It is proven in [6] that (i) the
energy function is minimized at the mass centroid of a given
region, and (ii) for a given set of centers Z = {zi}, the
energy function E(Z, V) is minimized when V is a Voronoi
tessellation.

5.2 Building a WCVT on a 3D Mesh
One way to build a weighted centroidal Voronoi tessellation
is to use Lloyd’s relaxation method. The Lloyd algorithm
is a deterministic, fixed point iteration [25]. Given a den-
sity function and an initial set of n sites, it consists of the
following three steps:

1. Construct the Voronoi tessellation corresponding to the
n sites;

2. Compute the centroids of the n Voronoi regions with
respect to the density function expressed in local pa-
rameter space, and move the n sites to their respective
centroids;

3. Repeat steps 1 and 2 until satisfactory convergence is
achieved.

Since a Delaunay triangulation and its corresponding
Voronoi tessellation are dual, we do not need to work ex-
plicitly with a Voronoi tessellation but rather with its dual
triangulation. We adapt the Lloyd algorithm in the following
manner. Instead of constructing the Voronoi tessellation for
the point set of the current mesh, we modify the mesh by a
series of Delaunay edge flips in order to maintain the local
Delaunay property of the mesh. For every vertex, we then
compute its Voronoi cell in a local parametric domain, and
move the vertex to the new 3D location corresponding to the
centroid of the cell. We now describe these steps in detail.

Updating the local Delaunay property Notice that the
usual definition of the Voronoi tessellation holds for a set of
sites in Euclidean space, i.e., in the 2D plane for partitioning
a 2-manifold. As demonstrated in [21], Voronoi diagrams
can also be constructed in Riemannian manifolds for suffi-
ciently dense sets of points. In our algorithm, the current 3D
triangulation is the result of a series of local mesh adapta-
tions performed for initial vertex partition. Each local mesh
adaptation has been performed while maintaining a “local”
2D Delaunay property. Instead of building a new Voronoi
tessellation at each step of the Lloyd relaxation process, we
restore the local Delaunay property by performing a series
of edge flips in 3D. This maximizes the smallest angle prop-
erty. This task is performed efficiently by updating a priority
queue sorted by the angles.

Computing the centroid Every relaxation step in the se-
quence of Lloyd iterations moves a vertex v from the newly
generated mesh to the centroid of its “Voronoi” cell (we
abuse the word Voronoi here, since the cell is not planar
or even convex). To proceed we first need to define a pla-
nar Voronoi cell for v. Denote the vertices incident to v

as v1, . . . , vk, where k is the degree of v. Let S(v) be a
sub-mesh of M containing only v, v1, . . . , vk and faces in-
cident on v. We reduce the problem in 2D by mapping S(v)
onto the plane using a natural and simple method approxi-
mating the geodesic polar map [32], described by Welch and
Witkin [41] and later by Floater [11]. The method preserves
the lengths of edges incident to v, and the relative angles
of S(v) at v. This method is an efficient and precise ap-
proximation of a conformal mapping of S(v) onto the plane.
Let p, p1, . . . , pk be the positions of vertices v, v1, . . . , vk

within the resulting mapping SP (v). p is mapped to the orig-
inal. Then we construct a Voronoi cell of v in SP (v) with
respect to the circumcenters of the triangles built from p and
p1, . . . , pk, and compute the centroid pnew of this cell with
respect to an approximation of the density function specified
over the original mesh. The latter approximation consists of

Figure 1: Left: Ordinary Voronoi tessellation of a point set sampled from some density function. Right: Point set and
its corresponding weighted centroidal Voronoi tessellation for the same density function . Each site coincides with the
center of mass of its Voronoi cell. The sample set on the right was generated by Lloyd iterations applied to the sample
set on the left.

evaluating the density function at the new mesh vertices and
piecewise linearly interpolating the resulting density over the
new mesh triangles.

5.3 Vertex Relocation
Knowing the new vertex position of v (pnew), we need
to bring it back to the original surface of the given mesh,
namely, to find the position of v denoted by xnew(v) on
MO that corresponds to pnew . Existing remeshing methods,
e.g., [13, 17, 28] solve this problem by computing the vertex
projection onto the original surface. As stated in Section 1.1,
projecting the vertex involves an expensive and possibly
inaccurate computation that may even lead to topological
errors. We solve this problem using a mesh parameterization
with low distortion and guarantee of bijective mapping. This
way we can deduce xnew(v) precisely and efficiently.

We now briefly describe how to find xnew(v) using mesh
parameterization. For every vertex of M we maintain its
exact position on the original surface using barycentric
coordinates of the vertex within a specific face of MO .
Note that this gives us a unique point on the reconstructed
surface defined by PN triangles over MO; see Section 3.1.
The central idea in using parameterization to locate xnew(v)
is to use barycentric coordinates of pnew with respect to
a face of S(v) that contains it. Using these barycentric
coordinates together with the barycentric coordinates of the
face vertices, we locate a point in the parametric domain of
MO . This point is then elevated to the original surface.

However, this simple scheme is only applicable when we
have a well-defined parametric domain embedded in the 2D
plane. Since not all 3D meshes are isomorphic to a disk, such
a 2D parametric domain may not exist. To solve this prob-
lem we use a novel dynamic patch-wise parameterization
technique introduced independently by Vorsatz et al. [38]
and Surazhsky and Gotsman [34]. This technique aims to
overcome the problems of global parameterization (see Sec-
tion 1.1) and allows the handling of meshes of arbitrary
genus and boundaries. It maintains a set of small (usually
manifold) overlapping patches and their corresponding con-
formal parameterization. Every patch is constructed on de-
mand depending on a specific local modification and con-
tains the region required to locate a new vertex position in
the 2D parametric domain. Reuse of the patches already pa-
rameterized guarantees the efficiency of this technique both
in terms of computational cost and memory consumption.
See Figure 2 which demonstrates how this technique is used
for vertex relocation.

6. PRESERVING FEATURES
Note that near feature creases and boundaries, the computa-
tion of the centroid must be more sophisticated. To proceed
we clip the Voronoi cells with the set of feature edges [24].
This allows us to disconnect two smooth regions separated
by a feature crease during the computation of the centroid.
It leads to a nice sampling quality in the vicinity of the fea-
tures, obtained through the non-symmetric behavior of the
algorithm (the feature edges influence the surface samples
but the surface samples do not influence the samples on a

(a) (d) (e)

(b) (c) (f)

Figure 2: Vertex relocation. (a) A vertex v of the mesh
to be relocated. The faces of the sub-mesh S(v) are
dark-grey. (b) S(v) is mapped onto the plane and the
Voronoi cell of v is constructed. The new vertex loca-
tion is a weighted centroid of the cell. (c) The trian-
gle containing the new location. (d) The corresponding
triangle in the mesh M. (e) The highlighted vertices
in (d) correspond to three faces of the original mesh
MO. (d) A patch containing all these faces of MO is
constructed and then parameterized. The new location
of v in the patch is computed using the corresponding
barycentric coordinates of the 2D mapping (c).

feature edge). At the intuitive level, two samples adjacent
in the Voronoi tessellation and separated by a feature do not
influence each other, and the samples close to a feature edge
are repulsed by the constraints (see Figure 3). Geometrically,
clipping a cell by the set of constraints removes some regions
from the computation of the centroid, making the Lloyd re-
laxation consistent with respect to the features. Once the
centroid has been computed, it remains to relocate the vertex
v to the centroid.

7. EXPERIMENTAL RESULTS
The algorithm described in this paper has been implemented
in an interactive software package. Similarly to [34], the
user can control the remeshing via the definition of the
density function, either uniform, or adapted to the curvature.
We also provide an option to smooth the density function
and therefore obtain a smoother mesh gradation.

We have run our technique on a variety of models of arbi-
trary genus and complexity. Figure 4 illustrates a curvature-
adapted remeshing of the rocker-arm model with 10,000
vertices (the same as the original model). The tessellation
shown in the middle is drawn by tracing an edge between
the circumcenters of two incident triangles, every circum-
center located in the support plane of the corresponding tri-
angle. The genus 1 feline model is remeshed both uniformly
and with a curvature-based density. The original model of
50,000 vertices was first simplified to 20,629 vertices by lo-

without clipping clipping

centroid

constrained edges

Figure 3: Left: A Voronoi tessellation in parameter
space with a feature skeleton. All the cells are drawn
according to the circumcircle property. Computing the
centroid without clipping by the constraints makes the
sampling inconsistent, while the effect of clipping is to
repulse the samples from the boundary or sharp edges,
the centroid being computed on the truncated cell. A
constrained edge separating two samples thus acts as
a barrier [24] annihilating their mutual influence.

cal mesh adaptation. The initial sampling using area-based
remeshing required only 8 iterations. To obtain the same
resampling using just the Lloyd procedure required 45 it-
erations. Note also that every area-based iteration that re-
locates each of the mesh vertices is about twice as fast as
a Lloyd iteration. The polishing of the isotropy then took
15 Lloyd iterations. The entire remeshing was performed in
less than two minutes on a Pentium 4 2.4GHz machine with
512MB of memory. Figure 6 shows a uniform remesh of the
piecewise smooth model fandisk, containing 5,000 vertices.
The helmet, a genus 3 model, is remeshed with a curvature-
related density function (see Figure 7). Figure 9 illustrates
a uniform remeshing of the David model, part of the digital
Michelangelo project [22]. The irregular and non-uniform
input mesh contains 350,000 vertices, while the remeshed
model has 100,000 vertices. The initial vertex partition stage
runs for 5.5 minutes, and the vertex placement runs for 4
minutes. We chose this model for illustrating the scalability
and the adaptability of our technique to handle both complex
models and arbitrary genus. Figure 8 shows a closeup of the
same model to emphasis the quality of sampling obtained by
centroidal tessellation.

8. CONCLUSION
This paper has introduced a technique for efficient and pre-
cise isotropic surface remeshing. Our approach first per-
forms efficient sampling of the mesh with respect to a den-
sity function using the area-based remeshing technique. A
Lloyd relaxation stage that constructs a weighted centroidal
Voronoi tessellation is then directly applied on the mesh to
ensure precise isotropic placement of the vertices. Using a
patch-wise parameterization technique to apply a local 2D
Lloyd relaxation on the 3D mesh allows us to handle com-
plex models with arbitrary genus and any number of bound-
aries. Thus, by combining state-of-the-art techniques we are
able to efficiently produce high quality isomorphic remesh-
ings. One limitation of our method is the convergence be-

Figure 4: Left: original. Middle: centroidal tessellation. Right: curvature-adapted remeshing.

Figure 5: Left: uniform remeshing. Right: curvature-adapted remeshing.

havior of the Lloyd relaxation process for precise isotropic
vertex placement. As explained in [8], local convergence is
guaranteed in 2D when the density function is log concave.
Since in our case the density function is either uniform when
requested, or a function of the curvature, this does not guar-
antee the local convergence in all cases. Nevertheless, it was
not an issue in our experiments. As future work we plan to
accelerate further the Lloyd relaxation.

References
[1] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Levy,

and M. Desbrun. Anisotropic polygonal remeshing.
ACM Transactions on Graphics. Special issue for SIG-
GRAPH conference, 2003.

[2] P. Alliez, É. Colin de Verdière, O. Devillers, and
M. Isenburg. Isotropic surface remeshing. In Proceed-
ings of Shape Modeling International, 2003.

[3] P. Alliez, M. Meyer, and M. Desbrun. Interactive ge-
ometry remeshing. ACM Transactions on Graphics,
21(3):347–354, 2002. SIGGRAPH conference pro-
ceedings.

[4] M. Bern and D. Eppstein. Mesh generation and op-
timal triangulation. Computing in Euclidean Geome-
try, edited by D.-Z. Du and F. K. Hwang, pages 23–90,
1992.

[5] M. Bern and P. Plassmann. Mesh generation. In
J. Sack and J. Urrutia, editors, Chapter 6 in Handbook
of Comp. Geometry. Elsevier Science, 1999.

[6] R. Brauwerman, S. J. Zoll, C. L. Farmer, and M. Gun-
zburger. Centroidal Voronoi tessellations are not
good jigsaw puzzles, 1999. preprint, found at
http://www.math.iastate.edu/reu/1999/cvt.pdf.

[7] M. Desbrun, M. Meyer, and P. Alliez. Intrinsic pa-
rameterizations of surface meshes. In Proceedings of
Eurographics, pages 209–218, 2002.

[8] Q. Du, V. Faber, and M. Gunzburger. Centroidal
voronoi tesselations: Applications and algorithms.
SIAM review, 41(4):637–676, 1999.

[9] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Louns-
bery, and W. Stuetzle. Multiresolution analysis of ar-
bitrary meshes. In Proceedings of SIGGRAPH, pages
173–182, 1995.

[10] J. Erickson and S. Har-Peled. Optimally cutting a sur-
face into a disk. In Proceedings of the 18th Annual
ACM Symposium on Computational Geometry, pages
244–253, 2002.

[11] M. S. Floater. Parameterization and smooth approxi-
mation of surface triangulation. Computer Aided Geo-
metric Design, 14:231–250, 1997.

Figure 6: Uniform remeshing of the fandisk model (piecewise smooth).

Figure 7: Curvature-adapted remeshing of the helmet model (genus 3).

[12] P. J. Frey. About surface remeshing. In Proceedings of
9th International Meshing Roundtable, pages 123–136,
2000.

[13] P. J. Frey and H. Borouchaki. Geometric surface mesh
optimization. Computing and Visualization in Science,
1:113–121, 1998.

[14] P. L. George and H. Borouchaki, editors. Delaunay
Triangulation and Meshing Application to Finite Ele-
ments. Hermes, Paris, 1998.

[15] X. Gu, S. Gortler, and H. Hoppe. Geometry images. In
Proceedings of SIGGRAPH, pages 355–361, 2002.

[16] H. Hoppe. Progressive meshes. In Computer Graphics.
SIGGRAPH ’96 Proceedings, volume 30, pages 99–
108, 1996.

[17] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Mesh optimization. In Computer Graph-
ics. SIGGRAPH ’93 Proceedings, volume 27, pages
19–26, 1993.

[18] K. Hormann. From scattered samples to smooth sur-
faces. In Proceedings of Geometric Modeling and
Computer Graphics, 2003.

[19] A. Khodakovsky, N. Litke, and P. Schröder. Globally
smooth parameterizations with low distortion. In Pro-

ceedings of SIGGRAPH, 2003.

[20] F. Lazarus, M. Pocchiola, G. Vegter, and A. Verroust.
Computing a canonical polygonal schema of an ori-
entable triangulated surface. In Proc. of 17th Annu.
ACM Sympos. Comput. Geom., pages 80–89, 2001.

[21] G. Leibon and D. Letscher. Delaunay triangulations
and voronoi diagrams for riemannian manifolds. In
Proceedings of the sixteenth annual symposium on
Computational geometry, pages 341–349, 2000.

[22] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz,
D. Koller, L. Pereira, M. Ginzton, S. Anderson,
J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The dig-
ital michelangelo project. In K. Akeley, editor, ACM
SIGGRAPH Conference Proceedings, pages 131–144,
2000.

[23] B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least
squares conformal maps for automatic texture atlas
generation. In Proc. of SIGGRAPH, pages 362–371,
2002.

[24] A. Lingas. Voronoi diagrams with barriers and the
shortest diagonal problem. Inform. Process. Lett.,
32:191–198, 1989.

[25] S. Lloyd. Least square quantization in PCM. IEEE
Trans. Inform. Theory, 28:129–137, 1982.

[26] S. J. Owen, D. R. White, and T. J. Tautges. Facet-based
surfaces for 3D mesh generation. In Proc. of 11th Inter-
national Meshing Roundtable, pages 297–312, 2002.

[27] U. Pinkall and K. Polthier. Computing discrete mini-
mal surfaces and conjugates. Experimental Mathemat-
ics, 2(1):15–36, 1993.

[28] A. Rassineux, P. Villon, J.-M. Savignat, and O. Stab.
Surface remeshing by local Hermite diffuse interpola-
tion. International Journal for Numerical Methods in
Engineering, 49:31–49, 2000.

[29] P. Sander, S. Gortler, J. Snyder, and H. Hoppe. Signal-
specialized parametrization. In Eurographics Work-
shop on Rendering 2002, 2002.

[30] A. Sheffer. Spanning tree seams for reducing param-
eterization distortion of triangulated surfaces. In Pro-
ceedings of Shape Modeling International, 2002.

[31] O. Sorkine, D. Cohen-Or, R. Goldenthal, and
D. Lischinski. Bounded-distortion piecewise mesh pa-
rameterization. In IEEE Visualization Conference Pro-
ceedings, 2002.

[32] D. J. Struik. Lectures on Classical Differential Geom-
etry. Dover Publications, Inc., 1988.

[33] V. Surazhsky and C. Gotsman. High quality compati-
ble triangulations. In Proceedings of 11th International
Meshing Roundtable, pages 183–192, Ithaca, NY, Sept.
2002.

[34] V. Surazhsky and C. Gotsman. Explicit surface remesh-
ing. In Proceedings of Eurographics Symposium on
Geometry Processing, pages 17–28, June 2003.

[35] W. Sweldens and P. Schröder, editors. Digital Ge-
ometry Processing. Course Notes. ACM SIGGRAPH,
2001.

[36] G. Turk. Re-tiling polygonal surfaces. In Computer
Graphics. SIGGRAPH ’92 Proceedings, volume 26,
pages 55–64, 1992.

[37] A. Vlachos, J. Peters, C. Boyd, and J. L. Mitchell.
Curved PN triangles. In Symposium on Interactive 3D
Graphics, pages 159–166, 2001.

[38] J. Vorsatz, C. Rössl, and H.-P. Seidel. Dynamic
remeshing and applications. In Proceedings of the 8th
Conference on Solid Modeling and Applications, June
2003.

[39] D. Walton and D. Meek. A triangular G1 patch from
boundary curves. Computer Aided Design, 28(2):113–
123, 1996.

[40] K. Watanabe and A. Belyaev. Detection of salient
curvature features on polygonal surfaces. Computer
Graphics Forum, 20(3):385–392, 2001.

[41] W. Welch and A. Witkin. Free form shape design us-
ing triangulated surfaces. In Computer Graphics (Proc.
SIGGRAPH ’94), volume 28, 1994.

Figure 8: Closeup on the Digital Michelangelo David
model: original, uniform sample tiling and triangle
remesh.

Figure 9: Left: Digital Michelangelo David model (350k vertices). Right: uniform remeshing (100k vertices).

Session 2B
Quality

AN ADAPTABLE SURFACE PARAMETERIZATION
METHOD

P. Degener, J. Meseth and R. Klein
University of Bonn

Institute of Computer Science II
Römerstrasse 164

D-53117 Bonn, Germany

August 12, 2003

ABSTRACT

Parameterizations of triangulated surfaces are used in an increasing number of mesh processing applications for
various purposes. Although demands vary, they are often required to preserve the surface metric and thus minimize
angle, area and length deformation. However, most of the existing techniques primarily target at angle preservation
while disregarding global area deformation.
In this paper an energy functional is proposed, that quantifies angle and global area deformations simultaneously,
while the relative importance between angle and area preservation can be controlled by the user through a parameter.
We show how this parameter can be chosen to obtain parameterizations, that are optimized for an uniform sampling
of the surface of a model. Maps obtained by minimizing this energy are well suited for applications that desire an
uniform surface sampling, like re-meshing or mapping regularly patterned textures.
Besides being invariant under rotation and translation of the domain, the energy is designed to prevent face flips
during minimization and does not require a fixed boundary in the parameter domain. Although the energy is non-
linear, we show how it can be minimized efficiently using non-linear conjugate gradient methods in a hierarchical
optimization framework and prove the convergence of the algorithm.
The ability to control the tradeoff between the degree of angle and global area preservation is demonstrated for several
models of varying complexity.

Keywords: parameterization, uniform sampling, metric, re-meshing

1. INTRODUCTION

Parameterization denotes the task of finding a two di-
mensional map for a surface in a higher dimensional
space. In computer graphics such maps have recently
gained much interest, since they are used in many ap-
plications ranging from re-meshing, texture mapping
and surface reconstruction to 3d painting systems, sur-
face editing [2] and geometry images [8].

Most of these applications demand parameterizing
maps (in the following also called parameterizations)
that preserve the metric structure of the surface, i.e.

respect area and angles of shapes. Unfortunately, in
general such an angle and area preserving parameter-
ization does not exist, thus angle preservation has to
be traded off against area preservation. Many exist-
ing methods focus on angle preservation only, which
often leads to large global area distortion resulting in
visually disturbing artifacts on textured surfaces even
if angular distortions are small.

Simultaneously optimizing angle and global area defor-
mation is often superior as shown in figure 1. Further-
more combined global area and angle optimization is

also important whenever an uniform surface sampling
is desired, as in 3D painting systems or surface editing
applications. However, by now only few approaches
considering both angular and area distortion simulta-
neously exist, all of which exhibit certain drawbacks.

1.1 Previous Work

Over the last years a lot of research has been done in
the area of surface parameterization. Besides methods
that optimize the parameterization for a given surface
signal like Balmelli et al.[1] and Sander et al.[21], most
approaches aim at minimizing a metric distortion.

In the context of parameterization, harmonic maps
[6, 5] were first used by Eck et al.[4]. To compute
harmonic maps, Eck et al. derive appropriate weights
for a system of edge springs which can be efficiently
solved. However, the texture coordinates for bound-
ary vertices must be fixed a priori and harmonic maps
may contain face flips (adjacent faces in texture space
with opposite orientation) which violate the bijectiv-
ity of a parameterization. Based on earlier work by
Tutte[27], Floater[7] proposes a different set of weights
for the edge spring model that guarantees bijectivity
if the texture coordinates of the boundary are fixed to
a convex polygon. Desbrun et al.[3] define a space of
measures spanned by a discrete version of the Dirichlet
energy [19], and a discrete authalic energy. While the
authalic energy remedies local area deformations, it re-
quires fixed boundaries and results cannot achieve the
quality of methods targeted at global length preserva-
tion such as Sander et al.[22].

In Hormann and Greiner[12] mostly isometric param-
eterizations are introduced that minimize a non-linear
energy. A variant of this energy is also used in this
paper. Mostly isometric parameterizations do not re-
quire boundary texture coordinates to be fixed and
avoid face flips. Furthermore, mostly isometric param-

Figure 1: A regularly patterned texture mapped by a
conformal map (left) and by a map computed with our
method with θ = 1 (right). While the conformal map
minimizes angular distortion, the map on the right also
takes global area deformation into account.

eterizations approximate mathematically well studied
continuous conformal maps, i.e. maps that perfectly
preserve angles.

Another approach to minimize angular distortion is
proposed by Sheffer and de Sturler[24]. They define
a non-linear energy in terms of the corner angles of
the mesh in texture space. Lévy et al.[17] formu-
late the discrete conformality problem as an uncon-
strained quadratic minimization problem and prove
the uniqueness and existence of its solution. Using
a standard numerical conjugate gradient solver they
are able to compute least squares approximations to
continuous conformal maps very efficiently without re-
quiring fixed boundary texture coordinates. However,
in seldom cases triangle flips may occur.

In addition, some methods exists which compute pa-
rameterizations over a non planar domain. Haker et
al.[9] compute conformal maps from a spherical do-
main onto a three dimensional surface. In Lee et al.[16]
a mesh simplification [10] is used to parameterize a sur-
face over a base mesh. A similar approach is taken by
Khodakovsky et al.[14] but with emphasis on globally
smooth derivatives.

Besides angle preserving methods, only a few ap-
proaches explicitly optimize global area or global
length distortion: Maillot et al.[18] minimize an edge
length distortion, but cannot guarantee the absence
of face flips. The authors also propose an area pre-
serving energy and combine both energies in a convex
combination. Sander et al.[22] minimize the average
or maximal singular value of the Jacobian to prevent
undersampling of the surface. However, since they
only penalize undersampling, oversampling of a trian-
gle may nevertheless occur. To optimize for a uniform
sampling Sorkine et al.[26] minimize the maximum of
the maximal singular value and the inverse of the min-
imal singular value, which penalizes both under- and
oversampling. While they obtain impressive results,
their functional is not differentiable and thus not suit-
able for fast non-linear minimization techniques as the
conjugate gradient method for example.

Iterative smoothing of an overlay grid is proposed by
Sheffer and de Sturler[25] as a post-processing step for
angle preserving parameterization algorithms. How-
ever, it is not clear what impact the post-processing
has on the angle preservation.

1.2 Contribution

In this paper, we propose a metric energy that simul-
taneously measures angular and global area deforma-
tions imposed by a parameterization. On surfaces with
non zero Gaussian curvature, the unavoidable defor-
mation of angles and areas is traded off by the energy
in an user-controlled way. Furthermore, we show how

this functional can be used to optimize parameteriza-
tions for a uniform surface sampling.

It is designed to prevent face flips during optimization
and does not require fixed boundary texture coordi-
nates. Furthermore it is invariant under rotation and
translation of the domain. Although the derived en-
ergy is non-linear, it is differentiable and well suited for
a hierarchical minimization as proposed by Hormann
et al.[13]. We show how angle and global area opti-
mized parameterizations can be computed efficiently
with guaranteed convergence using non-linear conju-
gate gradient methods.

Usually models are cut into charts before being pa-
rameterized. In the present paper we do not tackle
this problem, but our method can be combined with
any charting and seaming algorithm available like the
ones introduced in [23, 17, 22].

Besides face flips the bijectivity of the parameteriza-
tion can also be violated if the texture mesh intersects
itself. Although the method proposed here does not
prevent these self intersections, they occur only in sel-
dom cases and can be handled in a post processing
step as proposed in [24].

2. ISOMETRIC DISTORTION

2.1 General Setup and Notation

Given an orientable 2-manifold surface patch S ⊂ Rk

a parameterization is defined as a homeomorphism

φ : Ω ⊂ R2 → S

(u, v) 7→ φ(u, v)

from the parameter space Ω into S. In the following
we consider the problem of finding a parameterization
for a set S that has a triangulation

M′ = {[1 . . . n], T , (pi)i=1...n}

where [1 . . . n] denotes the vertices, T ⊂ [1 . . . n]3 rep-
resents triangles and pi is the location of vertex i in
S. Furthermore, we require the inverse parameteriza-
tion ψ := φ−1 to be linear within the triangles of M′.
Such a mapping ψ is uniquely determined by its values
((ui, vi))i=1...n := (ψ(pi))i=1...n on the mesh vertices
and

M = {[1 . . . n], T , ((ui, vi))i=1...n}
is a parameter domain triangulation for the image
ψ(S). The inverse parameterization ψ maps vertices
and faces of M′ onto vertices and faces of M respec-
tively. In the following ∆M′((l,m, n)) with (l,m, n) ∈
T denotes the triangle (pl, pm, pn) in S. Analogously,
∆M(T) will be used to denote triangles in Ω.

Since a homeomorphism respects the topology and as
we assume a planar domain Ω ⊂ R2 the surface patch
is required to have genus zero.

2.2 Measuring Distortion

Given a differentiable parameterization

φ : Ω ⊂ R2 → S ⊂ Rk

the first fundamental form Iφ, which captures the met-
ric structure of S, is defined as

Iφ = ∇tφ · ∇φ =

(
a b
b c

)

with a =

wwww∂φ

∂u

wwww2

, b =

〈
∂φ

∂u
,
∂φ

∂v

〉
and c =

wwww∂φ

∂v

wwww2

.

Since Iφ is a symmetric positive definite 2x2 matrix in
every ω ∈ Ω it induces a scalar product on R2 which
describes the lengths and angles of vectors in R2 after
being mapped by Iφ.

In the following we briefly review an angle preserving
condition in terms of Iφ and formulate a similar con-
dition for global area preservation. In section 2.5 an
energy functional E on the space of valid parameteri-
zations is proposed that quantifies both angle and area
deformation.

2.3 Conformal Maps

A result dating back to 1851 known as the Rie-
mann mapping theorem guarantees for surface patches
homeomorphic to a disk the existence of a confor-
mal differentiable parameterization with continuous
derivatives. A parameterization is said to be confor-
mal if for every ω ∈ Ω

Iφ(ω) = λ(ω) · I (1)

where I denotes the 2x2 identity matrix.

In other words the derivatives of the iso-u and iso-
v curves passing through φ(ω) are orthogonal and of
the same magnitude. Thus conformal mappings pre-
serve the angles. Denoting the maximal and minimal
eigenvalue of Iφ by λmax and λmin respectively, the
conformality can equivalently be expressed as

λmax

λmin
= 1

Since 0 < λmin ≤ λmax, one is the minimal value of
the ratio of the eigenvalues and we choose to minimize
this ratio to optimize angular distortion.

2.4 Area Distortion

The conformality condition allows the directional
derivatives to be uniformly scaled by a factor λ(ω) that
may vary if we travel from point to point on the sur-
face. If this factor does not equal one, a shape in the

domain appears stretched or shrinked when mapped
onto the surface and its area is distorted.

Since λ(ω) is continuous, around every ω ∈ Ω a suffi-
ciently small neighborhood exists, where the variation
of λ(ω) is arbitrarily small. Thus, area is locally but
not globally preserved by a conformal map. Conformal
maps are therefore well suited for applications where
angle preservation is required, but global area preser-
vation is less important.

If in addition to angles, area is to be preserved glob-
ally, the magnitude of the directional derivatives has
to be fixed leading to the notion of isometry. A pa-
rameterization is said to be isometric if

λ(ω) = 1

for all ω ∈ Ω. Stated differently the first fundamental
form equals the identity matrix in every point.

Isometry is stronger than conformality in the sense
that it requires the tangent vectors to the iso param-
eter curves to be orthogonal and have unit length in
every point of the surface. An isometric parameter-
ization preserves angles and area globally. Unfortu-
nately, isometric parameterizations exist only for sur-
faces with zero Gaussian curvature. In the general
case of non zero Gaussian curvature, angle and area
preservation have to be traded off.

To find the area deformation imposed by a map φ,
we consider a sufficiently small axis aligned square in
Ω of area A. The image of this square is a trapezoid
spanned between the directional derivatives in u and v
whose area is given by A·

√
det Iφ and thus φ preserves

area if and only if √
det Iφ = 1

2.5 A Combined Energy

To enforce the area preservation condition proposed
above, we choose f(x) = x + 1

x
as objective function,

since it is convex and attains its minimum in one. Fur-
thermore it grows to infinity for both x→∞ or x→ 0.
In the case of the area deformation energy

Earea(ω) := f(
√

det Iφ(ω)) =
√

det Iφ(ω)+
1√

det Iφ(ω)

which is obtained by substituting
√

det Iφ(ω) for x,
this property ensures that the orientation of all faces is
preserved during the minimization and thus face flips
cannot occur.

Using the same objective function for the angle defor-
mation yields the conformal energy

Eangle(ω) := f(

√
λmax

λmin
) =

√
λmax

λmin
+

√
λmin

λmax

that was proposed by Hormann in [11] and which is
nothing but the MIPS energy that was used in [12]
to compute angle preserving maps. The additional
square root is used because the eigenvalues measure
scale squared instead of scale.

Although a minimization of the area deformation en-
ergy alone is possible in theory, it causes severe numer-
ical problems. The reason for this lies in the invariance
of Earea under shears: Since a shear does not change
the area of a triangle, during the optimization of Earea

triangles may be arbitrarily sheared. Unfortunately
such an extremely sheared triangle causes numerical
problems in the minimization algorithm. We have thus
decided to choose a combined energy as follows:

Ecombined(ω) := Eangle(ω) · (Earea(ω))θ

where the parameter θ varies between 0 and ∞ and
controls the relative importance of area and angle
preservation. Our algorithm was able to minimize
the combined energy function at least for values of
θ < 2. However, for higher values of θ numerical prob-
lems prevented the minimization of the energy in some
cases. These problems are due to very tall and narrow
texture triangles caused by shearing. Minimizing the
energy on such triangles has a bad condition.

For the special choice of θ = 1, the combined energy
becomes the simple product

Eangle(ω) ·Earea(ω) = f(

√
λmax

λmin
) · f(

√
det Iφ(ω))

= f(λmax) + f(λmin)

where the fact det Iφ = λmin · λmax was used in the
second equation. As the eigenvalues λmax and λmin

measure the greatest and the smallest stretch respec-
tively that the parameterization φ imposes on a vector
of unit length, the energy obtained for θ = 1 enforces
an uniform sampling of the surface, and - similar to
the energy proposed by Sorkine et al. in [26] - penal-
izes oversampling (λmin < 1) as well as undersampling
(λmax > 1).

A parameterization φ can now be assigned a combined
area and angle distortion by integrating over the sur-
face patch S

E(φ) :=

∫
S

Ecombined(φ−1(p)) dp

2.6 Discretization

For the special case of a piecewise linear parameter-
ization over a triangulation, ∇φ and Iφ are constant
within each triangle of M which in turn causes the
energies Earea(ω), Eangle(ω) and Ecombined(ω) to be
constant within each triangle.

∆M(T) ∆M′(T)

α

γ

β

φ|∆M(T)
ab

c

Figure 2: The restriction of φ to a triangle ∆M(T)

As shown by Hormann in [11] the MIPS energy of the
linear map φ|∆M(T) can be written using the notation
from figure 2 as

Eangle(T) =
cotα|a|2 + cotβ|b|2 + cot γ|c|2

2 area(∆M(T))

Furthermore we have for the linear map φ|∆M(T)√
det Iφ|∆M(T)

= |det∇φ|∆M(T)| =
area(∆M′(T))

area(∆M(T))

and therefore the area distortion measure within a tri-
angle is given by

Earea(T) =
area(∆M′(T))

area(∆M(T))
+

area(∆M(T))

area(∆M′(T))

Finally the integral becomes the finite sum

E(φ) =
∑
T∈T

ET · area(∆M′(T)) (2)

where
ET := Eangle(T) ·Earea(T)θ

only depends on the coordinates and texture coordi-
nates of the three vertices in T.

2.7 Properties

The distortion measure E derived in the previous sec-
tion has some important properties that should be
briefly mentioned:

1. Invariance under Rotation and Translation
Since E is defined in terms of Iφ which is in turn
defined in terms of ∇φ, it is invariant under the
translation φ(ω + t) of the domain by a constant
vector t. If the domain is transformed by some or-
thogonal transformation R, the first fundamental
form becomes

Iφ◦R = Rt∇tφ∇φR,

i.e. its eigenvalues and determinant do not
change. Depending only on the eigenvalues and
the determinant of the first fundamental form, E
is thus invariant under such a transformation R.
However, the distortion measure is not invariant
under uniform scalings.

2. Differentiability The partial derivatives
∂E

∂ui

and
∂E

∂vi
exist for any valid piecewise linear pa-

rameterization, allowing for an efficient mini-
mization of the functional in (ui, vi).

3. Infinite Error for Degenerate Mappings For
a valid parameterization, the mesh in the domain
M contains no triangles degenerated to a point
or a line and all faces are consistently oriented. If
a triangle in M tends to degenerate, the parame-
terization has to stretch an infinitesimal small tri-
angle onto the non-degenerated surface triangle.
As λmax measures the greatest stretch imposed
on a vector of unit length it tends to infinity as a
triangle tends to degenerate. This in turn causes
both the MIPS energy and the area distortion
energy to attain arbitrary high values.

Having this property, we can - following Sander
et al.[22] - continue the error functor on degen-
erated configurations ((ui, vi))i=1...n by assigning
them an infinitely high error. The minimization
then automatically avoids such degenerated con-
figurations, thus a consistent face orientation can
be guaranteed. The property described above en-
sures that the continuation on degenerated con-
figuration is continuous, which is essential for the
numerical minimization.

3. MINIMIZING ISOMETRIC
DISTORTION

3.1 Hierarchical Optimization

To minimize the non-linear isometric energy described
in the previous section we use the hierarchical param-
eterization algorithm proposed by Hormann et al.[13].
A hierarchical approach is reasonable since it speeds
up the computation and helps to circumvent local min-
ima of the energy functional. Since in contrast to other
energies boundary vertices do not need to be fixed, the
proposed energy is well suited for a hierarchical opti-
mization.

The method proposed by Hormann et al. computes a
progressive mesh sequence [10] of M, grouping inde-
pendent splits in sets. These sets define a natural hi-
erarchy for the optimization, with each set containing
approximately 25% of the vertices of the subsequent
stage. For further details on the generation of the
split sets and the hierarchy please refer to Hormann
et al.[13].

The actual optimization of the energy functional E on
each level of the hierarchy uses a relaxation method,
which is further described in the next section. Algo-
rithm 1 shows a short overview over the basic steps of
the algorithm.

Listing 1: Basic steps of the optimization algorithm

// build sets of independent splits
sets = buildSets ();

// relax base mesh
mesh = baseMesh;
while(!convergence){

relax(mesh);
}

for(int i=0;i<sets. size (); i++){
// apply splits of the next set to the mesh
mesh.applyToMesh(sets[i]);

// find save texcoords for new vertices
generateSaveTexcoords();

// relax mesh
while(!convergence){

relax(mesh);
}

}

3.2 Vertex Relaxation

The texture coordinates (ui, vi) of vertex i affect only
those ET for which i is incident with T . More specifi-
cally only the partial sum

Ei :=
∑

T∈1-ring(i)

ET

of E is influenced by (ui, vi).

Given an initial configuration ((ui, vi))i=1...n, the ver-
tex relaxation consists of two steps: First all vertices
are ordered by the error Ei that they contribute to the
overall error. Then for each vertex i Ei is optimized
in (ui, vi) while keeping all other texture coordinates
fixed.

Since the functional provides partial derivatives, the
Polak Ribiere method [20] — a non-linear conjugate
gradient optimizer — was used to optimize Ei. This
method includes a line search as a subtask, which was
restricted to search for optimal vertex texture coor-
dinates (ui, vi) only within the kernel of the vertex’
1-ring. The kernel of a polygon with a counterclock-
wise directed boundary is the intersection of all the
half-planes lying to the left of the polygon’s edges (see
[16]). Since the faces of a meshM in the plane are con-
sistently oriented if and only if every vertex lies within
the kernel of its 1-ring, the relaxation does not cause
any face flips, provided that the initial configuration
is free of flips.

Minimizing the partial sum Ei of E in each step, the
relaxation decreases E monotonously and as the en-

ergy has a lower bound of zero, E is guaranteed to
converge, ensuring that the ’while’ loops in algorithm
1 terminate eventually.

3.3 Initial Vertex Placement

Since the surface patch is assumed to have genus zero,
the simplification produces a base mesh that consists
only of a single triangle. The texture coordinates of its
vertices are initialized to a congruent triangle in the
plane centered in the origin.

Whenever a set of splits is applied to the mesh during
the hierarchical optimization, texture coordinates for
the newly inserted vertices have to be found. In [13]
barycentric coordinates obtained by exponential map-
ping are stored for each vertex during the simplifica-
tion of the mesh. After a split these stored coordinates
are used to assign a texture coordinate to the newly
inserted vertex. However, in some cases the texture co-
ordinate obtained this way is invalid, i.e. some of the
triangles in the 1-ring are flipped. In order to ensure a
valid configuration for the subsequent relaxation step,
we take a different approach here.

To ensure a flipless configuration, the texture coordi-
nate of the new vertex has to be inside the kernel of
its 1-ring. One possible choice is certainly to use the
center of the kernel as an initial texture coordinate for
the new vertex. However, this choice requires the ex-
plicit computation of the 1-ring kernel. In contrast,
the intersection of a polygon kernel with a line does
not require the computation of the kernel. It is simply
the intersection of the line with the halfplanes defined
by the edges of the polygon.

To find a valid position for the new vertex, we re-
peatedly cast a ray from the texture coordinate of the
vertex that is to be split in a random direction and
intersect it with the 1-ring kernel. As soon as a non-
empty intersection is found we choose the center of
this intersection interval as an initial texture coordi-
nate for the new vertex. Usually one or two kernel-ray
intersections suffice to position the new vertex.

4. RESULTS

We applied our method to various models which are
listed in table 1 together with the isometric distortion
as measured by our energy. In addition, the L2 and
L∞ distortions that were used in Sander et al.[22] are
listed. The timings were taken on an AMD Duron
800MHz with 256MB memory.

Our initial motivation was to compute parameteriza-
tions that not only preserve angles but also minimize
global area deformations. The results shown in Fig-
ure 4 were obtained for an angle/area weighting of
θ = 1. All of these surfaces have large areas of non zero

Model Vertices Error L2 L∞ Stages Time

MaxPlanck 25445 9.35 1.45 2.92 41 308.90
Venus 29322 4.55 1.21 1.77 41 300.46
Cat 4539 4.65 1.36 3.73 33 47.65
Horsehead 2893 4.85 1.36 3.53 32 33.79
Ear 2150 2.21 1.03 1.56 30 23.03

Table 1: Models and Statistics: In addition to our own energy, values of the L2 and L∞ energies are listed. Stages
corresponds to the number of independent split sets. Errors were normalized to the surface area. For all models we chose
θ = 1.

Figure 3: Parameterization obtained for a dented S-
shaped model with non-convex boundary and the cor-
responding mesh in texture space

Gaussian curvature but only small boundary loops and
thus can only be parameterized with high angle or
area distortions. As a reference conformal maps were
computed (right column of figure 4) using the LSCM
method proposed in Lévy et al.[17]. The comparison
shows that the maps obtained by our method trade
part of the angle preservation to improve global area
preservation as expected.

In Figure 5 the impact of the parameter θ on the
parameterization is shown. As expected intuitively,
a high value favors global area preservation, while
smaller values emphasize the preservation of angles.
For θ = 0 the resulting map is similar to those ob-
tained by the LSCM [17] or MIPS [12] method.

This observation can also be verified in the distortion
histograms for the horse head dataset shown in fig-
ure 6. As in Lévy et al.[17] the area distortions were
computed in each triangle as the ratio of texture area
to model area. The angle histogram shows the distri-
bution of the angles between the u and v directional
derivatives in each triangle. For values of θ close to
zero, the angle histogram shows a distinct peak, while
the deviation in the area histogram is much higher.
For higher values of θ this relation is reversed.

As mentioned above, the proposed energy does not
require boundary vertices to be fixed. Thus, for any
value of θ the minimization can also find an optimal
boundary forM. Figure 3 shows the parameterization
obtained for a S-shaped model and the corresponding
triangulation M in texture space.

In practice models are usually preprocessed by a chart
or seam cutting algorithm before a parameterizing al-
gorithm is applied. These cutting algorithms gener-
ate one or more charts with lower Gaussian curva-
ture and larger boundaries which facilitate parame-
terization. But since the resulting parameterization
heavily depends on the quality of the cutting method
used, the parameterizations presented in this paper
were obtained for uncut models. Only minor modifi-
cations were made to ensure a disk like topology. How-
ever, the preprocessing was only skipped for means of
demonstration and the results certainly improve a lot
by using a charting or seaming algorithm like those
proposed in Sheffer and Hart[23] or Lévy et al.[17].

Figure 4: These models are parameterized as they appear, without charting or seaming. The column on the left shows
the results obtained with our method for θ = 1.0. On the right a conformal mapping is shown.

Figure 5: The horse head model parameterized using different angle/area preservation tradeoffs. From left to right, the
values θ = 0.3, θ = 1.0, θ = 3.0

5. CONCLUSION

In this paper we have proposed an energy functional
that measures an isometric distortion of a parameteri-
zation. On surfaces for which no isometric parameter-
ization exists, the functional weights global area and
angle deformation in an intuitive and user-controlled
way. We also showed, how the functional can be used
to optimize for an uniform surface sampling.

Besides basic desirable properties, the functional can
be continuously continued on degenerated parameteri-
zations and does not depend on fixed boundary vertex
texture coordinates which makes it possible to com-
pute parameterizations without face flips and with op-
timal boundaries. Using conjugate gradient methods
and hierarchical optimization we showed how the func-
tional can be minimized efficiently.

In future works we would like to experiment with dif-
ferent edge collapse schedules in the generation of the
splits sets during hierarchical optimization, to further
speed up the computation of parameterizations. Fur-
thermore we would like to address the numerical prob-
lems for higher values of θ.

References

[1] Laurent Balmelli, Gabriel Taubin, and Fausto
Bernardini. Space-optimized texture maps. Com-
puter Graphics Forum, 21(3), 2002.

[2] H. Biermann, I. Martin, F. Bernardini, and D.
Zorin. Cut-and-paste editing of multiresolution
surfaces. In Proceedings of the 29th annual confer-

ence on Computer graphics and interactive tech-
niques, pages 312–321, 2002.

[3] Mathieu Desbrun, Mark Meyer, and Pierre Al-
liez. Intrinsic parameterizations of surface meshes.
In Eurographics conference proceedings, pages 209–
218, 2002.

[4] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M.
Lounsbery, and W. Stuetzle. Multiresolution anal-
ysis of arbitrary meshes. Proc. of SIGGRAPH, pp.
173–182, 1995.

[5] J. Eells and L. Lemaire. Another report on har-
monic maps. Bull. London Math. Soc., 20:385–524,
1988.

[6] J. Eells and J.H. Sampson. Harmonic mappings of
Riemannian manifolds. Amer. J. Math., 86:109–
160, 1964.

[7] M. Floater. Parameterization and smooth approx-
imation of surface triangulations. Computer Aided
Geometric Design, 14(3):321–250, 1997.

[8] Xianfeng Gu, Steven J. Gortler, and Hugues
Hoppe. Geometry images. In Proceedings of the
29th annual conference on Computer graphics and
interactive techniques, pages 355–361. ACM Press,
2002.

[9] S. Haker, S. Angenent, A. Tannenbaum, R. Kiki-
nis, G. Sapiro, and M. Halle. Conformal sur-
face Parameterization for texture mapping. IEEE
TVCG, 6(2):181–189, 2000.

[10] H. Hoppe. Progressive meshes. Proc. of SIG-
GRAPH, pp. 99–108, 1996.

 0

 50

 100

 150

 200

 250

 300

 0 0.5 1 1.5 2 2.5 3 3.5 4

area deformations

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140 160 180

angle deformations

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 0.5 1 1.5 2 2.5 3 3.5 4

area deformations

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140 160 180

angle deformations

 0

 50

 100

 150

 200

 250

 300

 0 0.5 1 1.5 2 2.5 3 3.5 4

area deformations

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140 160 180

angle deformations

Figure 6: Per triangle distortions in area and angle for the horse head dataset for (from top to bottom) θ = 0.3, θ = 1.0
and θ = 3.0, as shown in figure 5.

[11] K. Hormann. Theory and applications of Parame-
terizing triangulations. PhD thesis, Department of
Computer Science, University of Erlangen, Novem-
ber 2001.

[12] K. Hormann and G. Greiner. MIPS: An efficient
global parameterization method. Curve and Sur-
face Design: Saint-Malo 1999, P.J. Laurent, P.
Sablonnire, and L.L. Schumaker, Eds, pp. 153–162,
Vanderbilt University Press, 2000.

[13] K. Hormann, G. Greiner, and S. Campagna. Hier-
archical Parametrization of Triangulated Surfaces
Proceedings of Vision, Modeling, and Visualiza-
tion, B. Girod, H. Niemann, and H.-P. Seidel, Eds,
pp. 219-226, 1999.

[14] A. Khodakovsky, N. Litke and P. Schröder. Glob-
ally Smooth Parameterizations with Low Distor-
tion Proc. of SIGGRAPH 2003, to appear.

[15] D.T. Lee and F.P. Preparata. An optimal algo-
rithm for finding the kernel of a polygon. Journal
of the ACM,26 (3):415–421, 1979.

[16] A.W. Lee, W. Sweldens, P. Schröder, L. Cowsar,
and D. Dobkin. MAPS: Multiresolution adap-
tive parameterization of surfaces. Proc. of SIG-
GRAPH, pp. 95–104, 1998.

[17] B. Lévy, S. Petitjean, N. Ray, and J. Maillot.
Least squares conformal maps for automatic tex-
ture atlas generation. Proc. of SIGGRAPH, pp.
362–371, July 2002.

[18] J. Maillot, H. Yahia, and A. Verroust. Interactive
texture mapping. Proc. of SIGGRAPH, pp. 27–34,
1993.

[19] U. Pinkall and K. Polthier. Computing dis-
crete minimal surfaces. Experimental Mathemat-
ics, 2(1):15–36, 1993.

[20] W. Press, B. Flannery, S. Teukolsky, and W. Vet-
terling. Numerical recipes in C: the art of scientific
computing. 2nd ed. Cambridge University Press,
1994.

[21] P.V. Sander, S.J. Gortler, J. Snyder, and H.
Hoppe. Signal-specialized parameterization. MSR
Technical Report MSR-TR-2002-27, 2002.

[22] P.V. Sander, J. Snyder, S.J. Gortler, and H.
Hoppe. Texture mapping progressive meshes.
Proc. of SIGGRAPH, pp. 409–416, 2001.

[23] A. Sheffer and J. Hart. Seamster: Inconspicious
low-distortion texture seam layout. IEEE Visual-
ization 2002, pp. 291–298, 2002.

[24] A. Sheffer and E. de Sturler. Param. of faceted
surfaces for meshing using angle-based flatten-
ing. Engeneering with Computers, 17(3):326–337,
2001.

[25] A. Sheffer and E. de Sturler. Smoothing an over-
lay grid to minimize linear distortion in texture
mapping. ACM Transactions on Graphics, 21(4)
2002.

[26] O. Sorkine, D. Cohen-Or, R. Goldenthal and D.
Lischinski Bounded-distortion Piecewise Mesh Pa-
rameterization IEEE Visulization 2002

[27] W. Tutte. Convex representation of graphs. Proc.
London Math. Soc., 10 1960.

��� �������� ���� ���	��
 ����������

�	���

������� ���	���
��� ������ �������� ������ ������ ������
������

������ ���������

������� �������� 	�
��������� ��
��������� �� �����
��
���������������������������������������

�������� �������� 	�
��������� �������� 	 ������ �������������������

��������

�� �������� �	� ����
�
��� �� ��	�������� �� �	� �������� �������� ��������� ������ ���������
 �� ���������	��
�� �
����	�� ��� ���	 ������ ������������ �	� ������ ������������� �� �������� ����
� �� �� ������ �	� �� ��
������	������� ��������� �Æ������ �� ����������� ��
��� � �������� �� �	� �������� ��	�������� �� 	�
	��
	� �	�
���� ������� �	��� ��������������� �� ������������� �� �������� �	� ��������� ��������� �� ����� ���������� ����
�	� ���	 ��
������� �� �� ������� ������������ �� �	� ������ �������� �
����	��� �� ���������� ����������
�����	��
 ������� ��� ������ ���	�� ���	 ���� ��
� �� �	����������� ��
���� �	��	 �	����� �������� �
�����������

��������� 	��
 ������� 	��
 �	�����	���� 	��
 �	���
���� 	��
 ���������

�� �	��
�����
	

���	 ������ �� ������� ��� ������ �� �Æ������ ��
�	� �������� �� !"#����� ����������� $����� ��
�� ������ �� ��� ��
�� �� �	� �������� ������� ����
����������
 %&" ������� �� ���	
�������� ������
����� �� �� �� �������� ��	����� &� �� ��
�
���� ���	 �� ������� ��� ������ �� �� ��������
�� ���� ����� �������� ���	���� �������� �����
���	 �����	��
� �� ������
� ����'����� ��	����
���	 � ��
� �� ��� (�����
� �	��� �� ������
�� ���	������ �	� 	�� ���� ��������� ��� ���	 ���
��������� ��
��
 ���� ������)����� �����	��

*+, �� ���� ���	�������� �
����	�� ���	 � �������
�����	��� ��� ���������� ���	�� *-, �� �	� ������
��� ������.���� ���	��� �� ������
� ����'�����
��	���� �������� ��������� ��� ������������ ���	��
/��� ������� *0� 1� 2� 3� 4� 5� 6� +7� ++� +-,8�

�	� ������� �������� ���	 ��� �� �	��� ����������
�� ��
��� �������� �� ��
�� ���	
�������� �� �����
����� ���������� �	��� ��� ���	��
 ����� ���	

� 9%#��%:" �� ������� ���	 ������������ �	���
��������� ����� ��� ���������� ������� �������� ���
���	 ������ ����������� �	� �� �� ����� ������
�� ��������� ��������� �� ��� �������� ���	
���
������ �� ��������� ������ ;�� ���	 ����� �� ;���
�� *+0,� ��������� ���
� �	� ���� ���������	��
�� ������.���� �
����	�� �� ������� 	���
������
��������� ���	��� <������� ;����� ���� ��������
���	����� �����	��
 �
����	�� ��� ��������� ����
����� �� ������� �� �� ���� �������� =� ������
��
�� �	�
�� �� ���������� >���� �	� ������� �� �	�
�������� ��������� ����� �� ���	����
��� /����8
%����� *+1,� �� 	�� �������� ��
�� ����������� ��
��� �������� ����� �������� /���	 $����� 9�������
���� �������8� �	� �� ���	 ���� ������	������ �	�
;����� ��� �� �	�� ����� �� ������� ��� ���
���� ��
����

���������� ����������� �� �������� ���� �������
������ �� �������� ���	 ����������� ���� �� �	�
������ �������'� ���������� �	�� ���� ���� ���	
���	
�������� ������	��� �� ��������� ����������

�� ����'� ���� �	� ����� ������������ �� ���	 ����
��� ������� �� ������������ :�� ������� ��������
	� ����� ���� ���� �� �����	 ?������� ���	�� ���
�	� ������
���� � %������ ���� >��������� *+2,
�� �� ��������� ����
 ���� �� ������� �	� ������ ��
���	�� ���� �� �	� ����
� �� ������� ���������� *+3,�
!��������� �� ��� ������� �� ���� �������� ��
������ ���� ���	��
 ����� ��������
 %>@9� *+4,�
;������� *+5,� �� =�?��� *+6,�

�	� �������� ����
�
��� ���� '��� ���������� �� *-7,�
�� �� �	�� ���� �� ������ �	� ������� ����� ��
�������� ���	 �	� ������ /������� -8�
��� � ��������
�� �	� �������� ����
� �� ��	�������� ��������
 �	�
��������� ���
�����
 ��������� /�������� 0 �� 18�
�� �	�� ������ ������� �� ���	�� ���	 ����
��
� �� �	����������� �	� 	�� ���� �������� ��
�������� /������� 28�

� �������� �����	 �
���

�������� ����
�
��� �� ������� ���� ��	�����
�� �������� �� �� ������� �� ��������
 ���������
������	������� ��������� �������������� �� �Æ�����
������ �� ���	 ������ ����������� �
����	�� �	�
�� �� ���� �� �	� ���������� �� �������� �� ����
����.�� �� �������� 9� �	�� ������� �� 	�
	��
	� �	�
������� ����� �� �������� �� ������ �� ��� ����
�
��
����

��
�	���� ��	������ �������� ����
� ��
���� �� ��������� �������
� ��� ��
����� ��	����
��� �������� �	� ����� �	� ���	 ������ ��������
���� ������� � � ������.���� �������� �	� ���
������� ���	 � ������� � ��������� ��� �� � ����
������ ��� �	�� �	� ������ �� ��	 ������� �� ������
��
���� �
����� �������� ��/�8 �� �	� ����������
�� �	� ������ ��������� �	� ����� � ��
�� ���� +
�� � �� + �� � ��������
 �� �	��	�� �����������
�� ������������ ������ �� �	����� & ���	 ������
��A������ �������� � B 	/��/�88 ��� � B +
 � � �
 �� ��
� B +
 � � �
 �� �� ������ ��
��� � ������ ������ ��
���	 ������ �	��� �� �� �� �� �	� ������ �� ����
����� �� �������� �� ���	 ��������� ������
 ���
���������� ������������� �������� �� ����
��� �� �����
�	� ������.���� ������� ��� � ��� ���� ����������
�� ������ ������� �� �� ��A������ ��������� � �

�������� �� ��	���
������� �������� ����� ��
����������� ������������� �� 	����� ���	�� �� ���	
��� �� �	��� ����������� �	� ����
� ������� ���
���������� �� ���	�� �������� �� ����
���� �����
	����� ����������� �� 	��	���� ��������� !����
����� �������� �� ����	���� �������� �� �� ���
��� ����� 9� ��������� ����������� ���� ���	��� ���
���� ��������C ���� ��� ������
� ����'����� ��
	����� ����������� �����
��� ��� �� �	� ������� =���
�������� �����
��� ������� ���	 ���� ���	�����

�������� ��	���� ��� ��� �� ��� ���� �������� ��

���� ���	��� �	��	 ������� �� �������� ���������
������ �������� ���� �� �������� �� ���	 ������
�� ��������� ���	��
 �� �� ���	 ���� �� 	�
	�
����� ��������.���� ��	����� ��� ��������� ����� ���	
���������� ���	�� ��������
 ����� ���������

��������� �������� ���� ���������	���� �
����	��
�� ������� ��
������ ����������� �� ���	 ����
���� @����� �	� ��'������ �� ���	 ������ �� ������
���� �����'�� �� ������� ������ ������� �	� ���� �	�
���� �� ����
�� ���	��� ������� ���	 �����	����� ���
����� ��.�� �� �	��� 9� �	� ������ �	��� ������� ����
�� ���������� �� ������ ������������� �����	��
 ��
��������� �	� ������� �� ����� �������.���� ���
����
 ����� �� ������ �	��� ��� ������ �������� ��A���
���� ���������� �� �
����	�� �� ��� �������� ���	�
����� ��� ������
 �������� �����	�� �	� ��� ���
�� ���� ����������� �
����	���

 ����!����"��� �� ������ �	� �������� �� ������
������� ���	 ��
� ������ �� ���	
�������� ����

��� �� ���� ��� �	� ������ ��������� ��� ���	
����� ��������� ����� ����������� �� �	� ����
������� �	��� ��������� ������� ������� ����� ��
���	
������� �� ������
� �� ���� �� �����������
�� �� ���� ������ ������� ��������
 ������ ";#�
��������� ���	
�������� ���
��� �� �� �����
��
 ���	 �	� ���� �������� ����
� ��� �� ������
�	� �������� 	� �Æ����� ����� �� ���	 ��
�����
��� ���������� �	���
	 �����
��� ���	 � ����������
��	��
 ��

���������� �� �� ��� ����������

�� �	� ����
� �� ��������� ������ �� ������� ������
�
��� �	�
��
������� �� ���	 ������
 �� (�����

�
����	�� �� �� �������� �������� �� �	� ������ ��

��������� ������

�Æ������ �	� ����� ����� �� �������� ��� ��A����
�������� ����
� �� %DD �	��� �	� ����� ������� ���
������.��� �����
 ���������� ���	 � ���� �� ���
����� ���������� �� ������ �Æ����� ��� �� �������
������� ��������� ������.���� �
����	��� �� ������
����������� �����	���� ���	 �)����� �����	��
�
� E���������������F ��� �	� ���� ��������� ������.�
���� ���	������� 9� �������� ���	 ������
 �
����	��
�� �� ���� �� �����	 ���� �	��� ��� �� �	� ���	
�	� ������� ������������ %���������� �������� 	�
���� ������� �� �����������
 �� �����������
 ��
����� �� ���������� ������� �	� �� �� ���� �� �������
�	� ����������� ���� �� �	� ������.���� �
����	���

�� �������� ������������

�	� �������� ��	��������� �	��� �� :�
��� +� �������
������� �	� ���������� ��'��� �� �	� ��	����
��� �������� �� �������� �	� ������.���� �����
���� 9� ��������� �	� ���� ������ ������ ������
�� ��'�� ���	 ������ ����������� �
����	�

������ �� �������� ���� �	���
��� �� ����� �������� �������� ������� �	� �������
�	����	� ��� �	 ������� �������� ��	��
���� � ����	��� �	������ �	������	��� ����	 ��	�� �	������ ����������	� ���������
�	����	� ��� ������� ���� !"# ������ �	��
���� $" �

�� ����������	�
� ���
�������
���� /�	��	 ����
 ����������	�
 � �����8� �� ����������	���	

/�	��	 ���� � ���
�������
���� � �����8�

9� �������� ������ �� ��	�� ������ 	�� ���� ����
��� �� ������� �	� ����� �� ���	 ������ ��������
���� �
����	��G

� ��������������	G �� ������� � �������� ��
���	 ������ ����
 ������ ��������� ������
������

� ��	���������	���	���G �� �������.� �	� �����
���
 ������� ���� ���	 ���	 ������ ��������
���� �
����	��

� ����	�
���������G �� ������� ������ ���
������� �� ������ �������� ��
��	�� �� ���� ���
'����� ���	 ������ ����������� �� ��������
���	���� ��

� ������� �� ���
�����G �� ������� �	� ���	�
����� ��� ��
��
 �	� ��������� ���	 ��

������� ���������� �� �	� ���	 ����������
���� �� ������.���� �����������

�	� �������� ��	�������� ���� � ���	 ������ �����
����	��� �� �	� ���� �� ��	������� �� ������ �����
����� � �� �������� ���	��� ��
����
 �����������
�	�� ����� ���������� �� ����� �� ��� ������������
�� �������� �� ��	������
 ���� �	� ��������� ��
����� ���� �� �����������
 ��� �������� /���� ���
������ ������ ���������8� :�� ������� �� ������
���� ��� ������ ������� ���� ���� ��	���� ����
�	� ��� ����������	�
 ���� �� ��������� ����
���
�� �������� �	� ������� �	� ���� �� �	� ������ ���

���� ���	 ������� �� ���� �	� �	� ���	 ���������
��'��� �� ���� �������������� �� �	� ���� ������
���� �� ��� ��	��������� ���	 ��������� ���� ����
����
����	������� �����
��� �� 	��	������� �� ���
��������� �� ���
�� ����� ���	��� �	� ��� �� ������
��������	���� �� �������� �	� ���������� ����� ��
������� �����������

9� �	�� �������� �� �������� �	� ������ �� �	�
���� ������ ����������	�
� ���
�������
�����
����������	���	� ��	���������	���	����
��������������	� �������� ���
������ ��
����	�
���������� 9� ��	 ���� ��
��� ���
���� �� �	� ����
� �� ������� �	� ������������
��������� ����������� �� ��������� ;����� �� ���� ���

��� �� ������� ������� ������ ���� �� ��A������������
����
� H �	� ������ �� �	��� ����
� ������� ��
��������� �� *-+,�

��� ������� �������

9� ��������� �	� ����������	�
 ���� �������� ���
���� �� �	� ������ �� ��������� ���	 ��������� $�����
������� �� ������ ���	�� ������� ������ /��� ����
���� �	� ��� ���� �	�� ������ ������8 �� ������
������ /��� ������� �	� ��� �� �	� �A���� ��
�
���
�	� ������ �� �� ���� � ������ �� ������
�����	����8� �	� ������ ������������ ��������
���	 �	� ����������	�
 ���� �� �	� I������ �����
���� �	��	 ������� ���
�� ������ ���� ���
����
���	 �������

�� ������� �	� (��������� �� �	� ����������	�
 �����
�� ��� ������� ������ �� ���	����� �	� ����
�	� ���� �� ������ �	� ������ �� ������ �� ����
:�� ������� �	� ��������� ������ ������ ������ ���
 ���������� �� 	��	���� ������� �� �������� ��
�������
 �	� ��������� ������ � ������ �� ���
��� ������ �� �	� �������� �������� ����� �	� ���� ��
������ �	��	 ��� �� ����� ������ �� ���� �� �	�� �����
����� /����� �	� ������� � ��������8 �� 	�� �	��� ���
��� �� �������� �� ���� ���
�� ������ ���� /�����
����� ���
��
8� 9� �������� �������� �� ���������
����
 �������� �� ���� �	� ���� �� ��������� ������
������ ������� �� ������������� ��������

9� ������� �� �	� ������ ������ �������� �����
�	� ����������	�
 ���� ��� �������� �	�
������
�� <����� ���������� ������ ��� ��� ������.�
���� �
����	��� =������� ������������ �� �	�

������ �� <����� �� ���������� �������� ��
�	� ����������	�
 ��� ����� %������� ��������
����� �� ��� ��������� ������� ������� �����������
�	��	 �� ���������� ���� ������������� �Æ������
:�� ������� �� �	� ��� �� �	� ��� ���� ������
������ �������������� �	� ������ ��������� �� ��
���������� ����� � ��� � �	� �������� �������
���� ��	��
	 �	�� �������� �Æ������ ����� ����� �
 	�
	�� ������������� ����� �	� ���� �� ����������
��
 �	� �������
������� �� <������ �� ����� ��
��������� 	������� �� �	� ��� �� ������� ��������
������ ����� /��� ������� *--,8�

�������� ��� ����� �	� ���� �� ���� ������ �����
�� ������� �������� ������� ��
��	�� �� ���� ����
������ ������� <������� ���� ������� �	��	 �� �����
��� �� �	� ��� ���� �� ���	 ������ �� �� ��������
��
��	��� �	� ��� �������� ���� ��� ���� ��������
���� ������� �� ����������� ������� �� �� ���� ��
���������� ��
��	�� ������ �	� ������ �� ��� ����
��
��� ������ �� ���	�� ������� �� ������ �������

��������	
������� �����	 ������� �	��� �� ����
������ ���� ������ ������� ������ ���	�� ���������

�� �	��� �� ������ �� ���� 0�+ /������� ��'�������
�� �	� ������� ��
���� �� *-0,8� �	��� ������ �������
��
������ �� �	� ���� �� ���	 ���������� �	� �	��
������� �� ��������G �	��� �����	����� �������
�� ����
��� �	��� �� ��� ��� ��������� �������
�	��	 ���� ����� �� �������� ��� ������� ����� ���

��	�� �� �� ���� ���
�� ������ � ���� ��
����
������ �	� ����� ����� ��� ��
���� ������ �� ��
�	������� �� ���� �� ����� �	� ������� �� �� ��������
������ ������� �� ���� �	� �	� ������������� ��
�	� ��� ���� ������ 	� ���� ����������� ������.���
�� �������
������� �� <������ �� ������ ���
�	� ��������� ;�	�� ������� ��������� ��� ��������

������� �� <������� :����� �������� �����������
���� ������� �	� ������������� �� ������� �����
 ���
��� ��	��
���� 	����
� ���	 � ���	�
������� �	���
�� ��
������

��
� ����!� "�#���$#�

�	��� �	� ����������	�
 ���� �������� �� �� ����
��� �	� ���������� �� ��������� ���	 ��������� �	�
���
�������
���� ���� �������� �� �� �������
��
 �	��� ����� ���� ���
�� ������ ��� �	� �����
�� �	� ������.���� �������� �	�� ����� �� ���	��
�� �	� ������ ���	 �� �������	 ��������
 ������
�� �	� ���� ��������� :�� ������� ��� ������ ��A���
���� �������� ������� 	 �� �	� ��� �������� �	��	 �� �	�
������ �� ������ ���� ������� ?���� � ��������
���� ������ ������ � �� ���	 ��������� �� �	�
���	 ������ ��A������ �������� � ����� �� �	� ����
�������� �� �	� ������� ��A������ �������� �� �	�
������ ������ ��������

�/�8 B 	 Æ �/�8 B
�

���

/��/�88� /+8

�	� ���
�������
���� ������� ���� �������� �	�
���� �� � ��� ��� 	 �� � ��������
 �	� ��������
�� �����	���� ����������� �	� ���	 ������ ��A������
�������� �
������ �� <����� ���	 ������� �� �	�
������ ���������� &� ���	 ����������	�
� ��������
����� �	�
������ �� � �� �� �������� ���	�� ��
�������� �� ����������� %�������
 �	�
������ �� �
���������� �� ������������� ��������� ��� ��������
���� �	� ������ ������ ������ 9� �	�
������ �� �����
���� ���������� �	� '��� ��������� �� �	� �������
��A������ �������� 	 � �� �	� ������ ������
������
�� �� ���	 ���������� �� ����� �	�
������ �� � �
�	� �	�� ���� �� ������

��/�8 B ����

�
���/�8/	 � Æ �/�88

�

 /-8

�	��� 	 �Æ�/�8 �� ���� �� ���� ������� �	� �����
��� ���� �� �	� �������� �� ��������� ��� ������������

���� ����	
� ��
	� ���	��
� �� ��� �� ���	��� �	
��
����	����� � �����
	������

������ ?���� ���	 ���� :��������� J�
��� #����� ����

&�� �����	���� �����	���� &�� =� #�������
&����� J��� �	�� ���K��� =� #�������
%�������� ����� %�������� &�� L��K=� #��	��
%�������� !���� %�������� &�� L��K=� #��	��
%���� =��� �	�� &�� L�� #�������
%����� M����� N����� &�� =� #�������
#�
�)��
�	 �����	���� &�� =� N�������
#�
�)��
�	 J�
� �����	���� &�� =� N�������
��� J��� �	�� &�� L�� #�������
>���
�� @�� >���
�� &�� L�� #�������
N���� %���� =��� �	�� &�� L�� N�������

��	
� �� ���� �
 ��� �����	� �������� ������% �������� &�� ����� ���� �	������� ��� ������ �����# ��� ���� �%���
�� �����
��� ������ �� �����# ������� ��� ������ �� �	�% ����� �����	 �
������� �����	# �	� ��� �%�� �
 �	���%
�� ����� ��� ������ ��
���	�� '�����	�� �� ��������(�)��� ���� ����� ��% �� �
������� �����	
�� ��������� ������� ����	��	� �	 ������� ���
�	����%�	� ������� ������� ���� � ��	�����	��

�� ����������� ������ ������� ������������� &������
��
������� 	�� ���� ����������� ��� �� �� �	� ����
��������� ������������ ������� ��A������ ��������� ��
��������� �� � ������� <����� ��������� 	�
���� ����������� ��� �	� ��� ������� ��A������ �����
�����

������� �������� �������� ��������� ��������
��������� 	� ��A������ �������� �������� ��� �	�
������ �� /�	��� � �� �������� ����
��8 �� ��
������ ������ & ������ ������� �� �������� ��� ��� �
 �������� �	��	 	� ������ ���� ���������� �������
��
 ����� <����� ������ &�� �� �������� � ������
��������� �� ����
��� �� ������.�
���� ��A������
��������� :�� ��A������ ��������� �	� ���� �� �� ���
���.�� /���� � �� ��A������ �������� ����
 � ��������
��� ���� ������8� �	� �������� ���� �� ����������
�� ��
���� ��� �� ����� �	� ��������� ������.����
��������

�������� 	� ���� ��������� ��A������ ��������� �	�
���� �	� ���� �� �� �� �������� ��A������ ���������
�� ��	 ��	�� �� �� ���� ������ �	��� �� �� ����
�� ������ �	� ������.���� �������� �� ��� ���������
����� �� �	� ��A������ �������� ����� �� �� ������
������������ ���	 ���������� ��������� ���� �� ���
A������ �������� ������ >����� ������ �������� ���
��A������ ��������� �� �� �������� ���� �� �	� ���
�������
 ������ ������� �� ��'��� �� �������� ������
������ �	� ��� � ��A������ �������� �	��	 �������
�� ����������� ������ ������ �� �� ���� �� �
��A������ �������� �	��	 ������� �� � ������������
������ ������� �	�� ����� �	� ���� �� 	�� �	� ����
��� (��������� �� ��'���
 � ��A������ �������� ���	
�	��	 �� ������ �	� ������ �� ���	�

��� ������� �%&�$!���

�	� ���	 ������ ����������� �
����	�� �� ����
��� ��������� �� �	� �������� ��������� �	� ���
��� ����� �� ����������� ��	���� ����
��� ����
�������� �� ��	�� ����	 �� ������!���"�#��	

��� ������ ��������� �� ������
� ����'������ ���
����������� �	��� ���	��� ��� � ����� �
���
�������
���� �� ����� ��� ��������� ���
�� �	�
������ �� <����� ���������� ����
����� �	������ �	�� ������
 ��� �
����	��
�	� �������� ����������	���	 ���� ��� �� �
���
�������
���� ������� �� �������� �	� ��������
���� ��
������ ��� ������ ���	 �� ��������
���
�������
���� K ����������	�
 �����������

& ��� ������ �������� �� ��'��� �� ��	������
 ����
���	�� �	� ��	�� ����	 �� �	� ������!���"�#��	 ��
����� ����� @��	 ������ �� ����������� ������
������ ��	������
 ���� �	� ����������	���	 ���� /���
:�
��� +8� ;�� �������� ����� �� ���	 ������
������ �� ������
� ����'��� �� �	� ������ �� ����
������ ������� �	��� ���������
������ �� �	� ������
���	 �� �� ���� �������	�� �� �	� ���	� �	� ���
	���� �� �	���� �� �	� ���� � ������� ���� ����
 �	�
��� ���
� ���� �������� ���� ����������	���	� �	�
������ ������������ �� �	��� ����������� ������
�� �	� ������������� �� �	� ���� ���	 ���� ������
�������� �	��	 �	����� �	� ������.���� �
����	� ���
������� ���� �	� ���� �� ������
���	 ������� ����
��
���� ���	��� �	� ��������� ���	 �������
���� ��
�	���� ���� E���	F �� �	� ������� ��
���
����� ������ ��
���� �� �	� ����������	���	

�� �	� ���� ���	 ���� ��������� �	� ��	�� ����	

��� ���� ��� �	���� �	� ����� ���������� ���������
�� ���� �������
 ���� ���	 ������� /��� ������� 0�18
�� ������ �	� ��������� ���	 ���� ������.��

���	�

������� �����	 �����������
��������� �	���
�� ��������� �	��� �A�� �������� ������.���� �
��
���	�� ����������� � ��	�� ����	� �� ��������G �	�
���A�
��
������ �
����	�� �	� ������� =����� ��

����	�� �� �	� ����� ��� �
����	�� �	� ������.�
���� �� ���	 ������
� 	� ���� �������� ��� �� �	�
��	��������� ��� �� ������������� �� ������ ����

���#���� $������ %������
	� �	�� �
����	� ��
��������� ��� ������.��
 �� ���������� �� �� ���
A������ ��������� �� ������ ������� /��� *2, ��� ����
������8� �	� ���A�
��
������ �
����	� 	� ����
�� ������
���� �������� ��� ���� ��������� @� ����

�	� !����J���O��� ��	��� �� ������ ����	 ���������
�	��	 �� ���������� �� �	�
������ � �	� �������
�������� ���	 �	�
������ ���� ��� �� ���� ��������
���������� �� ����� �	� .�
.

��
 ��	���� ��	������
�� �	� �������� ������� �
����	� �	�� �	� ���� ����
������� �� �	� ��A������ �������� �� ����
��� /��
�
�� ����� ������8� �	� �
����	� �������� �	� ��A���
���� �������� ���� ��
������ �� �� �� ���� ��
���	 ���	�� �� �� ��.��

����"�� &����� %������
	� =����� � ���	��
������.�� ������� ����������� �� ���������
��A������ ��������� =����� � ���	�� �� ����� �� ����
���
� ������������� ��� �������
��� ���� ����
����� ���	�������.���� �������� �	� �� ����
������ ���	�� �	� ���
	���	��� �� �	� ������� ��
 ������� ��������� ��� =����� � ���	��� �	� �
��
���	� �������� �	� ��A������ �������� �����
�������
��� <����� ����������� 9� �������� �	�� �
����	�
�� �� ���� ���	 ���	 ���	�� �� �� ��.�� ����

�� ��������� �� ������.� �� ������ ��������� ������
�������� ��� �� �� ��A������ �������� ���	 �����
<������� 9� �������� ����� ���� ����� ������� � �����
�� �
������ ����������� �� ���������� ���� �	��
����
 �	� ������� =����� �
����	� ������ �� �	� ����
A�
��
������ �
����	�� ����
 ������� =�����
����	�	��� �	���� �	�� �������� /��� *2, ��� ����
������8�

%����� '�� %������
	� �	� ����� ��� �
����	�
	� ���� ��������� ��� ���������������� ������������
��A������ ��������� ���	 � �	��� ��������
 �	� ���
���� ���� �� ������ ������ ���	�� ���	 �� ����
������ �	�� ���	�� �� ���� �� ���������	 ��������
������� �
����	� �	��	 �Æ������� �������� ����	
��������� �� ���� ��.� ���� �� �	�
������� �� �	�
����� �������� �� �	� ����� ���� %��������� �	�� ��

����	� ����� �� ���	 �� ����
��� �� ����	����
�������� �	� ������ ���
�� ���� ������� J������
������ ���� �	� ���� �������� �� �	� ���	 ���� �� �����

���
�
��
 �����
	�� ����
	���
��
 ����
� ���������
����	��� ��
�	� � ���	�	
	�� ����� ���
 	� �����	
�� ��
�� � � � 	� ���� � ����
	��� ��� ����� �� ��	����� 	�

�� �����
	�� ����
	�� 	�
�� ����� �� ������ �� ������
��
�� ����� �	�� ���
 �� ������
� ��
�	�
�� �����
�� ��
	�� 	� � ����� ����	���

�� ���	 ����������� /��� *-1, ��� ���� ������8�

��' ���%�#���$# �������$#

�������� � ��	���������	���	��� ���� �������
������������ �� �������.� �	� ���������� �� �	� ���	
������ ����������� �������� &� ��������� ������
������ ��� ������ ����������� �
����	�� �� ����
���� ���	 ������.���� �� ���	�� �	�
���� ���	 ��
�� �������	��� 9� �	� ����� ���� �	� �
����	� ����
�� ����� �� ����������
 �	�� �� �������� ��� ����
������G +8 � ����� ��������� �� ���� �� �������� �	�
������.���� �
����	� �� �������	 �� -8 � �����
��������� �� ���� �� �������� �	� �������� ���� �	�
�������	��� ��������� ������ ��������� �	� �������
���	 ���� ��
���� ������.����� ���� ��� ��� ����
������� ���������� 9� �	�
���� ���� �	� ����� ������
�� �� ��� �� �������� �	� ������.���� ������� ����
��� ���������

������� ��������� �������� & ���� ��
� ��
����� ������� �� ���
������������ ���������� ������
���� ����� 	�� ���� �������� �	��� ������� 	��
��� ���� ����� � ������� �� ������� � �������
��
 �� �	��	�� �� ��� �	� ��������� �� ���� ������
����� :������� �� �	��� 	�� ���� �����������
�� ��	���������	���	���� &���
 �	� �����������
����� �� ������� �	��	 �������� ������.���� ����
������� ��� �� ��������
 ��� ������ �� ����������
��������
 � ������� ����� �� ����� �� ���	��

���	 ���	 ��Æ������� ���� ��A������ ��������
��
������ &�� ���������� �� �	� ������ ������� �� ��
��� ��
���� ��	���������	���	��� ��A���� %���
����� ������� ����� ������� �� ��������� A����� ��
I;J � ��� �	��	 �	� ������.���� ������� ���� �� ����
������ �	�� ��	 �� �	� ������� 	�� ���� ����'���
%�������� �� 	�� ����� ������ ��� ��� �������� ����
���� A����� �� I&=" � ��� �	�� ��� ����� �� ������
�������

��(������� ������$��

�������� � ��������������	 ���� ���������� �����
�������� �� ������ ������ ������ ����� ���
����
���	� �� �������� ��������� ���������� ����
�	��� ������ �� �� ������ �	� �� �� �	� �����
9� ��������� ��������������	 ��A��� ����
����������	�
 ���� � ����� �� ������
���� ���	
�� �	�� ������� ���������� ���� �	� ������� ����

�� �� ������ �������� �� �	��� ������

��) ���* ���� �������

�	��� �� ��� ���	 �� ������ �� ��������� �������
�� ���
������ �	��	 	�� ���� ����
��� �� ���� ���
�������� ������ �	� ������� ���� �� �������� �	�
	���� ��������� �� 	������ �� �	� ���	�� �������� ��

�	� ���������� 9� ���� ��� ����� �� ������� ������
����� ���� �	� ���	 ���	 � ������ ���������� ��
������� ��������������� ��� �������� �	� ���	�����
�������� �� ����� �	�� ���������� ���� �	� ������
���� �	���
	 �������'���� (������ &!9 /��� �������
0�3�+8� "������ ���	 ���������� ������� �	���
	
�	� ���	��� &!9 �� ������ ���� �� �	� ���
����� ����
��� �	� �������	��
���� �� �	� ������ �������� ����
�������� �	� ���
����� ���� ���� �������� ������
�� �	� ���	������� ������ ����� �������� ���	 ���
��
 ���� �� ��
� ��������� ���	 �� �� ������
�� �������
 �	� ���	 ���� ���	�� �� �	��	 �� �������
�	� ������.���� ������������

��)�� ���*��� �#�������$#� +��* �&&��,
����$# ���*��

�	� ������� ���� �� ����������� ���
�	����
 ������
����� ���� �	� ��������� � ���	 ��
������� ��
�����
 �	�� ���������� ���� ���
������ @�����
�������� �� ����
��� � ������ �� ���� �� ����
��������� �� ���	 �� ������� ����� �� �������
��
�������� �������
������ ������������ ������
&!9 �� ������� 9�
������ �������� �������� �����
�� ���� ���������� ���� �	� ���	 ���	 � �	� ����
��� �� �������� �� �������� �� �	� ���	� �	� ������
��������� �� �	� ������� ��������������� �� ����
�	� ������ ��������� �������� ����� �� ��� �	� ����
��� ��������� ���������� �� ���������� �� �������
������
 ��������� �������� ���� ���� �� �� ��
������ ������ ���	 ��������� 9� �������� ��� �����	�
��
 ���	�� �� ������� �������� ����� �� ���������
�� �	� ���������
 ����� ����� ���	 � ����� ������
����� �� ������� ����� ���������� �� �������� ��
������ �������� �� ���������� �� �	� �������

�� ���� � ��������� �� ������ �	�� ���������� ��
��������� �� 	�� ��'��� ��� �� ��������� /%DD
������ ��� ������8 �	� �� �����'���� ����
���
��� ���	 ������ ����������� ������ �	��� �� ����
���	 ���������G ���	� N�����9������� #������9����
���� �� ���	"�����

� ����� �	� ���	 �������� ���������� �	� ��� ��
���	 �������� �	� �� �� �� ������� ��� 9� ��
�	���
	 �	�� �������� �	� ��� ��������� �������
���� ���� �	� ���	 �� ��� ��������� #������ ��
������������ �������� �� �	�� �������� �������G
���������
 �	� ������ �� �������� �� �	� ���	�
����������
 �	��	 �������� ������ ��������
������� �� ��������
 ������ �����������

� ��������������� �	� N�����9������ �������� ��
���� �� ��	 ������ �� ���	� & N�����9������
�� ������� ���� ���	 ��A���� �� �� ���� ��
������ �	���
	 �	� ���� �� �� �������� �� �	� ���	
���� �	��	 �� �� ��������

� ��������������� �	� #������9������ ��������
����� �� ��	 ������� �� ���	� ;�	�� �	�
�	� ���� �� ������ �� �������� �� �� �������� �� �	�
N�����9�������

� ����!���� �	� ���	"���� ���������� �	�
��� ��
�������� ������ �� �	��	 �	� ���	 ��
�� ����������� �	� ���	"���� �������� ���
���� � ��������� �� �������� �	� �������� ��
�	��	 ������ �� �� ������ ���	 � ���������
��
 ������ �� ������� �	���
	 �	� ���	�
"���� ��������� �������� � �
����	�� �� ���
����� ����� � ����� ������� �	��	 ���� ��
������ �	�����
 �� �������� ����
 �����
 �	�
������ ����������� ��������

�	��� ��������� �� ������������ ������ �� ���
���� ��������� �� �����C � ��������� �� ������
���� �	� �������� ��������� ���	��� �	�
��
 ��� ���
�����
 ���	 �� ����������� 9����� �� �����������

���	 �������� ���	 ������� �� ���������� �� ���	
����� ��������� �������� �� ������'�� ���	 ����� ���
��� ����� 	������ #�	 ���	 ������ 	� ������
	���� ����� ��� ��	������ 	����� 	�� �� ���������
�����
 �� ���������

�������� �� ��� ��� �	� ���	 ��������� ���������
����
 ��������� �	���
	 �	� ���� ������� �	�� ���
������ ��'������ ����� ������� �� ��������
 �����
�� ���������� ��������
 �� ��� ����� ���	 ��A����
���	 � ��������� ��
��� ����� �� ��
���� �	���
	
���	 �������� �� ������������ ���	������ 9�
�� ����
��� �� ������� �������
 ���
�� ���	 � %>�
@9�� =�?���� !&;�"� �� ;�������� %��������
����� ���	 � �� ���������� ��
�
� ���������������
/�	����� �	���
	 ��� �� �	� �9")K@��� ����� ����
))=) *-2,8� �� �	�����
 ��������� ���	�� ��
�

���� �� ���������� �� ������� /��� *+4,� *+5,� *-3,�
�� *+6,8� �	�� �������� ��'������ ����� �� ������
��
� �� �	� �������� ��� �� ������� ����������
 ��
������ �	� ��� ����� ��� ���	 ������ �����������
�� �������� �� �Æ������� ��������� & �����
���� ������������� �� �	� �������� ��������� ����
�� ������ ����� &� ���	� �� ���� �	� ������� ���
���	 �	���
	 �	� ���� ��������� �� �� ���� ���	
�������� ���	��� �������� ������������

�	� ��������������'� ��������� �� ����� ���������
���	 �	� ������� ���� ���	 ��
������� ����������
�� �� ���� �������� � �����	 �� �� ��������� ����
������ �� �������� ������� ���� �	� ���� ����������
&��	��
	 ������ �� ������ �� �	� ���� ��������� �	�
��������������'� �������� �� ��� �
������ �� �	����
���� ������� �� ����� ��������� �� ���� ��� �������
�������� ����� ���	 � @����

��)� -���*���� �#�������$#� +��*
��������%&�$!���

$����� ��������� �� ������� �� ������� ����� ��
������ ������
� ���	�� ���
������ ���	��� ��
���� �� ���� �	��	�� �	� ���
����� ����������� ��
�	� �	��� ���	 �� ������ �� ��� �	� ���
����� ���
�������� ��
������� �� �	� ������� ���� ���	 �	�
!�� �� � ���
� �������� H �	� ��������� �� � �����
��� ���� ������ �� ���	�� �������
 �	� ���	� �	� ����
�� ��� �������� �� ��� �������� ����� �� ���
������
��
��
 ���� ���	 �� �������� ��������
 ��� ���
������ ������ �� ���	 �� �������� ��������� ��
������ ������ �	���
	 ��
�� �� ������ ���	 �	�
������ �	� �	��� ���	����

���
����� �� ��� �������� ������ /��
�
���
�������	��
���������8 ������� ���	 �����
�������� �� �	� ������.���� �
����	��� �������
������� *-+, �� �������� �	� ���� �� ���
�����

������� �� ������
� �
���� �������� �� �������
�	� ���
����� �� �	� ���� ����� ������ ���������
�� ���� �	� ���
����� � �������� �� ���������
� � �

�� �	��� ����������
 �	� ������� �������� ��
�	���
��������� �������

��. �*� �#�������$# �����

�	� ����	�
��������� ���� ����� �������� �� ���
������� ���	 � ������ ��������� �� ������ ���
��������� �� �� ��������� �� ������� ��A���� �	�
����	�
��������� �������� ���������� ��������
�� �	���� �	� ���� ���� �	� �
����	� ����� �� �� ���
���� ���������� ��� �� �	� �������� ����������� ;��
�� ���� ������ ��������� �� �� �������� ���	 �
����	�
���������� ��� ��� ���� �� ����
���� � �	�
������ ������ �������� �	� ���������� �	� �������
�����������
��� &�� ���
���� ��� �� ��������
���� �� �������
���� �	� ������ ������� ��� ��
�	� ����� ������ ��������� �� ������� �	� �����
�������� �� �Æ������ �� �	� ���	 ������ ��������
���� �������� ������ ������ ��������� �� �� ���� �
I���������������� ��� �	� ����� ������ ��������� :��
������� ���� �� ������� � ������.���������
����� ������ �������� ���	 ���	 ����
��� ��K��
)����� �����	��
�

���� �����'��� ����	�
��������� ��A����� �����
"�������� �� ������ ��� 	�
	������ �� ������ ������
�	��� �������� ������� �� ������ �������� ��������
�� ���	 ��������������� ���	 � � ����
���� ����
����� �� ����� ������ ��������� �� '���� ��
��	�� ������ �������� ;��� � 9����������$���� 	�
���� ��'���� ���
�� ��� �� 	�� ����	�
����� ����
������� �� �	� �������� ���������� �� ���� �	�
���� � ����	�
��������� 	� ���� ��'���� �� ��
�� ���� ��� ������ ������� ��A�����

��/ �$0� �����#1 "��%�+$�2

&���	�� ����
�� ��� �� �	� �������� �������� �� �	�
���� ������
 �������������� ������ ������
 ���	���
���
��� 	�� ���� �������� ���	�� ��������� >��� �����
��
 �� ����������� ���� �� �������� ����������� ��
������ ��������� ����������� :�������� ������
 �� ����
�� ������ �	� ���� ��� �������� ��� �����	���

�� ��� ���� ��'������ ��� ���� ����� �� ���������
&�� ���� ��������� �� ���� ���	��� ���� ��� �	�
������ �������� �������� �� ���������� ���� �����
�	�� ���������� ������ ��������� ���� �	�����
 �	�
������ �� �	� ������������� �� ����� � � �

��� ��
 ������ � � �

� �� ���� ������� ��������� ���	 �
�	�����
 �	� �������� ����������	���	 ���������
����������� ���� ������ �� ������ ���	 ���
����
��A������ �������� �� ������ ������� �������� ����
 ������ ������ ������
 �������� ����� %��>���
*-4, H ���������� �	� ���� ����� A>��� ������
 �����
���� ������ �� %DD�

&���������� ����
 �������� �� ��� '�� �	� ������

�������� ������ �	�� ��������
 �	��� �������� �� �	�
����� 9� ��������� ���������� �	� ������ �� ������
���� �������� � ���	 �������� ������ �� ����
 �	�
���� ���	 �������� �� 	��� �	��� �������������
���	 �	� ������������
 ���� ���� ���������� ������ ��
��������� 9� �������� ������
������ �� <�����
�������������� �� �� �	�����
���� �	� �������
�� ������� �������� �� �	� ����������	�
 ��� ����
����
 ������ ������ ���� ������

9� ������� �� ���� ������ �	� �������� ���� ����� ���
�������� ��
� �� ��������� ������ �	��� �	��� �����
��� ��� �	� %��>��� ��������� �	�� ����� ����
���� ����� �� �	� ��������� ����� ������� �	� ������
�������� ��������� �	� ��������� ����� �� ����
����� �� ����� ������� ���	 ������.���� ���������
�	��� ����� �� �������� �� ������ �	� �	� ��������
�� ����� �� �	� �������� ���� ���� ��
��	�� ����������
!��������
 �	��� ����� ��� ���� 	���� ������ �	� ����
��� ��� ����� ���������� �� ������ �	� ������ ��
���� ����'������ �� ����� �� �������� � ������
�� �Æ������ �� I��� ����� ���������

'� ���� -�
������	� �	���"����

�� ������� ������ �� ���	����� �	� ����� �	�
E���������F ������ ��� ����
 ��������� 9� �	� ����
����� ��
� �������� ���� ���	 ������� �� �����
�� �������� �� �������� ����
 ������ ��� �� ����
���� �� �����
��� ���������� �� �	� ���	 ���� /����
���� 1�-8� 9� �������� �	� ���� ��
���� �	� ���	 ���
��������� ������� �� ������
 ��� ������� �����
��������
 ��������� ������� �� �����
��� ���� ����
�� �������� ��������������� ;��� �	��� �������� ��
��'���� �������� ������.�� �	� ���	 ���	��� ����	��
����� ���� �	� ����� &�������� ��������� �� ����

����� ��� �	��� �	� ������ ������ ���������������
�������'��� ������� �� ��A������ ���������� �� ����
������� ���� �	� ������.���� ������� /������� 1�+8�

9� �������� 1�+ �� 1�-� �� ����� �	� ������� 	�
����� ���� ���������� �� ���� ���	 	����

���� �� �� �� ������� �	� ����� � �	��� �����G

$$ �	���� � ���� ����

����%%���� &��! ' ����%%����%%(
	����)*+

&��!,���")--&��!(#���, ..*+

$$ �	���� � �������� �������

��������%%������� ����(���+

����(���,�""(����)&��!*+

'�� �$+,��!�� �-�

#�������� ������� ���� �	� ���	 ������ �����������
������� �� �������� �	���
	 �	� ������ ��� �� �	�
�������� ������� 9� ��������� �	� ���� �� �������
�	� ������ ������� ��A������ �������� �������� ��
������.���� �
����	� �� ����������
 �������� ���
������ �� ��	� :�� ��	� ������ ������� ���	 � ���
������ �� �������
������ �� <����� ���������
�� �	� ���	 ��.� �� �� ��������� :���	������� �	�
���� �� '�� ���� �	� ������.���� �
����	� �������
���� �� ������
 �� ������
 �	� �������� �� �	�
���������� ��������� ��� ���	 ����� �� ����� �����
������

;��� �	��� ���� ��A���� 	�� ���� ������ �� ����
����.��� �	� ���� ������ � ����������� ����� ��
��� ��� �� ���� ������ ��������� �� ������ ��
�������� �	� ���	 ������.���� ������� �� ��������
���	 �	� 	�� ����	�
����� ���	�� �� �	� ��������
���� ����� ����� :�� ������� �� �	� ����
���� ���
���� ��� ���� ������ ������ �� ������ �� ��
�����
������ �� 	����� ����������� �� ���������
�	� ��� ���� ������ ������ �� �������� � ����� ��
�	� ��A������ �������� ������� ������������ �	��	 ����
��� ��� �������
������ ������������ �	� �����
��� =����� ������ ����� �� ������ �� �	� ���	 ��.�
�� ��� �� �� �	�
���� ���	� & ���������� ���������
�	� �	���� �	� ���� �� �	� �� ���� �� �	�
������
�� �	� ��A������ �������� �� ���� �� �	� ������ ���
������� :����� � ����������� ����� �	� �	���� �	�
������ �� �	� ���	 ���	 ������ �� ���� �	� �����
��� =����� �
����	� ���� �� ������ �� ��� �� �	�
���� ����

$$
	����� � ���� 	���� ������� ���	�
 ,,,

�������/ �(���� ' ����0������%%
	����(��&)*+

�(����12���(!	�"����(����)�3�45���(60����3�*+

�(����12���(�������(����)�3�45���(7�����3*+

$$ ���� ��� ���
���� #��
���� ��������

4������������ ��(#��
)�(����8 9*+

��(#��
12���(!	�"����(����)�3�45���(60����3�*+

$$
	����� ��� ������:����� �	�
�"�	��

��������3�&��� #(��&���);��(#��
*+

$$��	#�	�� ������:����� !�������

#(��&���12���(���
�(����)64�<�4(����7*+

$$
	����� � ��	��������
	���	��� ��"

$$ �"" �� �� ��� ������:����� �	�
�"�	�

$$ ����	 ����% "�#���� �������	% = ���	�����

$$ ����	 ����% ���� �# !	�"���� ��	� > ���

��	���������	���	��� �
(����	+

�
(����	,�""(
	���	���(����)60��(49(3�0�8 �1?*+

#(��&���12���(����	(��	������(
	��);�
(����	*+

$$
	����� � ������� �������	

��������������	 �(����(��);�(����8���0�6�*+

$$
	����� �� ����	�
���� �����

����	�
��������� �����=+

�����=,�""(�������(�������);�(����(��*+

�����=,���(�����	(�������(���	���);#(��&���*+

�����=,�""(�������(�������);�(����(��*+

$$ ����
��� ������:����� �� ��� ����(���

�����=,	��(����	�
�����)����(���*+

'� ��1*,��!�� �-� 3 4��&&���

�� ������� ���	�� ���	 ������� ������ ��
�������� �������� ����� �� 	�� �������� ��� ��
������ ������ �	� ��������� �	� ���� ��������
���� ���������� �� ������ �������� ����������� ��

����	�� �� �������
 ���������� �	� ������� ��	����
���� �	� ����	�
��������� ���� �� ��� �	� �
��
���	�� ���� �� �	��� ������������� >���
 �	��� ����
����� ���� ��� ����� �� ���� �� �������� �� �������
��������

:�� ������� �	� �	��9���������������� �	���
����� �������� ��������� ������ �� �	� ��������� ����

���� �� ������� 1�+� ��� ���	��� ��������
 ����� ��
��������� ������� ���	 � ������
 �����'� �������
���� ���������� �	�� ������ '��� ���� �	� ��� ����
������ ������ �� ����� �� ������ �	� ������ �� �	�
���	 ��������� 9� �	�� ����
��� �	� ���	 �� ������
��� �� �������� �	� ���	 ���	 �	� ������� =�����
�
����	� ������ �� �	� ����������� �� �	� ��� ����
������ ������ ���	 �	� ��� ��A������ ��������� :������
�	� ���	 ������ �� ������� �� ��������
���

$$ �	����� &	����	 ��" ���	���� ����

��������%%��������	�������@	����	 �����(���	���	+

�����(���	���	,	��(����	�
�����)����(���*+

Z

Y

X
Z

Y

X
Z

Y

X

/8 /�8 /�8 /�8

������ �� '�(� *�����+�	" ������� �
 � �%���� ����	����� �	� ������������� ����� '�(� ����������� ����� '�(� �%����
����������� �	� ���������� ����� '�(� ����������� ���� �
 � ���� �	��	������� ������ '�(# '�(# �	� '�(���� ��	������
���� ,-.& '��� /012(�

(� �5��-���

&��	��
	 ��������� �� ���������� ����� �������� 	�
���� ���� �� ������� ������ �� ���	 ������ &� ����
������ ����������� �������� �� ����
��� �� �Æ�������
	���� ���	 �� �� ��.� �� ������� ����� �	���
��� �� ������� ����� �� ��������� ������������ �	�
���� �� 	���� ����
���� ����������� ����	�����
�� 	��	���� ��������� � ���� � 	����� �������
����� �� �	��� ������ #������ �� ������.����� ��
��	 �� �	��� ���	 ����� ��
���� �� ���� -� �	�
�������� ���	�� ��� ��������� ���� ��
� �� ������
���	 �������� ���	 ��� �� �	� ������ ���	�� �������
��
 ������ ��������� #�	 ���	 �� ������.�� ����

�	� ��� ��A������ ��������� �� �
����	��� �	��
���� '��� ����
��� / ������� �	��	 	� �� ����� ��
�	� �������� ���� ���	��8� �� �	�� ���� �	�� ���
����.�� ���	 ������� �� �	� ��� ���� ������ ����

�	� ���A�
��
������ �
����	� �� � �� ��A������
�������� �������� �	� ���� �	��� �	� ���
� ���
���� ������ ���� �� ���	 �	� ������ �� �	� ������.��
���	���

���	 N������� 9���� ��
 :��� ��

���� +7077 +�70345+ +�700324
$��� -34 � -�15275-
<����� -" -30 +�+331+7 +�+70443
���� -++23 +�+35775 +�++6547
<��� +-420 0�1643-0 0�763666
<����� 0" 6-77 � +�765051

��	
� �� ������ ���� ��3���	� �����	� �%��� ����+
��*�� ���	� ��������� &�� ������� ���	 �����# ����#
�� ����	
�� ��� �	����� �	� ��� �	�� ����� &�� �%���� 4+
����	���	�� ����# ��� ����������� ����# �	� ��� �%����
5+����	���	�� ���� ��� ����	 �	 6������ 4 '�(# '�(# �	�
'�(# �����������%� &�� ����� ������ ��� 	�� ����	�

:�
���� - /�8 �� /�8 �	�� ��� ����	���� ���	���
�	� '��� ���	�
���� �� :�
��� - /�8 �� ���� -� ��
���
���	��� ����� ��������
 ++-�060 ����	���� ���

������ �� -+�+23 ��������� �	� ������ ���	�
���� ��
:�
��� - /�8� ������� ++�765 �������� �� -�247 ����
����� �� �� �	� ���	 �� ���� ����������� �	��� ���
���	�� ���� ������.�� ����
 �	��� �������� ������
��������� �� ��A������ �������� ��������� #�	 ���
����.���� �� ���� �� �	� ��� ���� ������ �������
�	� ������ �� �	� ��������
 ���	�� ��
���� �� ����
0�

���	 &�
����	� :���� ��� � �
� �

���� 9����� ���	 � --�31+0 +�07021
&����� ��� �� 3�++77- +�04470
%��A� ?��� �� 3�++77- +�-250-
:��� =����� ��� 3�++77- +�-26+0

���
� 9����� ���	 � 1�+670+ +�+3577
&����� ��� �� +�21740 +�+5--1
%��A� ?��� �� -�-37-6 +�++604
:��� =����� ��� -�710-5 +�++627

��	
� �� ������ ������
�� ����������� ������ �
 � ����
�	��	������ '&���(�	� � �����+������ ����� '7����(��+
����*�� ���	� ����� ��3���	� ������% ���������	� ����+
������ �	� ��8������
�	����	�� 9��� ��8������
�	����	
���� ��� �����	�+����� ���	 ����� ������# ��	���� �� ��
&��� �� ����	 �	 6����� 4 '�(# �	� 7���� �� ����	 �	
6����� 4 '�(�

�������� 	� ��� ���� ���� �� ������.�
�������
���	 ������� �� �	� ������
���� � %������ ����
>���������� �	�� ���	 �� ������ ����
��� �������
���	 ����� ������� ����	�����
���� 9� �� ������ ��
��'���
 �	� ����
��� �� � ����	����� �� ���A�����

�	� ��� �������� �� �	� ���� ��	���� �	�� ���	��

��	��� �������� ��������� ��
��� ���	 ���	 ���
	�
�������� �� �	� �������� �	��� �� ��.��� ��������
�� �	������� ���� �� ������� �	� �
������ �� �	���
�������� �� ������� �����	�� ���	 �� ����� ��
���	 ������� ��� �� ��
� ���
�	��

)� ������6 �	� "����� 4
�7

�	� �������� ����
� ������� �� ������ �	� 	�
	 �����

��� �� (���������� ������	����������� �Æ������� ��
��������������� �	���
	 ������ ������
 �� ������
����� %DD ������ �� ��������� ������.��� �������
L��� �� ����� ���������� ���	 ������ �� ���	 ����
��� ����������� ��������
����� �	� ����
� �� �	��
��	��
	 �	� ����
� �� ����� �������
 /� �� �	� ��	��
����� �������� �	��	 �������� ��8� �� ������ �	�
������� �� ��� ���������� �� ����� �	� ����
� ����
������ ������� �������� 	� ���
������ ������ �����

�	� ��� ��� �� ������� ����������� ������ �� ���	
������ �������� ��A������ �������� ��������� ��������
�� ���������� �������� ������ �������� ��������
���� ��A������� ����� ���	 � �	� ��������� �� ����
����� I������
� ����'��� �� ��� ������ ������� ��

���� �	� ��������� �� ��������
 ���	��� ����������
�����	��
� �� J����� �������� ���� �� ��������
������� �� ����� ���������� !��������� ����������
�� �������� ������� �	� �����	��
 ��
������� ���	��
�� �	� ����������� �� ���	 ������ ��� ��������

��0! ���� ����� =������� ���� ����������� ��
������ �������� �� ���"&% ����������� 	������� ��
�������� ��� ��	�� ������� �����

%���������	���� �	� ��	��� ���	 �� �	�� ����
������ � &�
���� =�����)������� ��� 	�� ����
���������� �� �	� ������� =����� ������ �� ����
J��
��� � %������ ���� >��������� ��� �	�
�������
���	���

��8���#���

*+, <���� !� E?������.��)����� �����	��
 ��
>����������� ?�����F ����� #��� ����� �����
���� ++� 122P131� +662

*-, ������� &� E=������� �������� �� �	� �����
����� !������ �������� �� ���������� ����
��
���	�F $� ����� %�	��� ���� -� +16P+4-� +634

*0, Q���� !� E&�	�����
 :����� #������ ���	 $���
��� �� ;�����.���� �� �	� M����� ����� =���
�� &�������� $��������� !�� 9 � & :�������
��� ������ ���	 ;�����.�����F ���&�� $� #�����
����� ����� ���� 15� ��� 0� 17+P1-7� -777

*1, :����
)�� Q���� !� E����	���� ���	 ��������
���� �� ������.���� �� �	� ������� ���������
�������F ����� $� #����� ����� ����� ���� 20�
+044P+06+� -77-

*2, :����
)�� Q���� !�� ������ ��� �	���.
�� E& %�������� �� ������.���� �������
��� ���	 �	��������� ����������� ���������F
%��������� �' ��� ((�� ������������ ������

)���������� ��� -6P17� ���� =�����)����
������� 9�	�� =L� -77-

*3, %��� ��� ����	����� ��� @����� �� E;��
�������	��
G &� ������.����������� �����	 ��
���	 �����	��
�F ���� ������� �
���	��

��� !����� ���� +0� +52P+67� +660

*4, %��� ��� ������� M�� ����� �� E&� ��
����	 �� ��������)����� �� ������.�����
���� �����	��
 ��� ����
���� �����������
�� ����������� ���	���F %��������� �' ���

*�� ������������ ������)���������� ��� 146P
161� +665

*5, !��	���	� N�=�� Q������ �� E& ����
������� ������.���� �����	 �� '���� �������
���	 �����	��
�F ���� ������� �
���	��

��� !����� ���� 6� 076P0-7� +66+

*6, &��.� #�� <���. ��N�� <������. &�� &A���
��@�?� E& ���	�� �� �	� ����������� �� 0"
����� '������������ ���	���F
������� � ��+

������ ,�'�"���� ���� --� 12P20� +662

*+7, M�� @� E�	�������������� ����
������� ����
���� ��������������F ,�
� $������ �� ,���+

�-� ��������� ���� +7� 4+5P41+� +656

*++, M�� @� E%����������� �� �	�������������� ���
������ ������ ����
������� ����
 ���� �����
����������F ,�
� $������ �� ,����-� ���+

������ ���� +3� +-6-P+074� +662

*+-, #����������� <�� �		 =� E9��������� �����
��
��� (�����
 ����� ��� ��
��� ����
��������F
%��������� �' ��� .��
�� ,	������ �� ���+

��������� /������	� ��� 10P2-� +66-

*+0, :����
)� E>���� ���� ��� ;�����G)���
���	��� ��� ��������� ���	 �����	��
 �� >��
��
���
�F ���	� J��� &=)K�%�����-06� &��

���� =�����)�������� %	��
�� 9)� +666

*+1, @���� "�� :����
)�� ?���� M� E%�����
 9��
���������� ���	��
 �� "�������.���� �������G
�	� ������� ��������� ����� �� ���	����
���
%������F %��������� �' ��� ���� ������������

���'������ �� /�� /�������� ������� '�� #�+

������ ���� ,��������� <�������� <9� -77-

*+2, J���� "�� J��
��� ��� <����� J�� M���� !��
@��
����� M� E%����� �������
 ���	 ��	���
��� ?������� ?�����F �������� � ,����� ���

 ��������� ���� 1� ��� 2� 0-P1+� -77-

*+3, :������ =�� Q���� !�� @����� �� E9�������

��0! &��������� �� ���	 $����� 9�������
�����F %��������� �' ��� (0�� ������������

������)���������� -770

*+4, E%>@9� ���	 ?�������� ����������F >J)G
	���GKK�����������
��� -770� ���� =�����
)���������

*+5, @���� "�)�� <���	� ��"�� $����� "�M� E;����
����G &� ��A��� �������� �������� ��� ������

����� ���������� ���������F ,����-� ���+

����� � ������+������� %������� �����������
���� +010� �����
��)������ =���� �� %�������
�������� +664

*+6, E�	� !0" %��� "���������� !��A����F >J)G
	���GKK�������������
��G-757K��
���K� -770�
!��'� =���	���� =�����)�������

*-7, :����
)�� Q���� !��)������ ��� ������� "�
E�#�$>9�# "���
�G 9����� �� �	� "����������
�� ���	 $����� 9���������� ��������F %��+

������� �' ��� ���� ������������ ���'������

�� /�� /�������� ������� '�� #������� ����

,��������� ��� +26P+35� <�������� <9� -77-

*-+, ?�� #�� <��� J�� M�	���� J�� N�������� M�
!���� %�������1 ������� �')������� ������+

������� ,�'�"���� &�������������� +662

*--, @���	�� %�<�� J�)�� �����;�� &�M� E&"9%G
� ���������� ������� ������������� ���� ���
&=�9�%�F ,�'�"��� %������ ��� ���������
���� -4� ��� +-� +1-4P+123� +664

*-0, Q���� !� E&�
����� ���	 $����� ��������F
,�
� $� ,�� �������� ���� -0� ��� +� +60P-+5�
-77+

*-1, :����
)�� !������ !� E)��� ;�����.�����
���� ��������� ���	 >���
���
 �� 9�������
�����F ����� $� #��� ������� � ����� ���� 16�
+76P+-2� -777

*-2, Q�	� ��� Q������ ?�� !����� M�� J������ %� E"��
������
)�
�
� "����������� ���� �������'�
�������)������F ���	� J��� >%J)�M%�+17016�
)������)�������� =�����)��������)�����
����� %&� -77+

*-3, J����� M�:�� Q��� ;�� :�	���� M�#�� �	���
	�� ���� E!����� &�
����	� �������� ���	
������F %��������� �' ��� (2�� ������������

������)���������� ��� +64P-73� ���� =�
�����)���������� =������ @��	� %&� -77+

*-4, ��������� #�� :��	��� ���)����� M�� <���
��� M��)�������� @�� @���� @�� J������ ��
E%��>��� P �	� %DD >��� ������
)������F
����%$$
������,���	
�#�	!�,���

�����������	��
������� �������������
������ ��������������������
! "���
!���

#%$'&)(+*-,/.�0+1324$3,6587 9;:<�= &>2?*-, <�@BA ()CD2 <�E , @ 5

5GFIHKJ'L�M�N�OQPSR'T+U+VXW)YZO\[X]^ODWI_�W`M�a3bdcdMeVfY'ghN�a'MigjVkPmlon4bdcpT+qrHsT>t
73u a'H\v-M�cwn-H/bKg"J>xzy%MG{|YkJ'l�bd}�~�T+qrM!n?V6Y'ghN�a'MigjVkPmlon4bdcpT+qrHsT>t
Fz}>T'l'b�HK�+tK�>J4n-}'Hw���!n-HKcdJ>t�T'l�V�YkM�U>T4n4b�HKM�a�t�]�l+cwn-M�qrHKa����!n-HKcdJ>t�T'l

���X�����I���X�
�����d���s�����e�+� �¢¡k�����e£�¤o¥s�¦�d�G���G�d§j¨G¥s�ª©«§e¬��d�i�p���?����4���e¥s�s®��?�d�s§j��¨�¯�¨G�d���?¤4�K�G°8��§e�G±w£ª§e�o²j�i³��+§j¥Q¯o����4���´�s�4�d§�£i§j�4²-�i³��pµ�¨G�+§j¥Q¯o����4���o¶
�d�i�p���?����4���e¥s�s®ª�s��°��d���ª�p�;£ª§j�4²-�i³	�pµ�¨G�+§j¥Q¯o����4�����e��·©��i�d°e�s��°��d���ª©«�d§j°e�i�d��� ��¸	¹��º°e�ª���i���!�d�8��»k�s���!�p¯�¼o���e£ª�;½)�?�p�d�Q�d�s§j�B¾¿»�¼G½`À
�p�d�ª�I¬��d§e©Á�d�G�I�p�d�r�?��°eµ�¥K�?�z¬/�e£ª�i�Â§e¬`���+§j¥Q¯o���ªo�d§j���?��8µG�p���d�G�s���d§º�KG�ª���d�Q¬�¯;�d����£ª§e�o²j�i³´�pµG¨��+§e¥s¯o�G��o���¦�s�8�d�����+§e¥s¯o�G��o�d§e��¸�Ã��e£��
£ª§e�o²j�i³��pµ�¨��+§e¥Q¯G�G��o�d§e���s�I�d�i�p���e�G��o���?¥K�s®ª�ª��K��G�s²4�KGµ��?¥s¥s¯�¸;ÄÂ�p�s�G°��e��§?�d�s°j�s���?¥Z©��i�d°j�s�G°8�G�d§�£ª�i�p�ª¶)�d����¨+§jµG��G�?�d�s�ª�¢¨+�i��¡k�ª�ª�	�d�G�ª�p�
�pµ�¨G�+§j¥Q¯o����4�����?�d�`Å�§j�s���ª´�e��¦�d�i�p���e�G��o���?¥K�s®ª�ª'¶o�ª���pµo�d�s��°��d���?�k��§��d�i�p���e�G��o���¢�?�d�f£i�d���!�d��m§eµG�d�p�KG�f§e¬'�d����§e�d�s°j�s���e¥'�+§j¥Q¯o����4�d§j�º�s�
�d���s�6©��i�d°e�K�G°%�o�d§�£ª�ª�p�ª¸
Æ´Ç4È'ÉXÊ�Ë?Ì3ÍjÎ)ÏjÊ>Ð�Ñ)Ò�ÓªÔ�Ó�ÕrÊ+ÖhÔ�×�Ø�Ç4Ê>Ð�ÇoÓiË?È�Ù)Ð�ÇoÍ�Ú"Ø�ÇoÖhÇ4Ë!Ô�ÓªÕ�Ê+Ö`ÙÛÓªÇ4ÓªË!Ô�ÚhÇoÌhË!Ô�×/Õ�ÜjÔ�Ó�Õ�Ê�Ö`Ù�Ý¦Þ�ß�ÙÛàmÇo×�Ô�Ò3Ö�ÔoÈ

áÛâäãpå ���Iæ�ç�èº�%� ã æ å
é ¥s§j�p����+§e¥s¯o�G��o���ê�s�ìëeíî£��?��¨+�BG�ª�p£i�d�s¨+���µG�p�s��°�§j�G�
§e��©�§?�d����§e�G±w�p�ª¥Q¬�±w�s���d�i�d�p�ª£i�d�s��°o¶¢£ª¥s§j�p���¨+§eµ�����?�d�s�ª�ª¸SïZ�G�
¨+§jµG��G�?�d�s�ª�;�d�G�ª©��p�ª¥s²-�ª�m�!�d��§?¬��d�ª�ð£ª§e���D�p�dµ�£ �d���µ��p�s��°��p�d�Q±
�e�G°jµG¥r�!�I¬\�?£ª�ª�ª¸XïZ���ª�p�X�+§j¥Q¯o����4��������²-�¦�?���K���d�i�d�s§?�¢�e����?�
�i³4�d�i�d�s§e��¶��e��´����²-�Â�Xñ��G�Q�d�z²-§j¥sµG©��j¸�ïh�i�p���?����4���e¥s�s®��?�d�s§j��§?¬
�d���i©ò�s�4²-§e¥K²j�ª��ñ���o�K�G°��I�p�i�Z§?¬'�d� �p���e���ªo���z�d���!�k£ª§e©���¥s�i�d�ª¥Q¯
ñ�¥s¥��d�G�f�+§e¥s¯o�G��o�d§e�;�?��¦�d���!�Z¥s�s�Â�i³G�?£i�d¥Q¯�§j�m§e���s�G�p�ro�f§?¬3�Q�d�
¨+§jµG��G�?�d�s�ª�ª¸
ó �ª�G�i���e¥s¥Q¯�¶j�d�G�K���d�i�p���e�G��o���?¥K�s®��!�d�s§j��£��?�%¨+�k�+� �p¬/§e�d©��ªXµ��p�s�G°
��íz�ª¥K�eµG���ª¯m�d�i�p���e�G��o���?¥K�s®��!�d�s§j���e¥s°j§?�d�s�d�G©8¸ ó �K²j�ª�����p�i�Â§?¬
²-�i�p�d�s£ª�i�)�K�%�f�+§e¥s¯o�G��o�d§e��¶?�d���kíÂ�ª¥K�eµ����ª¯I�d�i�p���e�G��o���?¥K�s®��!�d�s§j�
�e¥s°e§e�d�Q�d��©«£i�d���!�d�ª�¢�´£ª§e�o²j�i³��p�i��§e¬��d�i�p���?����4���m¡6�Q�d�	�d�G�ª�p�
²-�i�p�d�s£ª�i�ª¸)ôÂ§e���Z§?¬��d���`�d�i�p���e�G��o�����K���d�i�d�p�i£i�����e£��%§?�d���i��¶j�e��
�d����©��s���s©%µG©õ�e�G°j¥s�%¾\¨+�i�ö¡Z�ª�i�m�ªG°j�i�Z§e�Z¬/�e£ª�i��Àk�K���d�G�f©��ª�p�
�s�6©º�?³o�s©��K�p�ª'¸
÷Â§�¡k�ª²-�i��¶��¦íz�ª¥K�eµG���ª¯º�p�d�K�e��°eµ�¥K�?�d�s§e��§?�6�d�i�p���e�G��o���?¥K�s®��!�d�s§j�
�e¥s°e§e�d�Q�d��©ø°e�ª��� ���?�d�ª��§e��¥Q¯ð£ª§j�4²-� ³ù©��ª�p���i�ª¸ÁïZ���s�8©����?���
�d���!�Û�Q�Û£��e�%¬/�e�s¥4�d§Â�d�ª£ª§!²-�i�)�d�G�Z¨+§jµG��G�?�p¯�§e¬��d���Z�+§e¥s¯o�G��o�d§e�
GµG���d§�¥s§�£��?¥'�G§j�o±ö£i§j�4²-�i³¢�d�ª°j�s§e���ª¶G�pµ�£��º�e��o�ª���d�Z�e�����§j¥s�ª�ª¶
¡6���s£����d�ª��¦�d§¢°j�i��©��i�p����¦§!²-�i�Z�e��º�p�ª�e¥s��'¸`úù°j�i���i�d�s£z�?�G±
�G�d§j�e£��;�d§��d���s���G�d§e¨�¥s�ª©|�K�4²-§e¥s²-�ª�Zñ��d�D�Z°j�ª�G�i���?�d�s��°%�Xíz�i¥r�?µG±
���ª¯I�d�i�p���?����4���e¥s�s®��?�d�s§e�¦§e¬G�d���k�i�4�d�Q�d��o§j©º�?�K�X�e����d�i©�§?²4�s��°
�d�i�p���?����4���X�d���!�f¥s�s�I§jµo�d�p�KG�I�Q�¢ûsüiýw¸`÷Â§�¡k�ª²-�i��¶o�d���s��G§��ª�6�G§e�
°jµ��?���?�4�d�i�z�d���?�f�?¥K¥>�d���I¨+§eµ�����?�p¯�¬/�e£ª�i�f£��?�8¨+�z�d�ª£ª§!²-� �d��'¸

ïh§f���?�p�d�K�?¥K¥Q¯¢�p§j¥s²-�`�d���s�ª¶e�d� �p���e���ªo���e¥s�s®��!�d�K§e�¦§e¬+�f��§e�G±w£ª§e�o²j�i³
�+§j¥Q¯o���ªo�d§j���ö¯o���s£��e¥s¥Q¯��s�4²-§e¥K²j�ª���d�G�ð��¥K�e£ª�i©��ª���"§?¬��i³4�p���
�+§j�s���d�¢§j���e��	�s���p�KG�º�Q��¸�ïZ�G�ª�p�º�i³4�p���8�+§j�s���d�ª¶Û£ª§j©�©�§e��¥Q¯
£��?¥K¥s��;¼4�d�i�K�G�i�Z�+§e�s�4�d�ª¶o�ª���e¨G¥K�6�d���f�e¥s°e§e�d�Q�d��©þ�d§�£ª§e©���¥s�i�d�ª¥Q¯
£ª§!²-�i�f�d���XG§e©º�e�s���?�z�d�G�%�e�G�ª�£i§j�D�I§?¬k�i³4�p����£ª§e©���¥s�i³o�Q��¯
�s���d�G�¦°j�ª�G�i���?�d�ª	©��ª�p��¸%����ÿ?í%¶'�p�ª²-� ���e¥Û�d�ª¥s�r�?¨�¥s�º©��i�d��§4o�
¬/§?���G�d�ª�p�i�d²4�s��°��d���`¨+§jµ�����!�p¯I¡6�s�d�%©��K�G�s©º�e¥-�+§e�K���Û�s���p� �p�d�K§e�
����²-�º¨+�ª�i���o�d§j�+§e�p��ùûsü ý¿¸	÷f§!¡k�ª²-�i��¶��s��ëeí%¶)�e���e¥s°j§?�d�Q�d��©
�d���!�m£��e��£ �d���?�d�����d�i�p���?����4���e¥s�s®��?�d�s§e�B�o�d�ª�p�i�d²4�s��°�¨+§eµ���o±
�?�d�s�ª�z�e��´¡6�Q�d���?���?£ª£ª�ª�o���e¨G¥K�XG�i°e�d�ª�¢§e¬��i³4�p���¦£ª§e©���¥s�i³o�Q��¯
�s�6�D�d�K¥s¥h�%£ªµG�p�d�i�4���?��m£ ���e¥s¥s�ª��°e�K�G°��G�d§e¨�¥s�ª©8¸
� ²-�i�m�d�������?�D�´�d�ª��¯-���?�d�ª¶���¡k§�o§j©��s���?�4�;�?���G�d§j�e£����ª�;�d§
�G�d�i�p�i�d²-�º¨+§jµG����!�d�s�ª�X�s��ëeíì©��ª�p�G�s��°8���!²j�m�i©��i�d°j����������
	
� ����������´�?��������
�����������������d�i�p���e�G��o���?¥K�s®��!�d�s§j���ª¸��ö�8�d����¬/§e¥s±
¥s§�¡6�K�G°G¶f¡Z��G�ª�p£i�d�s¨+����¡k§�©º��ÅD§?�´�d�ª£����G���4µG�ª�º�d���ª�ù¨o�d�K�! �¯
�d�ª²4�s�i¡ð�p§j©��f§e¬��d���Â§?�d���i�Z©��i�d��§4o����²j�?�K¥K�?¨�¥s�z�s�m�d�G�Â¥s�Q�d�i���?±
�dµG�d�#"�¸
é §j�o¬/§?�d©��K�G°�íÂ�ª¥K�eµ����ª¯��d�i�p���e�G��o���?¥s�K®ª�?�d�s§j�"�K�%���D�p�d�s£i�¦íz�i±
¥K�eµG���ª¯z�d�i�p���?����4���e¥s�s®��?�d�s§j�¢§e¬o�d���Û�s���GµG���+§j¥Q¯o����4�d§j�'¸3�ö¬4�G�ª£i±
�ª�p�d�!�p¯�¶�¼��d�ª�s���i�)�+§e�s�4�d�3�?�d�Z�s���p� �p�d��¢�s���d§f�d�G�`©��i�p�¢�d§��ª���pµo�d�
�d���!�)�?¥K¥4¨+§eµ���G�?�d�s�ª�3§?¬G�d�G�k�s���GµG��©��ª�p�¢�?�d�`�G�d�ª�p�i�d²j��'¶!¡6���s¥s�
£ª§e©���¥Q¯o�K�G°f�D�p�d�s£i�d¥Q¯¢¡6�Q�d�X�d���kíz�ª¥K�eµG���ª¯¢�ª©��G�ö¯I�p���G�i�d�Z£i�d�Q�d�i±
�d�K�o¸����´ÿ?íX¶��¢£ª¥s���?��µ��G�+�i�6¨+§jµG��º§j�m�d���z�4µ�©X¨+�i�Z§?¬)�e�G�ª

"�$&%(')%�*�+-,.,.%�/1032)+42)51%('6%�7801%�'&78/9%�:�5;78<1=)2)> ?@%A=6<1'B?@%�C�+8D
2)%�2)'E785F%�0F'E78GH>HI�7J26>H+-/K,.%�2)51+�01=ML�C#NO%�'6/&P!QSR-THUWV 7JX�Y

¼4�d�i�K�G�i�`�+§j�s���d�`�d§��+�i�p¬/§?�d©��I£ª§e�G¬/§?�d©��s��°I�p�d�K�e��°eµ�¥K�?�d�s§e�;���e�
¨+�ª�ª�º�ª�D���?¨�¥s�s�p����;�e�[Zº¾�\^]!À�¬/§?�_�8�s���GµG�k²-�i�p�d�s£ª�s�ª�zû ëeý¿¸Û÷Â§�¡�±
�ª²-� ��¶�£ª§j�o¬/§?�d©��K�G°I�d�i�p���e�G��o���?¥K�s®��!�d�s§j�´£ª�e�º£ª§j©����!���I���s°j�G�i�
£ª§e�D�f�s�´�d� �d©���§e¬)�4µ�©X¨+�i��§?¬�¼4�d�ª�s�G�i���+§j�s���d���s�G�p�i�p�d��'¸

`ba cedefhg9ibj(kHlnmBo;p qsr!t;l�qJmBu�v1p l;wJx4y�w8z v1{1lFv�|}m)uhp vFl-~�{1z v1m)p t;l;��mBo;w
�;t�{1l;xFv�uH|�wJx-~
w�q�v�uhw}p l;x;p r!v;mBw8x3�!|�m)o;w�xFv�uh�@w8l;w8x�z p l;w�qJ����t
� uhw�q�w8u)�Jw��;t�{1l;xFv�uH|nw8x-~ew�q!��m)o;w�o;p ~eo;z p ~
o�mBw8xAm)uhp vFl-~
z w��SpHmBo}pHm�qr8p uhr-{1��r8p uBrJz w��)xFv-q!o;w8xKz p l;w�qB��p q�lFt;m�y�w8z v1{1lFv�|@�

é §j�G�D�p���e�s���ª¢íz�i¥r�?µ�����¯Â�d�i�p���e�G��o���?¥K�s®��!�d�s§j���Û�!�d�k�G§e�3�D�p�d�s£i�d¥Q¯
íz�ª¥K�?µ����ª¯�¸�ïh§¦�e�p�p�s�D�Â¨+§eµ�����?�p¯º�d�ª£i§?²j�i�p¯�¶G�d�G�z�ª©��o��¯º£ª�Q�d£ª¥s�
�d���i§e�d�ª©ì�s�f�d�ª¥K�!³G�ª´�d§º�e¥s¥s§!¡ ¬/§?�z�ª¥s�ª©��ª���d���d���!�z�!�d��¥K§�£ª�e¥s¥Q¯
íz�ª¥K�?µ����ª¯òû �jý¿¸«ÃÛ¥K�i©��ª���d�8�d���?��¥s�s�·§j�ê�"¨+§jµG��G�?�p¯B��G°e�
§e�´¬\�e£i�·�?�d�	�e¥s¥s§!¡k��B�d§�¨+��£i�d���?�d�ªB�ª²j�ª�ð�s¬¢�d��� ¯ù²4�K§e¥K�?�d�
�d�����i©��G��¯�£ª�Q�d£ª¥s���d���i§e�d�ª©î¾\�p�ª�A�3�s°jµo�d��ü�À ¸ é §e���D�p���e�s�G��
�d�i�p���?����4���e¥s�s®��?�d�s§j�G������²-��¬/� ¡Z�i�¦�d�i�D�p�d�K£ �d�K§e���¦§e���d���m�s����µo�
©��ª�p�G�ª�ª¸�úf¥Q�d�G§jµ�°e���d���i¯8�?�d�¦�G§e�I�º�D�p�d�s£i�Iíz�i¥r�?µ�����¯´�d�i�p���?±
���ªo���e¥s�s®��!�d�K§e��¶I�d�G�i¯ù�D�d�s¥s¥¢�G�ª¥s�B�d§"°j�ª�G�i���?�d��°j§�§4��4µ��e¥s�Q��¯
©��ª�p�G�ª�¦�?��·�d�-��µ��Q�d�´�s���p� �p�d�K§e�"§?¬Â¬��i¡Z�i�º�+§e�s�4�d�X�d���e��£ª§e�G±
¬/§?�d©��s��°��?¥K°e§e�d�Q�d��©���û �o¶
�o¶��?ý¿¸
úf�I� ³o�d�i���p�s§j�I§?¬G£i§j���D�p���?�s����Iíz�ª¥K�?µ����ª¯f�d�i�p���e�G��o���?¥K�s®��!�d�s§j���
���?�6¨+�ª�ª�´�o�d§j�+§e�p��´¨�¯;¼o�G�i¡Z£��4µ�¤+¶��d���!�f�s���e¨G¥s�z�d§X�d�i�p���?���i±
o���?¥s�K®i����§j�o±w£ª§j�4²-�i³��+§e¥Q¯G�G��o����¨�¯�µ��p�s��°Â�Âíz�ª¥K�eµG���ª¯��d�iñ��G�i±
©��ª���I�?���o�d§-�e£���û �eý¿¸%÷Â§�¡Z�ª²j�i��¶3�Q���s�z�d�ª�D�p�d�s£i�d����d§;¡Z§?�d¤4�K�G°
¡6�Q�d��©��i�p���ª��¡6��§j�p�¢¬\�?£ª�ª�z¬/§?�d©^�?��°j¥s�ª�I§?¬k°?�d���?�d� �z�d���?�}���
G�i°e�d�ª�ª��¡6�Q�d�8���?£ �´§e�d��� ��¸
ïZ���¢ñ��d�D�I°?�d§jµG���d§;£i�d���?�d�¦�e���e¥s°j§?�d�s�d�G©��d���!�z¡��?���e¨G¥K�X�d§
�+�i�p¬�§e�d©ì�%£ª§e�G¬�§e�d©��s��°Xíz�ª¥K�eµG���ª¯º�d�i�p���e�G��o���?¥K�s®��!�d�s§j�8¡6�Q�d�G±
§jµo�¢�e��¯��d�ª�D�p�d�s£i�d�s§j�G�X§e���d�G�%�s���GµG��©��ª�p��¡Z�i�d�K�´µG�d����¯9�!�
�F�� �û �eý¿¸�ïZ���f©��i�d��§4�o�ª�p£i�d�s¨+����i³4�d�ª��o����¢ÿ?í £ª§j�o¬/§e�d©��s�G°
�p�d�K�e�G°jµ�¥K�!�d�K§e��©��i�d��§4��d§�ëeí�ûQü-�?ýw¸8ïZ���i¯��D���?�d�ª��d���!�¢�d�G�
�4µ�©X¨+�i�I§e¬6¼4�d�ª�s��� ���+§j�s���d�¢�Q�X�jGG����d§´�d���%©��ª�p��¡Z�e�I�d§�§
¥K�?�d°e�X�d§º¨+�X�o���e£i�d�s£��?¥\¸IïZ���¢���?�+�i�z�o�d§!²-��´�d���!�Â�d�G�i�d�¢G§��ª�
�i³o�s�D�º�e��µ��G�+�i�¦¨+§eµ����§e�·�d���´�4µG©%¨+�i�X§e¬z¼4�d�ª�s�G�i���+§j�s���d�
���i��G����d§;�d� �p���e���ªo���e¥s�s®ª�º�m�+§j¥Q¯o����4�d§j��¶�¨�µo�Â�d�G�¦²j�?¥sµ��%§?¬
�d���s�6¨+§jµG��m�K��¯�� ���d§¦¨+�IG� �d�i�d©��s�����û �G¶�üeüªý¿¸
»`¯%�jG�e�G�d�s�G°Â�d���6�?¥K°e§e�d�Q�d��©��d§Â�d�G��¥s§�£��e¥o¬/���!�dµG�d�ª��§e¬+�d�G��°j�i±
§j©�� �p�p¯´¨+�ª�s�G°º�d� �p���e���ªo���e¥s�s®ª��>¶ é §j�G�ª�G±�¼4�d�i�K�G�i�s�!�¡�F�� �¡k�i�d�
�e¨G¥s�¢�d§��d��oµ�£ª�I�d�����4µ�©X¨+�i�6§e¬Z¼4�d�i�K�G�i�f�+§j�s���d�Â�e�G�ª´¬/§e�I�
ëeí�£ª§j�o¬/§e�d©��s�G°	íz�ª¥K�?µ����ª¯·�p�d�K�e�G°jµG¥r�!�d�s§j�êûQüjüiýw¸�ïZ�����?¥s°j§e±
�d�Q�d��©«©º�e¤j�ª�XµG�p�;§?¬6�d���ºíz�ª¥K�eµG���ª¯��d�iñ����ª©��i�4�¢�?���o�d§-�e£���¶
¡6���s£����jGG�Â¼4�d�ª�s��� �f�+§e�s�4�d���d§¦�d���I©��ª�p�´µ����d�s¥��d���I§?�d�s°j�s���?¥
¨+§jµG��G�?�d�s�ª�¦���!²j�;¨+�ª�i���d�i£ª§!²-�i�d��>¸·�����G���?£i�d�s£ª�j¶`�d���º���?�d�s§
§e¬`�4µ�©X¨+�i��§e¬k�j�o��8²-�i�p�d�s£ª�i�Â�d§º�K�G��µo�Â²-� �p�d�K£i�ª�z²e�?�d�s��8¨+�i±
��¡k�ª�ª�;ë��d§ºüI�?��8ü-���d§müe¸Û÷Â§�¡Z�i²-�i�Z�d�G�f�d�ª£����G�¢��µG�Âo�r��G§e�

Generate BSP Tree

Triangular Surface Mesh

Tetrahedralized Object

Convex decomposition

Tetrahedralize Subpolygons

Fix Crossed Tetrahedra

Glue Subpolygons

`ba cedefhg_£Wj_�Wo;w¤t��Jw8u�v1z z1¥§¦^¨�©Bv-qEq!p q!m)w8x_r�t;l�qJmBu�vFp l;w8x_m)w-mBu�vFo;w8x;u�vFz ©
p ª-v;mBp t;l#vFz ~�tFuhpHmBo;�«�

�D���?�d���?��¯;¨+§eµ���G��§j�;�d���s�����?�d�s§G¸
úf�G§e�d�G�i�X�e���o�d§-�?£ ���+�i�p¬�§e�d©����d�i�p���e�G��o���?¥K�s®��!�d�s§j��¨4¯�µ��p�s�G°
�d���;�i³o�s�D�d�K�G°	íz�i¥r�?µ�����¯��p�d�K�e�G°j¥s�ª�º�s����¨+§jµG����!�p¯ðûQü!ÿ?ý¿¸"�ö�
©º�jo�fµG�p�f§?¬��d�G���p�d�K�?��°j¥s�ª�Z�d§X�e£i£ª�ª¥s�i���?�d�z�¢íz�i¥r�?µ�����¯%�d�i�p���?±
���ªo���e¥s�s®��!�d�K§e�8�?¥K°e§e�d�Q�d��©¬o�G§!¡k�ª²-�i��¶4�Q�6o�Kº�G§e�k�K��G�s£��!�d�z�Q¬h�Q�
¡��?�Â�?¨�¥s�z�d§¦£ª§e�+�z¡6�Q�d�8��§e�G±w£ª§j�4²-� ³º�+§j¥Q¯o����4���o¸
»`¯ò���!�p�d�Q�d�K§e���s��°õ�B�+§j¥Q¯o����4�d§j���s���d§��pµG¨��+§e¥s¯o�G��o���4¶m�d�G�
�G�d§e¨�¥s�ª© §e¬��d�i�p���?����4���e¥s�s®��?�d�s§j�B�s�´�p�s©���¥s�Qñ��ªù�e�´�Q�8�e¥s¥s§!¡6�
¬/§?�Z�s��o�s²o�Koµ��e¥s¥Q¯%�d� �p���e���ªo���e¥s�s®ª�s��°����?£ ���pµG¨��+§e¥s¯o�G��o�d§e���e��
©��i�d°e�K�G°I�d���6�d�ª�pµ�¥Q�d�`�d§e°j�i�d�G�i��¸Û�ö�k���?�k¨+�ª�ª�º�p�G§!¡6�º�d���!�`�d�G�
���e�p¤I§?¬����?�p�d�Q�d�s§j���s�G°Â���+§j¥Q¯o����4�d§j���s�4�d§6�d���`©��s���s©%µG©ù�oµG©¦±
¨+�i�Û§?¬�£ª§e�o²j�i³��pµ�¨G�+§j¥Q¯o����4���6¡6�Q�d��§eµG�`¼��d�ª�s���i�)�+§e�s�4�d�)�s�Ûôz½)±
£ª§e©���¥s�i�d�j¸�÷Â§�¡k�ª²-�i��¶k°j§�§4��?¥s°j§e�d�Q�d�G©��¦¬/§e�º�+§e¥Q¯G°e§j�"���?�d�Q±
�d�s§j�G�K�G°%�i³o�s�D�IûQü�ë?ýw¶o¡6�Q�d�;©º�?��¯�©�§e�d���d���?���e¥s¥s§!¡ð¬�§e�f¼4�d�i�K�G�i�
�+§j�s�����s���p�i�p�d�s§j�	ûsüJ�jý¿¸
ú�£ª§j©�©�§e���e�G�G�d§-�?£ ��¬/§?�I�+§j¥Q¯o���ªo���e¥Ûo�ª£ª§e©��+§j�p�Q�d�s§j���K�f�d§
µ��p���e���o�d�i±öG�iñ�����ù°?�d�r>¶¢§e¬��d�i��©º�jo�	µG��§e¬%§e�p�d�G§j°j§e���?¥
��¥K�?���ª�m�d§"o�s²o�Ko���d�G���+§e¥Q¯G�G��o�d§e�ù�s�4�d§·ñ����Q�d���p�K®i��ù£ª�ª¥s¥s�ª¸
÷Â§�¡k�ª²-�i��¶e�d���ª�p���d�ª£����G�¢��µG�ª�Û£��e�¦¨+��¥s�s©��Q�d��%¨�¯¢�d����¥s§�£��e¥�°j�i±
§j©�� �p�p¯8§e¬��d���¢�+§j¥Q¯o���ªo�d§j��ûQü@�!ýw¶>�i�p�+�ª£ª�K�e¥s¥Q¯�¡6���ª��£ª§e©���¥s�i³
¬/�ª�?�dµG�d�i�Â�!�d�I�p©º�e¥s¥s�i�6�d���e�m�d���z�p�s®ª��§?¬3�d���I£ª�i¥K¥'�p�s®ª�j¸
ïh§����e£�¤o¥s�k�d�G�s�)�G�d§j¨G¥s�ª©��e��¢���?¤-�Z�eG²e�e�����e°e�Z§e¬��d�G�k�p�s©���¥s�s£i±
�Q��¯¢§e¬>°?�d�Ko±w¨��?�p��%©��ª�p�X°j�ª�G�i���?�d�s§j�'¶-¡Z�6�o�d§j�+§j�p��µG�p�s��°I�I»k�Q±
���!�p¯�¼4���e£i�X½)�!�p�d�Q�d�K§e��¾¿»�¼G½`À��p�d�i�¢�d§ºo�ª£ª§j©��+§e�p�%�?���s����µo�
©��ª�p���s���d§�£ª§j�4²-�i³X�d�ª°j�s§e���ª¸`Ã`�?£ �º§?¬��d�G�ª�p���d�i°j�s§j�G���?�d���s��G�Q±
²4�KGµ��?¥s¥s¯��d� �p���e���ªo���e¥s�s®ª����e����d�G�ª��©��i�d°j��8�d§e°j�i�d�G�i�I¡6�Q�d�
�jGG�Q�d�s§j���e¥>�d�i�p���e�G��o���X�d§X�d�ª£ª§j�G�D�p�dµ�£i���d�G�z§e�d�s°e�K���e¥3�+§e¥Q¯G�G�i±
o�d§e��¸	ïZ���s�%�d�ª£����G���4µG�mG���?¥K�%�J®>�ª£i�d�s²-�ª¥Q¯�¡6�s�d����§e�G±w£ª§e�o²j�i³
�+§j¥Q¯o���ªo���o¶��e��¦µG��¥s�s¤-��§e�d�G�i�Z°?�d�Ko±w¨��?�p��%�d�ª£���������µ��i�ª¶-�s�k�G§e�

(2, front)

(2, front)^(1,front)

(2,front)^(1,front)^(5f,front)

(2,behind)^(3,front)^(4,front)^(5b,front)

(2,behind)^(3,front)^(4,front)

(2,behind)^(3,front)

(2,behind)

(b)(a)

2

1

5f

3

4

5b

B

A

4

3
2

1

5f 5b

A
B

`ba cedefhg¯Wj�°�uhw!v1m)p t1l�t;±Sv&¥§¦^¨²m)uhw8w�v1l;x�r!t1lb�JwE³�qJ{1� � t;z |�o;wJx;u�t1l�p x;wJl�m)pH´;r!v1m)p t1l�±µt�u�v�q!p � � z w � t;z |@~�t;l��(�Wo;w � t1z |@~bt1lp q¡q!oFt1�Ml&p l(�hv!�
vFl;x�m)o;w_r!t�uhuhw�q � t;l;x;p l-~¥¶¦�¨3m)uhw8w_p q�q!oFt1�Ml�p l��)�8���

¥s�s©��s�d�ª�¨�¯�°e�d�K��d�ª�p§e¥Kµo�d�s§j�·¨+�ª£��?µ��p�¦�d�G��°e�d�K	£ª§e�G¬/§?�d©��I�d§
�d���f¬\�e£i�ª�f§?¬)�d���z§?�d�s°j�s���?¥3�+§j¥Q¯o����4�d§j�;�s�d�p�i¥s¬ö¸
ïZ�����G�d§e�+§j�p�� �e¥s°j§?�d�s�d�G© �p�i�d²-�ª�8�e���e�B�s���Q�d�K�e¥s�s�d�?�d�s§j�ê¬�§e�
��µ��?¥K�Q�ö¯%©��ª�p�%°j�ª�G�i���?�d�s§j�'¸ � ��£ª���Q�`£i�d���?�d�i�Z�e���!·�£ª�s�ª���k£i§?²�±
�i�d�s��°z�d� �p���e���ªo���e¥s�s®��!�d�K§e�º§e¬+�d�����+§e¥Q¯G�G��o�d§e��¶e�d����°j�i���i���!�d��
�d�i�p���?����4����£ª�e�º¨+�f�ª�e�p�s¥Q¯º�pµ�¨>G�s²4�KG��¦¡6�Q�d��§eµG�`�d���6���ª�ª�¬�§e�
��o°j�� ��K�G�ª¶?�G�d§!²4�ro�s��°f�f°jµ��?���?�4�d�i�k�d���!�3�d�����s����µo�)¨+§jµG��G�?�p¯
�d§j�+§e¥s§j°e¯´�s���o�d�ª�p�i�d²-�ª'¸
ïZ���|�e¥s°e§e�d�Q�d��© G�ª�p£ �d�K¨+�ª«£ª�e�^�p�d�K�e�G°jµ�¥K�!�d�þ��§e�G±w£ª§e�o²j�i³
�+§j¥Q¯o���ªo���;�s��ÿ?í��?�z¡Z�ª¥s¥�¬Û��§�¡Z�i²-�i��¶'�d���s�I���?�+�i���s�z¬/§�£ªµG�p��
§j���Q�d��ëeí��e�G��¥s�s£��?�d�s§j�G�ª¸ � µo�¦�o�d§j�+§j�p�ª"�?¥K°e§e�d�Q�d��© �K�ºo�i±
�p£i�d�s¨+����K��G�i���?�s¥��s��¼o�ª£i�d�s§e�ùÿ4¶`¡6�Q�d���G�d�i¥K�s©��s���!�p¯·�d�ª�pµ�¥Q�d�
µ��p�s�G°·��§j�o±w£ª§j�4²-�i³��+§e¥s¯o°e§j���;�G�d�ª�p�i�4�d�ª��s�B¼o�ª£i�d�s§e�ðëo¸õ���
¼o�i£i�d�s§j�n�o¶3¡Z�mG�s�p£ªµG�p�¢�jG²e�e�����?°j�ª�X�e��	¥s�K©��Q���!�d�K§e����§e¬��d�G�
£ªµo�p�d�ª���I�d�ª£ �G������µ��j¶h�e���ñ����e¥s¥Q¯��G�d§j�+§e�p���p�ª²-�i���?¥k���?�d���z¬�§e�
¬/µo�dµG�d�Â�d�i�p���?�d£���¸

¸Zâº¹¼» �A½´æ·ç8æ3¾)æA¿KÀ

ó �s²-�ª���?�¦�s���GµG���+§j¥Q¯o°j§e���K��ÿ?íù§e�këeíX¶��z»�¼o½��p�d�ª��§?¬>�s�`£��?�
¨+�I£i�d���!�d��'¸kÄÂ�p�s��°¦�d�G�s�6�p�d�i�j¶�£ª§e�4²-�i³;�pµ�¨��+§e¥Q¯G�G��o���¢¡6�s�d�G�s�
�d�����+§j¥Q¯o���ªo�d§j�X�?�d�`�ª�D���e¨G¥s�K�p�G��ºûsü8�jý¿¸Û¼o� �d�3§e¬G�+§j�s���d�3�s�X�ª�e£��
§e¬)�d�G�ª�p�I£ª§e�o²j�i³m�pµ�¨��+§e¥Q¯G�G��o���%�?�d�I�KG�ª���d�Qñ��ª8�e��m�d�i�p���?���i±
o���?¥s�K®i���µ��p�s��°8�e���s��£ �d�ª©��ª�����e¥Ûíz�ª¥K�?µ����ª¯	�e¥s°j§?�d�Q�d��©8¸;ÄÂ�D±
�s��°8�d�G�º»�¼G½ �p�d�i�j¶3�d���i�p�m£i§j�4²-�i³��p�Q�d�ª�¦�!�d�&�F� Á������d§j°j� �d���i�
µ��p�s�G°��?���j��?�G���!�d�K§e�"§?¬6�d���m�d�e©��m�K�G£i�d�ª©��ª�����?¥kíz�ª¥K�?µ����ª¯
�e¥s°e§e�d�Q�d��©8¸`ïZ���z»�¼G½·�p�d�ª�I£��?�´¨+�Â�p����²-�i�d�p�ªm�d�ª£ªµo�d�p�s²-�ª¥Q¯º�d§
�J·�£i�K�i�4�d¥Q¯��+� �p¬/§e�d©õ�d���s�`°j¥sµ��s��°��o�d§�£ª�ª�p�k¡6�Q�d�º§j�G¥s¯%��¡Z§��pµG¨G±
�+§j¥Q¯o���ªo�����?�6�z�d�s©��j¸Ûú��º�jGG�Q�d�s§j���?¥>�D�d�ª���d§¢£i§e�p�d�ª£i�k�d�i�p���?±
���ªo�����d���?�)�?�d�k�G§e�)£i§j�s��£ª�Ko�ª���3¡6�Q�d�X���?£ �X§e�d�G�i�)�s�3���i£ª�ª�p�d�?�p¯
�d§¦£ª§e©���¥s�i�d�Â�d�G�Â�d�i�p���?����4���e¥s�s®��?�d�s§j�'¸
úÂ �§�¡k£ ���?�p�z§?¬Û�d���¢»�¼G½ù�?�p�p�s�D�d����d� �p���e���ªo���e¥s�s®��!�d�K§e�	�?¥s°j§e±
�d�Q�d��©��s���p��§�¡6���s�3�3�s°jµo�d�mÿ4¸���§e�¢£ª¥K�!�d�s�ö¯�¶3£ª§e�4²-�i³�G�ª£i§j©¦±
�+§j�p�Q�d�s§j�"�e����d�i�p���e�G��o���?¥K�s®��!�d�s§j��§e¬f£ª§j�4²-�i³	�pµ�¨G�+§j¥Q¯o����4���
�?�d�Â�p��§�¡6�´�d§%¨+�f°e�d§eµ��+��;�e���X�p�s��°e¥s�I�D�d�ª��¶G�e��m�d�G�Â°j¥sµG�K�G°
�e���ñG³G�s�G°´§e¬k�d���¦�pµG¨��+§j¥Q¯o���ªo���´�?�¢�e��§?�d���i��¸º�ö�	�o���e£i�d�s£ª�j¶
�e¥s¥)¬/§eµG��§e�+�i���?�d�s§j�G��£��e��¨+�%�+�i�p¬�§e�d©�����e�I���?�p�I§?¬��m�p�K�G°j¥s�
�d�ª£ªµo�d�p�s²-���e¥s°j§?�d�Q�d��©8¸

¸Zâöá ¿KÃ§ÄOÃ¶Å�Æ§ÇFÈ�Ä¶Éþ�X�.Ê��.Å�Ã^Ã�Ë
»�¼o½��p�d�ª�ª�¦£��?��¨+�m�d�ª°j�?��o��"�?�%�d���m©�§j�D�X°j�i���i���?¥��p���?�d�K�e¥
�pµ�¨>o�s²o�s�p�s§j� �d�ª£ �G������µ��j¶z���e�p�s¥Q¯��e��e�o�d��B¬�§e�	ÿ?íX¶zë?íä�e��
���s°e���i�¢o�K©��i���p�s§j�G�ª¸�»�¼o½ð�p�d�ª�i�¢£ª�e©��X�d§;�d���X¬�§e�d���s�	£i§j©¦±
��µo���?�d�s§j���e¥o°j�ª§e©��i�p�p¯%�e��¢£ª§j©��GµG�d�i�Û°?���e�G���s£ª���e�`�Â�p§j¥sµo�d�K§e�
¬/§?�I�d���X���e�s���d�i�d���?¥K°e§e�d�Q�d��© ûsü-�?ý¿¸X¹	�X¡6�s¥s¥`�G§e�I°e§´�s���d§m�d�G�
G� ���e�s¥s�`§?¬h»Z¼G½��p�d�i��£ �d���?�d�s§j���G�i�d�j¶4�?��X�d�i£ª§j©�©��ª��X�z°e§�§4
�s���p�d§4Gµ�£ �d�K§e�´�d§¦»Z¼G½��p�d�i�ª��¬��d§j©Á»`�dµG£ª�Iôz�ª¯o¥s§e�¢ûQü-�eý¿¸
ÄÂ�p�s�G°·»�¼G½ò�p�d�ª�ª���d§�ñ���"£ª§e�o²j�i³��pµ�¨��+§e¥Q¯G�G��o����§e¬��+§e¥s¯4±
���ªo�����s�´�	¡k�ª¥s¥z¤4��§�¡6���o�d§j�+�i�p�ö¯�§?¬%»Z¼G½|�p�d�ª�i��ûQü-�o¶zü-�!ýw¸
÷Â§�¡k�ª²-�i��¶�¨+�i£��eµG�p�f»Z¼G½��p�d�ª�i�`�p�G¥K�Q��¬\�?£ª�ª�Z�?��%�s�G�p�i�p�k�+§e�s�4�d�ª¶
�Q���s�¦��§?�����D�p�d�s£i��£ª§e�o²j�i³�G�i£ª§j©��+§e�p�s�d�s§e�"§?¬f�d�G�;�+§e¥s¯o°e§j��¸
Ì�µ����+� �p�Û�e���¼o�KG�i¥o����²-���p��§�¡6�X�d���?�Û�d���k�G�d§j¨G¥s�ª©�§e¬'o�i�d�i�p±
©��s���s��°I�Q¬��I°j�s²-�ª���+§e¥Q¯G°e§j�º£��?��¨+���d�i�p���?����4���e¥s�s®ª��¦¡6�Q�d��§eµG�
¼4�d�i�K�G�i���+§e�K���d�¦�s��ôÂ½Û±w£ª§e©���¥s�i�d��ûsü8�eý¿¸ � �d���i���p���?�d�K�e¥6�pµG¨G±
G�s²4�s�p�s§j���d�ª£ �G������µ��ª�¢�pµ�£����e�¦¤4íÂ±¿�p�d�ª�i�%§e�¦§�£i�p�d�ª�ª���!�d�´�G§e�
µ��p�ªB¨+�ª£ª�eµ��p�·�s�B�+§j¥Q¯o����4����¡6�Q�d��¨+§eµ�����?�d�s�ª�8�d���?�����!²j�
���s°e�·£ªµG�d²e�?�dµo�d�j¶Û�����s°j��o�ª°e�d�i�;§?¬f�pµG¨>G�s²4�s�p�K§e�·§e¬6�d���º�s���Q±
�d�K�e¥3°?�d�K�©º�ª¯;¨+�����ª£ª�i�p�d�?�p¯�¶+�o�d§4Gµ�£i�K�G°m�¦¥r�!�d°j�X�oµG©%¨+�i�6§?¬
�jGG����+§j�s���d�ºû ÿ��jý¿¸;�ö���e�G�Q�d�s§j�'¶Û�e��©��ª���d�s§j�G����s�	�d�G�¦�s�G±
�p�d§4GµG£i�d�s§j�'¶kµG��¥s�s¤-�;§?�d���i�¦�p���?�d�K�?¥��pµG¨>G�s²4�s�p�K§e���d�i£ �G������µ��ª�ª¶
�d���s��o�ª£ª§j©��+§e�p�Q�d�K§e���s����§e��¥s�s©��Q�d���¨4¯�°?�d�r��d�ª�p§j¥sµo�d�K§e��¨+�i±
£��?µ��p�%�d�G�X°?�d�r��s�I£ª§j�o¬/§e�d©��s�G°m�d§º�d���¢¬\�e£i�ª��§e¬��d���%§?�d�s°j�s���?¥
�+§j¥Q¯o���ªo�d§j�;�Q�d�p�ª¥Q¬�¸

¸Zâ�¸ �X�.ÊÁ�.Å!Ã�Ã�ËAÍ�Î¶Å;�#Î¤Ä¶Ï�ÃWÐõç�Ã^Ñ
Î¤ÒÔÓÕÎSË1È¢ÇFÈ�Î¤Ä
ïZ�����+§j¥Q¯o°j§e���?¥4¬/�e£ª�k�?���d���Û�d§�§e�)§?¬���»�¼G½´�p�d�i�ko�K²4�KG�i�h�p���?£ª�
�s���d§��ö¡Z§��pµ�¨G�+§j¥Q¯o����4���o¸·ú��%§e���;�p����²-� �d�p�ª�X�d�G�´»�¼o½ê�p�d�ª�
�s�m�d�G�f¬r�d§j���6§e�6¨+�ª�G�s����pµ�¨G�+§j¥Q¯o����4���o¶4�d���ª�p�f�pµ�¨G�+§j¥Q¯o����4���
�?�d�ºo�s²o�Ko����?°-�?�K�·¨�¯��d�G�%¬\�?£ª�ª�¢§e¬Z�d�G�¦¥s���?¬6�G§4G�ª�ª¸ºïZ�G�ª�p�
¥s���?¬`��§4o�ª�Â©º�ª¯;�p�i�d²-�X�e���d§�§e�d�z§?¬`�pµG¨G±¿�p�d�ª�ª�6¡6���s£���¬/µG�p�d�G�i�
G�s²4�KG���d���6�pµG¨��+§j¥Q¯o���ªo���o¶�¡6�G�s£ ��©º�ª¯¦°e§�§j���d§I����²-�6¥s����²-�ª�
�d���!���p��¥s�Q�f�d�G�ª�p�I�pµ�¨G�+§j¥Q¯o����4���¦�e��´�p§�§j�'¸k�ö�;¬\�?£i��¶+£ª§e�4²-�i³
�pµ�¨G�+§j¥Q¯o����4�����K���d���;�+§j¥Q¯o����4�d§j���?�d�;�d���m�K���d�i�d�p�i£i�d�s§j��§?¬
°e�d§eµ��G�Z§e¬��d���ª�p�f�pµ�¨��+§e¥Q¯G�G��o���4¶o�e��;���D�p�dµ�£i�dµo�d��¦�p����²-�i�d�d�e¥
§e¬h�d����»�¼o½��p�d�ª�z£ª�e�8¨+�IµG�p��m�d§¦�Ko�ª���d�s¬r¯;�d�G�ª©8¸
ïh§�£ª¥K�?�d�Q¬�¯¢�d�����G�d§�£i�ª�p�)§e¬�£ª§j�4²-�i³IG�ª£ª§e©��+§j�p�Q�d�s§j�¢µ��p�s��°Â»�¼G½
�p�d�ª�ª�ª¶�¡k�6�G�d�ª�p�ª���`�s���3�K°eµG�d�fë���ÿ?íB�i³G�e©���¥s�j¸3ïZ���6�+§j¥Q¯o°j§e�
�s���3�s°eµG�d�Iëe�X���?�kñ�²j��¬/�e£ª�ª�ª¸kÃ��e£��m¬/�e£ª�z���e�6�?�;§?�d�K�i�4���!�d�s§j�§¬

�d�����p�KG��¡6�Q�d���d�����!�p�d§!¡ �d�ª�G�d�i�p�ª���d�Ö
×�Ø�\WÙm�?���¡6�Q�d��§eµG�
�d�ª�o�d�ª�p�ª���d�_Ú8Û@Ü
Ýh\�Þ�¸XïZ���ª�p�X¬\�e£i�ª���?�d�%�j�o���§j���%�?���º�d�s©��
�s���d§��¢»Z¼G½	�p�d�ª�j¶-�p��§�¡6�º�K���3�s°eµG�d�zë?¨�¸)�ö�¦�d�����p�d�ª�j¶j�d�ª¥K�?�d�s²-�
�d§X��¬/�e£ª�j¶4�d�G���d�s°j����¥s���!¬3�s�k�d�G��¬r�d§j�������?¥Q¬/�p���?£ª�I�?��¦�d����¥s�i¬��
¥s���?¬��s�f�d�G�I¨+�ª���s��´���?¥s¬��p���?£ª�j¸��ö¬)�d�G�I��¥K�e�G���d���?�Â�%¬\�?£ª�X¥s�s�ª�
�s�´�s���d�i�d�p�ª£i�d�6�¢¥s���?¬ö¶G�d�G�ª�m�d�G�Â¥s���!¬3¬\�?£ª�I�s���p��¥s�Q��¸`÷f�ª��£i�f¬\�?£ª�
ÿm�p�G¥s�s�d�I¬/�e£ª���º�K���d§�FÖ·�e��4�@Úe¸ºú��z�d���X�p�d�i�¦�s���p����²-� �d�p��'¶
��¥K�s�D�º§?¬Â�dµ��G¥s�ª�X�d�ª�o�d�ª�p�ª���d�s��°��d���º¬\�e£i�´�p����²-�i�d�p����e��·�d�G�
G�Q�d�ª£ �d�K§e�¦���e¤-�i�¦�d�ª¥K�?�d�s²-���d§z�d���Z�d§�§?�k¬\�?£ª���K��¤-�ª�o��¸)�ö¬'�Â¬r�d§j���
¬\�?£ª�¢�K�f�ª��£i§jµ����d�i�d�ª´�d���?�f�s�Â�ª©��o��¯�¶4�d���i�8�d����¥s�K�D�Â�s�Â�D�d§e�d�ª
�e���m£ª§j�4²-� ³��pµ�¨��+§e¥Q¯G�G��o�d§e��¸%ïZ���¦£i§j�4²-�i³��pµG¨��+§j¥Q¯o���ªo�d§j�
ß �s�Â�d�ª�G�d�i�p�ª���d���¨4¯;�d���¢�s�4�d� �d�p�ª£i�d�s§j��§e¬��d���¢���e¥Q¬��p���e£i�ª�I�s�
¬��d§e����§e¬3ÿ4¶>üf�e�����Ö�¸¤àê�K�`�d�ª�G�d�ª�p�i�4�d�ªm¨�¯%�d�G�f�s���d�i�d�p�ª£ �d�K§e�
§e¬h�d���I���?¥Q¬/�p���?£ª�ª���s�´¬��d§e�4��§?¬Ûëo¶e�G¶W��ÚI�?��;¨+�i���s��´ÿ4¸

¸Zâ�¸Zâwá �sÅ!Ã�Æ§ÇFÈ�Î¤ÄáÎOÍ��%�.ÊâÓÕÎMÈ�Ä¶Ç�Ë

ôÂ§?�Û�e¥s¥4§e¬��d���k�s©��G¥K�s£ª�Q�)²j�i�p�d�s£ª�ª�)§e¬G�d���`�pµ�¨��+§e¥Q¯G�G��o���6�KG�ª���d�Q±
ñ��ª%¨�¯¢�d�G��»�¼G½��p�d�ª�6£ª§j�4²-�i³%G�i£ª§j©��+§e�p�s�d�s§e�º�e¥s°j§?�d�s�d�G©ò�?�d�
°jµ��?���?�4�d�i����d§8����²-���;£i§e�p�d�ª�p�+§e��G�s�G°8²-�i�p�d�i³��s���d�G�¦§e�d�s°e�s±
���?¥)�+§j¥Q¯o����4�d§j�'¸I÷Â§�¡Z�i²-�i��¶'Gµo�d�s��°��d���%»�¼G½��p�d�ª�X£i�d���!�d�K§e�
�G�d§�£i�ª�p�ª¶�¬/�e£ª�i�Â�d���!�I¥s�K�%�e£i�d§e�p�z�d���¢��¥K�e�G�%§?¬Z�º���!�d�ª���z��§4o�
�?�d���hãW� ���\¸�ïZ�G�K�k�p��¥s�Q�p�d�K�G°��G�d§�£ª�ª�p�k�K���p�d§4oµ�£ª�ª�`���i¡��+§j�s���d�k§e�
�d§Â�d�G�Z¨+§jµG����!�p¯¢§e¬��d�G���+§j¥Q¯o����4�d§j�%¨+�i�K�G°Â�d�i�p���?����4���e¥s�s®ª��'¸
ïZ���i�p�&ä[å�æçãb�����
���%���ª¥s�	�i���pµG�d�X�d���?�¢�m£ª§j©��G¥s�i�d�%�d�i�p���?���i±
o���?¥s�K®ª�?�d�s§j�"�K���+� �p¬/§e�d©��ª'¸·÷f§!¡k�ª²-�i��¶`�Q���s�¦�D�d�s¥s¥�µG��£ª¥s���!���Q¬
�d��� �d���K�X�´�d�ª¥K�?�d�s§e���p���s��¨+�i�ö¡Z�ª�ª��»�¼G½��+§e�s�4�d�X�e��·¼4�d�i�K�G�i�
�+§j�s���d�ª¸

¸Zâ�è ��Ã�Ç1Å!ÆOéSÃ�êÕÅ!ÆOë�È�ì
Æ^Ç1È¢Î¤ÄÔÎOÍsË;íMîMÓÕÎ¤ë¢ï^éOÃ�ê�Å�Æ
� ��£i�%��£ª§e�o²j�i³8�pµG¨��+§j¥Q¯o���ªo�d§j�����e�z¨+�i�ª���ro�ª���d�Qñ���>¶>��¥K�s�D�
§e¬%�+§j�s���d���s���p�KG�@ð��s��£ª�e��¨+�	G�i�d� �d©��K�G��'¸ ïZ�G�ª�p���+§j�s���d�
£��?�B¨+���d�i�p���?����4���e¥s�s®ª��'¶Â¬/§e�d©��s�G°"��©��ª�p�ù§?¬X�d�G��£ª§e�4²-�i³
�pµ�¨G�+§j¥Q¯o����4�d§j�'¸Âú����?��o§j©��s®ª��8�+§e�K���Â�K�G�p�i�p�d�s§j��íz�ª¥K�?µ����ª¯
�d�i�p���?����4���e¥s�s®��?�d�s§j���e¥s°j§?�d�s�d�G©«�K�IµG�p��'¸%÷Â§�¡Z�i²-�i��¶��s���s�I�G§e�
°jµ��?���?�4�d�i��¢�d���?�3�d�G�K�)�p� �)§e¬+�+§e�s�4�d�h£ª§j©��G¥K� �d�ª¥Q¯¢G�ª�p£i�d�s¨+�k�d�G�
¨+§jµG��G�?�p¯;§e¬)�d���I£i§j�4²-�i³;�pµ�¨G�+§j¥Q¯o����4�d§j��¸kïZ���s�f£ª§j©�©�§e��¥Q¯
§�£ª£ªµo�d�Z¡6���ª�;����§4G�f§e¬3�%»�¼o½·�p�d�i�Â�s���d�i�d�p�ª£i�d�Z�d�G�Â��¥K�?���Â§?¬
�%£����s¥K´��§4o�z¨�µo��G§��ª�6�G§e���s�4�d� �d�p�ª£i�6�d���z£����s¥K´�G§4G�z�Q�d�p�ª¥Q¬�¸
ú|ÿ?íþ� ³��?©���¥s�%§?¬Z�pµG¨��+§j¥Q¯o���ªo�����d���?�I�?�d�¦�G§e�I£ª§e©���¥s�i�d�ª¥Q¯
G�i�p£i�d�s¨+��%�s�`�p�G§�¡6�¦�s�K�3�s°jµG�d�[�o¸ÛïZ���6�+§j¥Q¯o°j§e�¦�s�K�3�s°jµo�d�¡�j�
�e���§j�����+§j�p�p�s¨G¥K�Â£ª§e�p�d�ª�p�+§e��o�K�G°%»Z¼G½��p�d�ª�j¶b�3�s°jµo�d�ñ�e¨�¶4£��?�
¨+���p��¥s�Q�m�s�4�d§���¡k§�£ª§j�4²-� ³"�pµG¨��+§e¥s¯o�G��o���4¶ ß �?���à�¸Búf¥Q±
�d��§eµ�°e�8�d���¢��¥K�e�G�¢�d���?���d���¢£ �G�K¥K���§4o�¢ëm¥s�s�ª�z�s���s���d�i�d�p�ª£i�d�
�d���¢���!�d�ª���Â�G§4G�j¶)üe¶+�d����¬\�?£ª�%�Q�d�p�ª¥Q¬kG§��ª�f��§e�Â�s�4�d� �d�p�ª£i�Â�d�G�
���!�d�ª���%�G§4G�j¸�ïZ�G�K�X©����e�G�¢�d���?�X¬/§e�X�d���º£ª§e�o²j�i³��pµG¨��+§j¥Q¯4±
���ªo���o¶o�d��� �d�I�K�6�G§¦²-�i�p�d�i³;�!�f�d�G�z�s�4�d� �d�p�ª£i�d�s§j��§?¬)¨+§jµG��G�s�G°
��¥K�?���ª�zü��?��mëo¶��e��m�G�ª��£ª�f�d���Â�pµG¨��+§e¥s¯o�G��o���XG§%�G§e�6���!²j�
��²-�i�p�d�i³8�?�Â�ª²-�i�p¯´£ª§e�d�G�i�z§?¬��d�G�X�pµG¨��+§e¥s¯o�G��o���4¸ñ�3�s°eµG�d�«�j£
�s¥s¥KµG�D�p���?�d�ª�¢��§�¡þ�;�p�d�K�e�G°jµ�¥K�!�d�K§e�·§e¬��d�G�¦�pµ�¨G�+§j¥Q¯o����4���;¡6�s¥K¥
��§?�6�d�ª£ª§!²-�i���d�G�z¡6��§j¥s�I�+§e¥s¯o°e§j��¸
ÄÂ�G£ª§e�p�d�i£i�d��'¶)�d�G�s�X�o�d§j¨�¥s�ª©�¡6�s¥s¥�¥s���j��d§�©��s�p�p�s��°8�d�i�p���?���i±
o���8�s���d�G�º�d� �p���e���ªo���e¥s�s®��!�d�K§e��¸�ïh§8�d�ª£i§?²j�i�%�d�G�ª�p�º©��K�p�p�s�G°
ðJò /�265F>H=Õó;78ó�%�'!ô;7_ób+->H/@2¤G CF>H/Fõ_%�:178*�2)G Cs+-/�2)51%[L�+-<1/10;78'BC�+8D§7

=6<FL1ó�+-G CF51%�01')+-/s>H=M*�Gµ78=6=6> ö1%�0�78=M>H/1=6>H01%�2)51%�=)<1L1ó�+-G CF5F%�0F'6+-/

(b)

(a)

(c)

1

3

4

5

2

A

B

1

2

4

5

3

B
A

`ba cedefhg(÷�jK�hv!�#q!oFt1�§q«v � u�t1�;z w8� � t;z |@~�t;lA�So;w8uhw�m)o;w�r�t;lb�JwE³qJ{1� � t;z |�o;wJx;u�vKv�uhw#lFt�m�r!t;� � z w8m)w8z |�x;w�q!r8uhp �bw8x&�!| � t;p l�m�qJ�(�Wo;wr!t�uhuhw�q � t;l;x;p l-~(¥§¦�¨3m)uhw8w�p q�q!oFt1�Sl&p l&�)�8���#�Wo;w � t;z |@~�t;l��MpHmBopHm�q�qJ{1� � t;z |�o;w8x;u�vsm)uhp vFl-~�{1z v1m)wJx�p q�q!oFt1�Sl�p l��)r6���

�d�i�p���?����4���o¶h��F� Á
�¦�e¥s°j§?�d�Q�d��©����?�I¨+�ª�ª��G�ª²4�s�p����d§;©��i�d°e�
�pµ�¨G�+§j¥Q¯o����4���¢�d§e°j�i�d�G�i��¸

¸Zâ�èZâwá Ê_ËFÃ§íOêMÎ�Ñ�ÎÕêMÃ ã ÒÔÓ¤ë�Ã¶Ò�Ã§Ä¶Ç�Æ§ÇFÈ�Î¤Ä
ïZ�����d�i�p���e�G��o���?¥s�K®ª�?�d�s§j���?¥s°j§e�d�Q�d�G© §j�+�i���!�d�ª�·¨�¯ê�p����²-�i�d�D±
�s��°B�d����»Z¼G½^�p�d�ª�j¸ úä¥K�s�D��§?¬8�dµ��G¥K�i�	�d�ª�G�d�i�p�ª���d�K�G°B�d�G�
��§4o���p����²-� �d�p��ù�e��ù�d�G��G�Q�d�ª£i�d�s§j�ù���?¤-�ª�ù±%¬�§e�8� ³��?©���¥s�j¶
¾�\�Ø�Þ�Û@ø+¶Kû ¬r�d§j����¶ ¨+�ª���s��oý�À6±k�K�f���ª£i�ª�p�d�?�p¯8�d§º�KG�i�4�d�Q¬r¯´�d����£ª§e�G±
²-�i³	�pµ�¨G�+§j¥Q¯o����4���o¸ � �G£ª�´����§4o�;���e�¦¨+�i�ª��²o�s�p�Q�d��>¶k�Q�¦�s�
�d�ª©�§!²-��º¬��d§e©ì�d�G�I¥s�K�D��¸ZïZ���s�����pµ��ªG§�£ª§4o�I�K©��G¥s�ª©��ª�����?�d�s§j�
�s��G�ª�p£i�d�s¨+��;�K�8úf¥s°j§?�d�s�d�G©^üj¸

¸Zâ�ù ¿�ë�íSÈ�Ä¶ÉçË;íMîMÓÕÎ¤ë¢ï^éOÃ�êÕÅ!Æ

¹ù�G�ª���ö¡Z§��pµ�¨G�+§j¥Q¯o����4�����!�d�8©��i�d°j�ª�µG�p�s��°��d�G�´°e¥KµG���e¥Q±
°j§?�d�Q�d��©8¶o�d���i¯´�?�d�I�p�ª���?���!�d��8�i³G�e£i�d¥Q¯;¨�¯´�¦�p�s�G°j¥s���p��¥s�Q�p�d�K�G°
��¥K�?���j¶'¡6���s£��	�s�z�d���¢�d§�§e�¢��§4o�¦§e¬`�d���%£iµG�p�d�ª���I�+§e�p�s�d�s§e���s�
�d���z»�¼G½·�p�d�ª�j¸�ú����pµ�£���¶4�d���I�?¥s°j§e�d�Q�d�G©��d�ª£ªµG�d�p�s²-�i¥s¯m©��i�d°e�ª�
��¡k§	°?�d§!¡6�s�G°·�pµ�¨��+§e¥Q¯G�G��o�����?�m���d�K©��´µ����d�s¥f�?¥s¥f�pµG¨��+§j¥Q¯4±
���ªo�����s���d���´�p�d�ª�´����²-�8¨+�ª�i��©��i�d°e��'¸�ïh�i�p���e�G��o�������ª�ª
�d§º¨+��°j�ª�G�i���?�d��8�d���?��ñ�¥s¥h�d�����p���e£ª�¢�s�G±w¨+�i��¡k�ª�ª�8�d�G�¢©�� �d°e±
�s��°��pµG¨��+§j¥Q¯o���ªo���o¸�ïZ�G�s�f�s�Â�G§e�Â�¦���i¡��G�d§e¨�¥s�ª©¬+»`�i�d���e��
�8�?�d�p���e¥s¥4����²-�`G�ª©�§e���D�p���!�d��z�d���?�3�s�h�s�)�+§j�p�p�s¨�¥s�`�d§6�d�i�p���?���i±
o���?¥s�K®i�6�d�G�Z�d�ª°j�s§e�¦¨+�i��¡k�ª�ª�%�ö¡Z§I£ª§e�4²-�i³¢�+§j¥Q¯o����4���f¡6�Q�d��§eµG�
�d���z�j�o�Q�d�K§e�8§e¬`¼��d�ª�s���i�6�+§e�s�4�d��û ÿ4üiýw¸
� ���z¡Z�ª¯;�d§¦°e�ª��� ���?�d�I�d���Â�d� �p���e���ªo���¦�s�G±w¨+�i�ö¡Z�ª�ª�m�d���I�pµG¨G±
�+§j¥Q¯o���ªo���´�s���d§8©��i�d°j�¦�d�G���+§j�s���d�X�s��¨+§?�d�	�d���¦¬r�d§j���X�e��
¨+�ª�G�K��	�pµ�¨G�p�i�d�¢�e����+�i�p¬/§?�d© �8íÂ�ª¥K�eµ����ª¯��d�i�p���?����4���e¥s�s®��?±
�d�s§j��§j���d���s�¦©��i�d°e����p� ��§e¬Â�+§j�s���d�ª¸�úì�p�s©���¥s�;£ �d§j�p���d�ª�D�
�d���i�´£��?�8¨+�Iµ��p��m�d§%�d��ÅD�i£i�f�d� �p���e���ªo���X�d���?��G§%��§e��©��i�d°e�
�d���f�d�i�p���e�G��o���?¥K�s®��!�d�s§j��¸kïZ���s��©��i�d°j�s�G°%�p�i��§e¬)�d� �p���e���ªo���X�s�

ú ×�Ø�Ê�Ë?Õ�Ó�Ú3Ðüûmï�����²-�i�d�p���e��;�d�i�p���?����4���e¥s�s®ª�I£ª§j�4²-� ³;�pµG¨��+§e¥s¯o�G��o����¡6�s�d�G�s���¦»�¼o½��p�d�ª�
5-ý ¨��p� �d�i�p���?����4���e¥s�s®ª�-¾�Ú8þ�ÿ ÙE×�Û@Û-¶bÙ6×�����Û-×Fþ���� ��Ý)þJÙdÀ
7Fý ¬��d§e�4�dôf§4G��� Ú8þ�ÿ Ù6×FÛ@Û
	��� ø��
� ý ¨+�ª���s��GôÂ§4o��� Ú-þEÿ ÙE×�Û@Û�������� ø��
� ý Õ��#Ö
×�Ø�\WÙ���Ø�Þ�Û��ÔÛ���ÿeÙ ��Ó�ÚhÇoÖ
! ý ÿ�Ø�Ýh\WÙ�þ"��°j� � é §j�4²-�i³G½3§j�s���d��¾�Ú-þEÿ ÙE×�Û@Û-¶bÙ6×�����Û-×Fþ���� ��Ý)þJÙdÀ
ý Ë?Ç4Ó�Ò�ËeÖ·íz�i¥r�?µ�����¯'¾Hÿ�Ø�Ýh\WÙ�þ!À
$ ý ÇoÖ3Ì�Õ��
% ý ��µG�p��¾BÖ
×�Ø�\WÙ ��Ø�Þ�Û'&!Ö
×�Ø�\WÙpÀ�§e��ÙE×
����Û-×1þ(��� ��Ý)þJÙ
) ý Ö
×�Ø�\WÙ Ù�Û8ÙE×
�bÜ�Û-Þ;×�����Ý+*,�;ÙEÝhØ�\-�Â¨��p� �d� �p���e���ªo���e¥s�s®ª�-¾BÖ
×�Ø�\�Ù ��Ø�Þ�Û�¶
ÙE×
����Û-×Fþ(�.� ��Ý)þ8ÙpÀ
50/Fý �+§j��ÙE×
����Û-×Fþ(�.� �¢Ý6þJÙ
5�5-ý ��µG�p��¾�ÚJÛ�ÜeÝB\�Þ���Ø�Þ�Û'&!Ö
×�Ø�\WÙdÀZ§j��ÙE×
����Û@×Fþ(��� ��Ý)þ8Ù
5�7Fý Ú8Û@Ü
Ýh\�Þ ÙEÛ8ÙE×
�eÜ
Û@Þ;×
����Ý+*,�;ÙEÝhØ�\1�Â¨G�p� �d�i�p���?����4���e¥s�s®ª�-¾�Ú8Û@Ü
Ýh\�Þ���Ø�Þ�Û-¶
ÙE×
����Û-×1þ(��� ��Ý)þJÙdÀ
5 � ý �+§j��ÙE×
����Û-×Fþ(�.� �¢Ý6þJÙ
5 � ý Ë!ÇoÓªÒhË?Ö�°j¥sµ��-¾BÖ
×�Ø�\�Ù Ù�Û8Ù6×��bÜ�Û-Þ;×
�.�¢Ý�*���Ù6ÝhØ�\)¶�Ú8Û@Ü
Ýh\�Þ ÙEÛ8ÙE×
�eÜ
Û@Þ;×
����Ý+*,�;ÙEÝhØ�\hÀ

a

c

d

e

f g

above

below

b

`ba cedefhg32�j54Kw8uµ~
p l-~(mB�^t�r!t;lb�Jw6³sqJ{1� � t;z |�o;w8x;u�v;�

�d���i���jGG��%�d§z�d�G���p�i�k§?¬��e¥Q�d���j4¯�°j�i���i���!�d��%�d�i�p���e�G��o���Â¬�§e�
�d���f¬��d§j���f�e��;¨+�ª�G�s��;�pµG¨��+§e¥s¯o�G��o���4¸
��§?�����d�i�p���e�G��o���8�d§����e�p�X�d���m£i�d§j�p�%�d�i�D��¶k�Q�¦©Xµ��D�X�d�?�d�s�D¬�¯
�d�G�d�i�¦£i�d�Q�d�i�d�K�o¸&�3�Q�d�D�d¥Q¯�¶3�?¥K¥`�Q�d�I²-�i�p�d�s£ª�ª��©%µG�D�I��§?��¥s�K��£i§j©¦±
��¥s�i�d�i¥s¯�§e�%�?����e¨+§!²-�`§e�)§e�%�?���¨+�ª¥s§�¡·§e¬G�d���>ÅD§j�s�G�K�G°Â�G¥r�?���j¸
¼o�i£ª§j��G¥Q¯�¶+�!�Â¥s���?�D�I§j�G�¢�ªG°j�¢§e¬Û�d�G���d� �p���e���ªo���¦©%µG�D��£i�d§j�p�
�d���ZÅ�§j�s���s�G°���¥K�e�G�j¸76h�e�D�d¥Q¯�¶���§j�G�I§e¬3�d�G�I��G°e�ª��§e¬3�d�G�z�d�i�p���?±
���ªo���Â©º�ª¯¢�s�4�d� �d�p�ª£i�k�e�¦�i³o�s�D�d�s��°z¬/�e£ª�6§j�X�d���3ÅD§e�s���s��°I�G¥r�?���j¸
ú�ÿ!íÁ� ³��?©���¥s���s�%o�ª�p£i�d�s¨+����s���3�s°jµo�d����¸������d���s�X©�� �d°j�j¶
�d���)Å�§j�s���s��°X��¥K�e�G�f�s���d�ª�G�d�ª�p�i�4�d�ªº¨�¯¢�d���f��?�p�����¥s�s���f�e��¦�s�
°j�i���i���!�d��¢¬r�d§j©ê�d���`��G°e�98-Ö�¸)Äf�p�s��°f�d�G�k£i�d§e�p�)�d�ª�D��¶j�p�d�K�e�G°j¥s�
: 8!Þ�Û´�s��¥K�i°-�e¥\¶6�?���Q�d��²-�i�p�d�s£ª�ª�¦¥s�s�8¨+§?�d���?¨+§?²j�8�e���¨+�i¥K§�¡
�d���6ÅD§e�s���s��°;��¥K�e�G�j¶��e����G°e�%£i�d§e�p�p�ª�z�d����ÅD§j�s�G�K�G°;�G¥K�e���%�e��
��§e���º§e¬��d�G����G°e�ª�%�s���d�i�d�p�ª£ �;88Ö�¸ : �eÖ
Ú¦�s�X�s¥s¥s�ª°-�?¥�¨+�ª£��?µ��p�
�e¥s¥>�Q�d���+§j�s���d���e¨+§!²-���d����ÅD§j�s�G�K�G°¦��¥K�?���j¶G�e�� : �bÚ0<%�s���s¥s¥s�ª°-�?¥
¨+�ª£��?µ��p�6�Q�����e�Û��o°j�ª�Û�d���!��£i�d§j�p����G°e�ª��§j�%�d�G�hÅD§e�K�G�s��°���¥K�e�G�
8-Ö�¸
ÄÂ�o¬/§?�p�dµ����!�d�ª¥Q¯�¶-�d���f�e¨+§!²-�f�e¥s°e§e�d�Q�d��©�o§��ª�Z�G§e�k¡k§e�d¤¦¬�§e�6�?¥K¥

(b)

(c)

(a)

`ba cedefhg>=Wj@?§vFl;xFt;��p ª�w8xs¨�t;p l�mSkHl�q!wJu)mBp t;l�AÕvFx;x;p l-~�v � t;p l�m¶t;{;m�©q!p x;w�m)o;w�mBuhp v1l-~
{1z v1m)p t1l.�So;w8l�m)o;w � t1p l�m^p qÕp l�q!p x;w�m)o;wÕr8p uhr-{1��r8p u�©
r8z w�qOt;±;t1l;w¤t�uW�_tFuhw¤wE³;p qJmBp l-~«m)uhp vFl-~
z w�qMp q^q!oFt1�Slñp l.�hvJ�����)�8�ÕvFl;x
�)r6��x;w8�_t1l�qJm)u�v1m)w�mB�^tsvFzHm)w8uhlFv1m)pµ�Jw�q�t;z {;m)p t1l�qñ±µt�u�mBuhp v1l-~
{1z v1m)p t1l��

£��?�p�ª�ª¶Z�p§e©��i�d�s©��ª�X¬/�e�s¥s�K�G°��d§�£ª§j©��G¥s�i�d�ª¥Q¯·©��ª�p�·�d���º�d�ª°e�K§e�
�s�G±w¨+�i�ö¡Z�ª�ª���d���¢�pµ�¨G�+§j¥Q¯o����4���o¸¢ïh§;�p§j¥s²-�¢�d���s�z�G�d§e¨�¥s�ª©�¡k�
�G�d§e�+§j�p�f�z°j¥sµ����?¥K°e§e�d�Q�d��©ò�s���p�G�s�d�ª¦¨4¯¢�d����»k§�¡�¯�� �p±w¹��?�d�p§e�
���e��G§e©��K�p�ª��+§e�K���I�s�G�p�i�p�d�s§j��¾�Ìf½��DÀf�?¥K°e§e�d�Q�d��©äû ÿeÿo¶hÿeëeý¿¸X�ö�
¡Z§?�d¤4�%¨�¯´Å�§j�s���s��°��p�d�K�e�G°j¥s�ª�%¬r�d§j©S�d���º¨+§jµG����!�p¯�¾\§?�CB�Áb���/À
§e¬��d�G�¦¬��d§e�4�X�pµ�¨G�p�i��¶ � �E���
�5B�Áb��� ¶3�d§´�d�G���+§j�s���d�X§?¬��d�����4µ�¥s¥
¨+�ª¥s§�¡ �d���?��¬/�e£ª�I�d��§e�p�z�p�d�K�e��°e¥s�ª�ª¶ED��J�µ��FGB;Áe���bãb�����
���d¸
ïh�i�p���?����4���e¥s�s®��?�d�s§e�8§e¬'�d���6¬��d§e�4���e��º¨+�ª�G�K��¦�pµ�¨G�+§j¥Q¯o����4���
�?�d�º�+�i�p¬�§e�d©�����K��G�ª�+�i��G�i�4�d¥Q¯�§e¬6�ª�e£���§e�d�G�i��¸�»k�i£��eµG�p�m§?¬
�d���s�ª¶G�d���i�d�I�s����§¦°eµ��?���?���d�ª�I�d���?�f�%�+§e�s�4���s��§j�G�I�p�i��¡Z§jµG¥K
��§?�Û²4�K§e¥K�?�d���d���ZíÂ�ª¥K�eµ����ª¯X�i©��G��¯z�p����� �d�Z£i�d�Q�d�i�d�K�z§e¬>���d�i�p���?±
���ªo���¦�s���d����§e�d�G�i�Â�p� ��¸Â÷f�ª��£ª�I�d�G���d�i°j�s§j���s�G±w¨+�i�ö¡Z�ª�ª�8�d�G�
��¡k§´�p�i�d�z¡k§jµG¥r���§?��¨+�¦°jµ��?���e���d�ª�ª��d§´¨+�¢�d�i�p���e�G��o���?¥s�K®i��
¡6�Q�d� íÂ�ª¥K�eµ����ª¯ù�d�i�p���e�G��o���4¸ÁïZ���i�d�i¬�§e�d������§e�G±wíz�ª¥K�eµG���ª¯
�d�i�p���?����4���e¥s�s®��?�d�s§j���e¥s°j§?�d�s�d�G©ä�s�����ª£ª�i�p�d�?�p¯�¸�úÁ²-� �d�p�K§e�"§?¬
�d���f�p���jG�Q�d�s§j���e¥§ÌÂ½Û�Z�?¥K°e§e�d�Q�d��©ì���e��¨+�ª�ª�´©�§4G�Qñ���º�p§%�d���?�
�Q�z�+�i�p¬�§e�d©����d���¢°j¥sµ��s��°��d�i�p���?����4���e¥s�s®��?�d�s§e��¡6�Q�d��§eµG�z£����i£ ¤�±

b

d
(a) (b)

above
belowbelow

(c)

below

a

c
above above

`ba cedefhg3HWjJIÕw8uhw�m)�^t�m)uhp vFl-~�{1z v1m)w8x.qJ{1� � t1z |�o;w8x;u�v«v�uBw_mht��bw.��w8uµ~
w8xsvFz t;l-~�vs��w8uµ~
p l-~ � z vFl;w��6m)o;wñxFv@q!o;wJx�oFt�uhp ª-t;l�mhvFz
z p l;w6���

�s��°%�d�G�zíz�ª¥K�?µ����ª¯;�s�G±w�p���G�i�d�z£i�d�Q�d�i�d�K�o¸

����Ìf½���¶!�6�+§j�s���3©º�ª¯z¨+�`�jGG��z�d§f���d� �p���e���ªo���e¥s�s®��!�d�K§e�X�d���?�
¥s�s�ª�Û§jµG�d�p�Ko�k�d���k�d� �p���e���ªo���f¨GµG�Û�s�G¬r�d�s��°j�i��µG�+§j���d���Z£i�s�d£iµ�©¦±
£ª�Q�d£ª¥s�ª��§e¬Z�p§j©��X�d� �p���e���ªo���o¸ é §j�4²-�ª���d�s§j���e¥s¥Q¯�¶��d�G�X�d�i�p���?���i±
o���z�d���?���!�d�f�s�o¬��d�s��°e��º�?�d�zo�ª¥s�i�d��º�e��%�d�i±w©��ª�p���ª��e��%�d�G�
�d�ª©º�?�K�G�s��°%�ªG°j�i�Z¬/§e�6¡6�G�K£��;�d�G�Â�+§e�K���6�s��¨+�ª�G�K��m©º�?¤-�Â�G�i¡
�d�i�p���?����4���o¸�¹ù�Q�d�8�d�������i¡��+§j�s���Â�s�G�p�i�p�d�s§j���e¥s°j§?�d�s�d�G©8¶+�s�G±
¬��d�s�G°j��;�d� �p���e���ªo���¦�!�d�I��§e�fo�ª¥s�i�d��'¸

ú ÿ?í�� ³��?©���¥s�m§e¬Â�d�G�s�%��¯o�+�m§e¬z�+§e�s�4�¦�K�G�p�i�p�d�s§j�"�K���p�G§�¡6�
�s���3�s°eµG�d��4¸�ï��d�K�e�G°j¥s�ª��¡6��§e�p�´£ª�Q�d£ªµG©�£ª�Q�d£ª¥s�ª�¦£ª§e�����e�s���d�G�
�+§j�s�����?�d�6o�ª¥s�i�d��¦�?����d�i±w©��ª�p����I¡6�Q�d�%�d���k���i¡��+§e�K����¾h�3�s°e±
µG�d���j�jÀ ¸ � ��£ª�6�d���s�`�K�`£ª§j©��G¥s�i�d��'¶j�d������G°e�ª�k§?¬��d�G�f�4µ�¥s¥��?�d�
µ��p�ª��d§�£i�d���!�d�´��� ¡��p�d�r�?��°e¥K�i��¾\�d�e©��;�e���Q¬Â�d�G�;�+§e�K���¦¡Z�e�
¥Q¯o�K�G°	£ª§e©���¥s�i�d�ª¥Q¯�§eµG�d�p�KG�´�d�G�´�p�d�K�e�G°jµ�¥K�!�d�K§e�ù�e���£i�s�d£iµ�©¦±
£ª�Q�d£ª¥s�ª��Ài¾h�3�s°jµo�d���?¨+À ¸m¹ù�Q�d���d�G��°j¥sµ��m�e¥s°e§e�d�Q�d��©8¶Û�?�X�p�G§�¡6�
�s�(�3�s°jµo�d���e£j¶G��§%�d� �p���e���ªo���¦�!�d��G�ª¥s�i�d��;�e��m�p�d�K�e�G°j¥s�ª�f�?�d�
£i�d���!�d���¬r�d§j©ä��o°j�ª��§e�"�d�G�´�4µ�¥s¥��e����d�G�8�i³4�d�i�d�s§e�º�+§e�K����¸
ïZ����°j¥sµG�z�e¥s°e§e�d�Q�d��©|§j�+�i���!�d�ª�Z�s�m���p�s©��s¥K�?�Z¬/�e�p�G�K§e��¶o¨�µo�`�d�G�
�d�i�p���?����4���m�d���!���?�d�%�K�o¬��d�s��°e��	�!�d�¦��§?��G�i¥K� �d��	�?����d�i�p���?±
���ªo���¢�?�d�I£i�d���!�d��m¬r�d§j©��?��¯�¬\�e£i�ª��¬/§e��¡6�G�s£ �m�d���Â�+§e�s�4�6¥s�s�ª�
¨+�ª�G�K��'¸

ïZ���;D��J�µ��FKB;Áe����ãb�����
���Â�?�d�Â�j�o��º�K��G�s²4�KGµ��?¥s¥s¯%�d§X�d��� � �E���
�
B�Áb����µ��p�s��°m�d���s�z�d�ª£����G�¢��µG�j¸¦ú���� ³��?©���¥s�¢�K���p�G§!¡6���s�n�3�s°e±
µG�d�K�4¸ºïZ�G�����e¥Q¬��p���e£i�º�e¨+§!²-�%�d�G�¦¥s�K�G���s�¢�s��G�s£��?�d�ª��p�s©���¥Q¯
�e�L��ÚJØ
��Û�¶�¨+�ª¥s§!¡��e�ñÚJÛ���Ø�M�¸ÂïZ���¢¨+§jµ�����!�p¯8��o°j�ª�f�K�N��ÚJØ
��Û
�?�d�º�KG�i�4�d�Qñ�����e��	�d�����+§e�K���d�¢§j���d�G�m¨+§eµ�����?�p¯�§?¬�ÚJÛ���Ø�M
�?�d�m�?¥K�p§��KG�i�4�d�Qñ���'¶Û�?�¦o�ª�p£i�d�s¨+��	�s���3�s°jµo�d��?�o¸���§?�%�ª�e£��
§e¬`�d���X¨+§jµ�����!�p¯���G°e�ª�I�s�O��Ú!Ø���Û-¶��º�d�i�D�z�p�d�K�e��°e¥s�¦¬/§e���ª�e£��
¨+§jµG��G�?�p¯m�+§j�s���6�s�Ú8Û���Ø
M¢¸

��§?�f�d�G�z�p�d�r�?��°e¥K���d§�¨+�¢�e¥s¥s§�¡Z��>¶>�s�f©%µG�D����§e���s���d�i�d�p�ª£i�z�e��¯
��o°j�ª�Z§e�m�d�G�`Å�§j�s���s��°X��¥K�e�G�Â§?���s�4�d� �d�p�ª£i�6�?�4¯¦§e¬h�d�G�f¨+§eµ���o±
�?�p¯���o°j�ª�º�s��ÚJÛ���Ø�M�¸B¼4§G¶ : �bÚP8´�s�º�e¥s¥s§�¡Z��>¶6¨�µo� : ��ÚJÞ	�s�
��§?��¨+�ª£��eµG�p��§j����§?�Â©�§?�d�I§e¬Û�Q�d�f�ªG°j�i�f�s���d�i�d�p�ª£i���d���I¨+�i¥K§�¡
¨+§jµG��G�?�p¯�¸ � �G£ª�Â��¥s�ª°-�?¥'�p�d�K�?��°j¥s�z�s�Z£ �d���?�d��>¶o�s�Z�K�Z�j�o����d§
�d���3��ÚJØ
��Ûº�p�i�¦�?��	¬�µG�p�d��� �%��o°j�ª�X©º�ª¯	�!�p�d�ª©��G���d§�£i�d�ª�?�d�
�p�d�K�e�G°j¥s�ª�¦¡6�Q�d�·�d���;�j�o��·�+§j�s�����?�%�s���3�s°eµG�d���?¨�¸	¹ù���ª�
�e¥s¥+�d�����+§j�s���d���!�d�z�jGG��¦�d§��d���L�bÚ!Ø���Ûf�pµ�¨��+§e¥Q¯G�G��o�d§e��¶-�d�G�
�d�ª°e�K§e�8¨+�i�ö¡Z�ª�ª�Q��ÚJØ
��ÛI�e���Ú8Û���Ø
M �s�Z�p�d�K�e�G°jµG¥r�!�d��8�?�6G�ª¥s�s�G±
���!�d��8�e���d�G�I��!�d¤-�ª���ª´�?�d�ª�¦�K���3�s°jµG�d�#�!£j¸

¸Zâ�R S È¢Ð^È�ÄOÉê�sÅ!ÎSË�ËFÃ�êõ�ñÃWÇ1Å!ÆSéOÃ�êÕÅ!Æ » êSÉMÃ�Ë

¹ù�G�K¥s���d���&�F� Á
�;�?¥s°j§e�d�Q�d�G© £ª§e©���¥s�i�d�ª¥Q¯�ñ�¥s¥s�X�d���º�p���e£ª�º¨+�i±
��¡k�ª�ª�8�d�G���'D���T��X�?��UD��J�µ��FB�pµ�¨G�+§j¥Q¯o����4���o¶��s���s�Â�G§e��°jµ��?�p±
�e���d�ª�ª"�d���!�m�d�G��°j¥sµ��s�G°·�G�d§�£ª�ª�p�m£i�d���!�d�ª�;�d� �p���e���ªo�����d���?�
����²-����o°j�ª�6�d���!�z�!�d�%�?¥s¥3£ª§j�s�G£ª�KG�ª�����d§m�ª�e£���§e�d��� ��¶+¥s���jo�K�G°
�d§I��o°j�ª���d���?�`©º�ª¯¢�K���d�i�d�p�i£i��¸�ïZ���ª�p���s���d�i�d�p�ª£i�d�s§j�G�k£��?���+§j�D±
�p�s¨�¥Q¯�§�£ª£ªµo��§j���e��¯�§e¬Z�d�G�%�G¥r�?���ª��o�iñ��G���¨�¯��d���X¬/�e£ª�i�¢§?¬
�d���>D!�J�µ�
Fð�oµG¥s¥¿¸

`ba cedefhg>VWj��Wo;w�v1x;x;p m)p t1l.t;±�v � t;p l�mMmhtsm)o;w�w8x-~
w[t�±WvsmBw-m)u�vFo;w�©
x;u�t;l_t;l�mBo;w�z w-±¢m§z w!vFx�q�m�t«m)o;w�rJuBw�v;mBp t;l_t�±
m)�^t.l;w@�}mBw-m)u�vFo;w8x;u�v1�
q!oFt1�Sl�q�w � v�u�v;mBw8x;��t1l�m)o;w_uhp ~eo�m6�

ïZ���s��£��?�;µG�pµ��?¥K¥Q¯m¨+�Â£i§e�p�d�ª£i�d�ªm¨�¯��s���p� �p�d�K�G°¦�¢�+§j�s���6�?�Z�d�G�
�p�Q�d��§e¬X�e�ù�s���d�i�d�p�ª£i�d�s§e� �?����p�G¥s�s�p�d�s�G°��d�G�8�d�i�p���e�G��o���	¬�§e�
¡6���s£��´�d���s�f�jGG��m�+§j�s���f¥s�s�ª�f§j��¸kÃ��e£��8�+§j�s���f�j�o��;�d§%�d�G�
��o°j�m§e¬f�8�d�i�p���e�G��o�d§e�·¥K�ª�jG�¢�d§8�d���º£i�d���!�d�s§j��§e¬6��¡k§��G�i¡
�d�i�p���?����4���o¶��e��G�ª�p£ �d�K¨+�ª´�s�(�3�s°jµG�d���4¸
ú	¡6��§e¥s�`¬\�?£ª�k§?¬��Z�d�i�p���?����4�d§j��©º�ª¯z¥s�s�k§e�X���G¥r�?���Û¬/§?�3¡6���s£��
�d��� �d�Â�!�d�Â��o°j�ª�k�d���?�6�!�d�Â£i�d§e�p�p��'¸�úð£��?�p�Â£��?�;§�£ª£iµG�Z¡6�G�i�d�
�jGG�s��°��d�G�¢�s���d�i�d�p�ª£ �d����+§j�s���Â°e�ª���i���!�d�ª�I�?����G°e�¢¡6�G�K£����s�
�dµG�d��°e�ª���i���!�d�ª���º���i¡��s���d�i�d�p�ª£ �d�K§e��¶�¥s���jo�K�G°m�d§´�e���s�Gñ����Q�d�
¥s§�§j�ù§?¬����i¡ �s�4�d� �d�p�ª£i�d�s§j�ù�+§e�K���d�m¨+�ª�s��°�°e�ª��� ���?�d��>¸�ïZ���s�
£��?��¨+�Â��²-§e�ro��¦¨�¯%£����i£ ¤4�s��°z�d§��p�ª���Q¬'�d�G�6�K���d�i�d�p�i£i�d��¦�+§j�s���
°j�i���i���!�d�ª�%�?�	��o°j�¦¡6�G�K£��	°e�ª��� ���?�d�ª�¢©�§e�d�¦�s�4²e�e¥s�K�£i�d§e�p�p��
��o°j�ª�ª¸`�ö¬3�d�G�s���s���d���I£ª�e�p�j¶G�d���I�s���d�i�d�p�ª£i�d��;�+§j�s���6�K����µG�p����
�d§;�d�G�%�ª���§?¬k�d���%¥K�s�D��§?¬��s�4�d� �d�p�ª£i�d����+§j�s���d�Â�d§´¨+���e�o��'¸
���m�d���s��¬\�?�p���s§j�'¶+�e¥s¥'�d���z�s���d�i�d�p�ª£i�d�ª´�+§j�s���d��£��e�´¨+���j�o��'¸
�3�s°jµo�d�[�ÂG�i�p£i�d�s¨+�ª���e�%� ³��?©���¥s�k§?¬��d���s�)�o�d§�£ª�ª�p�ª¸�ïk¡Z§f�d�i�p���?±
���ªo���%���!²j�z�p�d�r�?��°eµ�¥K�?�f¬\�e£i�ª�f�d���?��¥s�K��§e���%£ª§j©�©�§e�´�G¥r�?���j¸
ïZ���i�s�Â²-�i�p�d�s£ª�ª�z�e��8�ªG°j�i�I�?�d�¢��§?�z£ª§e�K�G£ª�KG�ª���z�e��´�d�G�i¯8¥s�s�
�e£ �d§j�p�k�ª�e£���§e�d��� �Z�?�k�p��§�¡6���s�K�3�s°jµo�d�ñ�e�o¶�£ �d���?�d�s��°I¬�§jµG�`�s�G±

s

q
r

(a) (b) (c) (d)

p

`ba cedbfBg3WWj5X
p ³;p l-~&r8u�t�qEq!wJx&w8x-~ew�qJ�

�d�i�d�p�ª£ �d�K§e���+§e�s�4�d�f±�ãZY\[]Y��0Y��d¸�ïZ�G�ª�p�%�s���d�i�d�p�ª£i�d�s§e���+§e�K���d�Â�?�d�
��µG�p����¦§e���d§%�I¥s�s�D��¸¤ã;�s�k�d���6ñ��d�D�k�+§j�s���k�d§¢¨+�Â�e�o��¦�d§��d�G�
�d�i�p���?����4���o¶4�?���G§��i�`�G§e�`£i�d���?�d�f�e��¯X���i¡"�s���d�i�d�p�ª£i�d�s§j�G�ª¶o�e�
�p��§�¡6���s���3�s°jµG�d���e¨'¸f÷f§�¡Z�ª²-� ��¶�¡6���ª�^[%�s�z�+§e���+��8§�®��d�G�
�d§j��§e¬`�d���X¥K�s�D���Q�I£i�d�ª�?�d�ª����o°j�ª�z�d���?�z£ �d���?�d�¦�G�i¡õ�s���d�i�d�p�ª£i±
�d�s§j���+§j�s���d�ª¶Z�?���p��§�¡6���K�9�3�s°jµo�d��e£e¸_[��s�¦�G¥r�?£ª����?�¦�d�G�
¨+§e�p�d§e©�§e¬h�d���Â¥s�s�D�6�d§%¨+�f���e��G¥s��m¥r�!�d�i��¸`ïZ���z�d�?©��z�?����¥s�s�ª�
�d§4��¸����s�¢�G§�¡|�+§e���+���§�®��d���¦�d§e��¥s�s�D��¶Û�e����Q�d�%�e�o�s�d�s§e�
G§��i�Â��§?�z£i�d�ª�?�d�¦�?��¯8��� ¡ê�s���d�i�d�p�ª£i�d�s��°m��o°j�ª�ª¶'�?�z�p��§�¡6���s�
�3�s°jµo�d���e'¸;[��e��n�¦�?�d�m¾/�d�ª�p�+�ª£i�d�s²-�ª¥Q¯�À��+§e���+��8§?¬`�d�G��¥K�s�D�
��§�¡I¶4�?��¦£��?���d�?¬��ª¥Q¯��p��¥s�Q�`�d�G���d�i�p���e�G��o���Â¡6�Q�d��§eµG�`£i�d���!�d�K�G°
�e��¯m��� ¡ �s���d�i�d�p�ª£ �d��´��o°j�ª�ª¸

èZâ Ê%��æ�æ S æ S �¦æ å � » ÊI�
ïh§��d�ª�D�;�d����»�¼o½��e�p�p�s�D�d��ù�d�i�p���?����4���e¥s�s®��?�d�s§j�B�?¥K°e§e�d�Q�d��©8¶
¬/§eµG�´��§j�o±w£ª§j�4²-�i³�ëeí«�+§e¥s¯o�G��o���	¡k�i�d��£i§j���D�p�dµG£i�d��>¸þïZ�G�
ñ��d�D�%�s�¦��£ªµ�¨+��¡6�G�K£������e�§e���º£ª§?�d���i���s��G�ª���d��>¶3�d���m�p�ª£i±
§j��¦�s�`�d���Z¡k�ª¥s¥+¤4��§�¡6�º¼o£��1`§e�����?��o�d���+§j¥Q¯o���ªo�d§j�'¶-�d���Z�d�G�Q��
�s�%�;£ªµ�¨+�¦¡6�Q�d�·�´�G§j¥s���d�G�d§eµ�°j�	�s�¢§e��§j�G�º�?³o�s�%�?���¥K�?�D�d¥s¯
�;�d�ª£ ���e��°eµ�¥K�?�X�G�d�s�p©�¡6�Q�d��§j�G�+§j�p�s��°��?��°eµ�¥K�?�X£ªµG�d��§e�	��¡k§
§j�G�+§j�p�Q�d�z¬\�?£ª�ª�ª¶+©º�?¤4�K�G°¦�¦o�ª���d��º�+§j¥Q¯o°j§j�'¸
ïZ���i�p�´�+§j¥Q¯o���ªo�����?�d�;£ª¥s§j�p����pµG�p¬/�e£ª�;©��ª�p���ª�X£ª§j�G�D�p�dµ�£i�d�ª
¬��d§e©��p�d�K�e�G°jµ�¥K�!�I¬\�e£i�ª�ª¸ � µo�I»�¼o½ �?�p�p�s�D�d����d�i�p���?����4���e¥s�s®��?±
�d�s§j���?¥K°e§e�d�Q�d��© ���?�Â¨+�ª�ª���?���G¥K�s��´�d§��d�G�K���p�i��¸�ízµo�d�K�G°¦�d���s�
�G�d§�£i�ª�p�ª¶+¡Z�I�d�ª£ª§?��G��8�p�i²-�i���e¥��+�i�p�d�s���ª���f²j�!�d�K�e¨�¥s�ª�ª¶��pµ�£����e�
�d���X�s���Q�d�K�e¥Û�4µ�©%¨+� �Â§?¬Z�+§j�s���d�z�s���d���¢�+§j¥Q¯o����4���o¶'�d���¢�oµG©¦±
¨+�i�6§?¬Û�+§j�s���d�6�j�o��'¶��e��m�d�G�Âñ����e¥'�oµG©%¨+�i�k§e¬3�d� �p���e���ªo���o¸
¹��%�pµ�©�©º�?�d�s�p�%�d�G�ª�p�¦�d�ª�pµG¥s�d���s�·ï3�?¨�¥s�8üj¸m�ö��ï3�?¨�¥s�mÿ4¶3¡k�
�G�d�i�p�ª���Z�d���Io�H®>�i�d�ª�����+§j¥Q¯o���ªo���%�!�6���e£��m�D�d�ª�´§?¬3�d�����d�i�p���?±
���ªo���e¥s�s®��!�d�K§e���G�d§�£ª�i�p�ª¸

ù�â ç ã ���;è��6� ã æ å
ù�âöá �&éOÃ�ÎOÅ!ÃWÇFÈ�Ñ�ÆOëI�«Î¤íMÄOê¤Ë
é µG�p�d�i�4�ù�e¥s°j§?�d�s�d�G©���¬/§?�B�d� �p���e���ªo���e¥s�s®��!�d�K§e���ð�G�d§4oµ�£ª�ê�
¥K�?�d°e���oµG©%¨+�i�X§e¬I¼4�d�ª�s�G�i���+§j�s���d�¦�d���!�����i����d§	¨+�8�e�o��'¸
�����d�G���ö¡Z§XG�s©��ª���p�s§e���e¥+£ª�e�p�j¶G��¥K§�¡k�i�6¨+§jµG���§e¬OZm¾�\^]!À`���e�
¨+�ª�ª��¬/§eµ��� û ëeý¿¸�÷f§!¡k�ª²-�i��¶Z��¥s§�¡Z�i�m¨+§eµ����¬�§e�º�d���;�oµG©¦±
¨+�i�f§e¬Û�s���p� �p�d���¼4�d�ª�s�G�i�Â�+§e�s�4�d�6�s��ëeíõ���e�6¯��i�6�d§�¨+�zñ��d©�¥Q¯
�ª�D���?¨�¥s�s�p����ðûQüjüªý¿¸ � ���m£ª§jµG¥r��d���?�p§j���e¨�¥Q¯��i³o�+�ª£ �X�d���?��ë?í

�d�ª£����G�¢��µG�ª�`�d���?�Z� ³o�d�i��mÿ?íB¡Z§jµG¥Km§e��¥Q¯º�s��£i�d���?�p�Â�d����¥s§�¡Z�i�
¨+§jµG���¾E�B ��-)°e�d���!�d�i�6�d���e�Zm¾�\] ÀpÀ ¸
ó �s²-�ª���ºëeíò�+§j¥Q¯o���ªo���¦©º�jo��§e¬�Ö��p�d�K�e�G°jµG¥r�!�z¬\�?£ª�ª�Â�e��(\
²-�i�p�d�s£ª�i�ª¶h�s���d���X¡k§e�d�D��£��?�p�j¶h�;���?�s²-�¦»�¼o½ð�p�d�i�%°j�i���i���!�d�K§e�
�e¥s°e§e�d�Q�d��© ¡6�s¥K¥Â�G�d§4GµG£ª���	�p�d�ª��©º�jo�8¬��d§e© Zº¾BÖ�]!À¦¬/�e£ª�i�ª¸
�����G���?£i�d�s£ª�j¶)�G§!¡k�ª²-�i��¶h�ª©����Q�d�s£��?¥`�d�ª�pµG¥s�d�����!²j�¦�p��§�¡6�	�d���?�
»�¼o½��p�d�ª�ª�¦§?¬zë?í �+§e¥s¯o�G��o���8�d�ª��·�d§��o�d§4Gµ�£i�m�p�d�ª�i�%¡6�Q�d�
£ª¥s§j�p���d§sZº¾BÖZ��Ø�<>¾BÖ+ÀpÀÛ¬\�?£ª�ª�zûQü8�jýw¸�½)�!�d�i�d�p§j�;�e��;aZ�?§%o�ª©�§j�o±
�D�p���?�d�ª%�d���?���Q���s�`�+§e�p�p�K¨G¥s���d§z£i§j���D�p�dµG£i�këeíð»�¼o½��p�d�ª�ª�Û¡6�Q�d�
���G�d§!²e�e¨G¥K��µG���+�i�m¨+§eµ����§e¬�Zm¾BÖ ð À��?���¥s§�¡Z�i�´¨+§jµG��"§?¬
Zm¾BÖ�]b�ð�À%û ÿ��jý¿¸��w���s�I�i³o�+�ª£i�d����d���?�I�8»�¼G½ù¡Z§eµ�¥K��o�d§4GµG£ª�
»�¼o½ð�+§e¥Q¯G°e§j�G�Â¡6�Q�d���º�4µ�©X¨+�i��§e¬`²-�i�p�d�s£ª�ª�z�s���d���¢§e��o�i�z§?¬
Zm¾�\c��Ø�<>¾�\�ÀpÀ ¸

ù�â�¸ �X�.Ê ÆSÄOê���ÇFÃ^È�ÄOÃ§Å(Ê¡ÎMÈ�ÄOÇ�Ë
ízµo�d�K�G°¢�d�G�f�o�d§�£ª�ª�p��§?¬h£i�d�ª�?�d�s��°%�X»�¼o½��p�d�ª�f¬r�d§j©þ�d�G�f¬\�?£ª�ª�
§e¬3�e�;�K�G��µo��©��ª�p��¶4©º�?��¯�§e¬��d���f¬/�e£ª�i�f�!�d�z�p��¥s�Q��¸`Ã`�?£ �m�d�s©��
���p�G¥s�s�m§�£ª£iµG�d�ª¶���¡k§	�G�i¡Á�+§j�s���d�º�?�d�8�s���p�d§4GµG£ª��"�s���d§��d�G�
©��ª�p�'¸�ÌÂ�!�d���i�¢�d���?��G�s�p£��?��	�d�G�ª�p�ä[å�æÂãb�����e���d¶��d�G�i¯	�?�d�
�d�i���?�K�G����?�;���?�p�;§e¬¢�	�G�i¡�©��i�p�"¡6�Q�d�ù��§��p�G¥s�s�m¬\�?£ª�ª�;�e�
G� ñ����ªX¨�¯��d���6»�¼o½��p�d�ª�j¸)�ö�¦�G���?£i�d�s£ª�j¶-�d�G�ª�p���+§j�s���d�`�e���+�ª�?�
�d§X¬�µ�¥Qñ�¥>�d�����d§j¥s�I§e¬Û¼4�d�ª�s��� �6�+§j�s���d�ª¶��G�ª¥s���s��°¢�d§%�ª�G�pµG�d�Â�d���?�
£ª§e�o²j�i³º�d�ª°j�s§j�G�f£ª�e�8¨+�z�d�i�p���?����4���e¥s�s®ª��>¸k÷f§!¡k�ª²-�i��¶��%�G�d§�§?¬
�d���!�´¥s�s��¤4�´»�¼G½þ�+§e�s�4�d�´�e��ð¼4�d�ª�s��� �´�+§e�K���d�;�K�m¯��i�º�d§�¨+�
�ª�D���?¨�¥s�s�p����>¸

ù�â�è Ê.Å!Æ¶Ñ
ÇFÈ�Ñ�ÆOë��#Î¤ÄOË1È�êMÃ§Å!Æ^Ç1È�Î¤ÄOË
�ö�k�s�Z�+§j�p�p�s¨�¥s�Â�d§¢£ª§e���D�p�dµ�£ ��©º�e��¯�o�H®>�i�d�ª����»�¼o½��p�d�ª�ª�k¬r�d§j©
�d�����d�?©��¢�s�G��µG�f©��ª�p�'¸�ïh§º���ª¥s��©º�e¤j�z�d���X»�¼G½"�p�d�i�ª�Â°e�ª�G±
�i���!�d���©�§?�d�;£i§j���p�s�D�d�ª����¶k�s�X¡��?�ºG�ª£ª�Ko����d���?�����p�ª¥s�ª£ �d�K§e�
£i�d�Q�d�i�d�K��¬/§?�8£���§�§j�p�s�G°��d§�§?�´�G§4G�ª�m�s�ð»�¼G½ò�p�d�ª��£ª§j�G�D�p�dµ�£i±
�d�s§j��¡��?�z���i£ª�ª�p�d�?�p¯�¸zïZ���X©��i�p�d�s£¢µG�p��8¡��?�Â�d���¢�4µ�©%¨+� �f§?¬
¥s���?¬`��§4o�ª�Â�p�G¥s�s�z�s¬k�����!�p�d�K£iµ�¥K�?�z�d§�§?�z�G§4G��¡��e�Â£ �G§j�p�ª�'¸z���
�G���?£i�d�s£ª�j¶>©��ª�p�G�ª���d�ª��o��´�d§�����²-�I¬��i¡Z�i�z�jGG��8�+§e�K���d�f�e��
�d�i�p���?����4����¡6�G�ª�"�d�G�´£���§j�s£ª�´§e¬I»Z¼G½ê�d§�§e�º�G§4G�´¡Z�e��§j�G�
�d���!�6©��s���s©��s�p��m�d�G�z�4µ�©%¨+� ��§e¬)�p�G¥s�s��¥s���!¬Û��§4G�i�ª¸
ïZ���`©��ª�p�I°j�i���i���!�d§e�Ûo§��ª�3��§?�)°jµ��?���?�4�d�i�`�d���Õ��µ��?¥K�Q�ö¯z§e¬��e��¯
§e¬Û�d�G�z�d�i�p���e�G��o���¦°e�ª���i���!�d��'¸6÷f§�¡Z�ª²-� ��¶��d����©��ª�p�´°j�ª�G�i���?±
�d�s§j�¦�o�d§�£ª�ª�p���s�`�G§e�Û¥s�s©��s�d�ª%¨�¯¢�d�G���p�s®ª��§e¬>¥s§�£��?¥�°j�ª§e©��i�p�d�s£��e¥
¬/�ª�?�dµG�d�i�Â�?��´�?�6�pµ�£��´�s�f�p£ª�e¥s���K��G�ª�+�i��G�i�4��¸

ôfµ�©��i�d�s£��?¥�Ìf�ª�pµG¥Q�d�
d`�?�d�K�?¨�¥s� íz�ª���d��m¨+§�³ ¼o£��1`§j�G���!��o�d���+§j¥Q¯o°j§e� »k§�³m¡6�Q�d�8��§e¥K� íz�ª���d��;�+§e¥Q¯G°e§j�
�ö���Q�d�K�e¥'ôÂµG©%¨+�i��§?¬Û½3§j�s���d�6�s��½3§j¥Q¯o°j§e� � � ü-� ÿ��
ï�§e���e¥'ôÂµG©%¨+�i�Z§e¬�½3§j�s���d��úÂGG�� � � ü �
ôfµ�©X¨+�i�Z§?¬�ïh�i�p���e�G��o��� � ü-� ÿ�� ���

ecf�g.h g�ibj5i�{1��w8uhp r!vFz
uhw�q!{1zHm�q¡t1l�lFt1l�©6r!t;lb�JwE³ � t;z |�o;wJx;u�v1�

ó ���?�����s£��?¥¶Ì��ª�pµ�¥Q�d��ï3�?¨�¥s�
ïÛ¯o�+� íz�i�4�d�ª;¨+§�³ ¼o£��1`§e�����?��o�d���+§e¥Q¯G°e§j� »k§�³m¡6�s�d�´��§j¥s� íz�ª���d��;�+§e¥Q¯G°e§j�

� �d�s°j�s���e¥

»k� ¬/§e�d��°e¥KµG�s��°

ú6¬��d�i�6°e¥KµG�s��°

¹ù�Q�d�i¬r���e©��
e-fjg.h g�£WjLk§u�v � o;p r�v1zeuBw�qJ{1zHm�q_m�v1�;z w_±µt�uÕlFt;l�©6r!t;lb�Jw6³ � t;z |�o;w8x;u�v;�

»k�ª£ª�eµ��p��£ª§j�4²-� ³��pµ�¨G�+§j¥s§�¯o°j§j�G�8�!�d���d�i�p���?����4���e¥s�s®ª��ù�s��G�Q±
²4�KGµ��?¥s¥s¯�¶��?���§e��¥Q¯��d�����4µ�¥s¥s�º§e¬I�d���i�p���pµG¨��+§e¥s¯o�G��o�����?�d�
���i£ª�ª�p�d�?�p¯ð¬�§e�8�d�G�	¨�µG¥s¤�§e¬X�d���	£i§j©���µo���?�d�s§j�'¶z£ª§e©���¥s�i�d��
�pµ�¨G�+§j¥Q¯o����4���·�?�d���D¡��?���+���§eµG�p±w§e¬r±ö£i§e�d���K���d§���£��?£ �G��§e�
G�s�p¤+¸����·�d�G�K�X¡��ª¯�¶k�Q��©º�ª¯	¨+�´�+§j�p�p�s¨G¥K�;�d§��d�i�p���?����4���e¥s�s®ª�
²-�i�p¯	¥K�?�d°j�;©��ª�p���i�%¨�¯��D¡Z�e���G�s��°�§jµo�¦£ª§e©���¥s�i�d����+§?�p�d�K§e���
§e¬h�d���I©��ª�p�'¸
úf�8¡6�Q�d�ê©º�?��¯ù�d�i�p���e�G��o���?¥K�s®��!�d�s§j�õ�e¥s°e§e�d�Q�d��©��ª¶¢�G���?£i�d�s£��e¥
�s©���¥s�ª©��ª�����!�d�K§e���K���G¥K�e°jµG���¨4¯��o�d§j¨G¥K�i©��%¡6�Q�d�"£ª§e©���µo���?±
�d�s§j���e¥h�o�d�ª£ª�s�p�s§j�'¸

ù�â�ù ¾¶È�Ò È¢Ç�Æ§ÇFÈ�Î¤ÄOË

ïZ���X¡Z���?¤-�ª�D�¢���!�p��§e¬Z�d�G���e¥s°j§?�d�Q�d��©«�s�I�K���d���%°e¥sµ��s��°8�o�d§e±
£ª�ª�p�ª¶��?��·�d�����?µG�d�G§e�º¨+�ª¥s�s�ª²-�ª���d���?�º�Q��¡6�s¥K¥6�d�-��µ��Q�d�8©�§?�d�
G�i²-�ª¥s§j�G©��ª����¸)ïZ���f©º�e�s�m�G�d§j¨G¥s�ª©þ¥s�s�ª���s�m�d�G�f¬/�e£i���d���?�k�d�G�
�p�i��§e¬Û°e�ª��� ���?�d��;�d� �p���e���ªo���%¨+�i�ö¡Z�ª�i�´�d���I�pµG¨��+§j¥Q¯o���ªo���X�s�
��§e�G±wíz�ª¥K�?µ����ª¯�¶3�e��	�d�i¥K�K�?¨�¥s�´�o�d§j�+�i�p�d�s�ª�X�e��·�?�p�p�d�s¨�µo�d�ª�X§?¬
�d���i�p�z�d�i�p���e�G��o���%����²-�Â¯��i���d§%¨+�IG�i�d� �d©��K�G��'¸
Ì��ª¥K�?�d��´�d§¦�d�G�K���s���d�G�I�G�d§e¨�¥s�ª©ì§e¬Ûñ���G�s��°X�d���I�p�i�f§e¬Û¬\�?£ª�ª�
�s���d�����e¨+§!²-�6�pµ�¨G�+§j¥Q¯o����4�d§j�¦�d���?��¬\�e£i�f�d���6¨+�ª¥s§�¡ù�pµG¨��+§j¥Q¯4±
���ªo�d§j�·�s���d�G�m°e¥sµ��s��°��G�d§�£i�ª�p�ª¸�úZ���d���º©�§e©��ª����¶h�d��� �d�m�s�
��§;�pµG�d�%¡Z�ª¯��d§;�G�d�ª²j�ª���z¬\�?£ª�ª�I¬��d§e©^�d���%§?�d���i���p�Ko��§e¬k�d�G�
�pµ�¨G�+§j¥Q¯o����4�d§j���d���!�m�?�d���p�s©���¥Q¯�ÅDµG�D��¬\�?£ª�s��°��s�"�d�G�´�d�s°j���
G�Q�d�ª£ �d�K§e�"�d§�¨+�;�p�d���?�d��"�e��£��?��o�rG�?�d�ª��¬�§e�º°j¥sµG�K�G°	�d§��d�G�
¨+§e�p�d§e©��pµ�¨G�+§j¥Q¯o����4�d§j��¸

R�â �¦æ å �&¾`è�� ã æ å � å ç S è���è8� »
ç ã � » �%� ã æ å �

���;�d���s�f���e�+�i��¶�¡Z������²-���G�d�i�p�ª���d��8��£ª§!²-�i�d�s��°¦�d� �p���e���ªo���e¥Q±
�s®��?�d�s§e���e¥s°e§e�d�Q�d��©��o�d§?²4�KG�s�G°;�?���!·�£ª�s�ª�����s���Q�d�K�e¥s�s�d�?�d�s§j�	¬�§e�
�s��µ��?¥s�s�ö¯´©��i�p�´°j�i���i���!�d§e��¸�ú����pµ�£���¶o�d���ª�p�I�d�i�p���?����4���%£��?�
¨+�¦�pµG¨>G�s²4�ro����e����d�iñ������¡6�Q�d��§jµo�¢�e��¯���o°j�� ��K�G�z¡6���s£��
°jµ��?���?�4�d�i�ª�m�d§	�G�d�ª�p�i�d²j�´�d���8�d§e�+§j¥s§j°?¯�§?¬I�d���8�+§e¥s¯o�G��o�d§e�
�s���GµG�6¨+§jµG��G�?�p¯�¸
ïZ����©º�e�s�ù�s���G§!²j�!�d�K§e�ù§e¬��d���s�;�K�;¨G�d�s��°e�s��°·�d§j°e�i�d���i�8»�¼G½
�p�d�ª�ª���e��þíz�ª¥K�eµG���ª¯�ï��i�p���e�G��o���?¥K�s®��!�d�s§j��¶��?¥K§e��°�¡6�Q�d�Á�
�d�i�p���?����4���e¥I©��ª�p�ù°e�ª���i���!�d§e�8�d���?�´�K�´��§e�´¥s�K©��Q�d��ù¨�¯��d�G�
¥s§�£��e¥�£ª§j©��G¥s�i³o�s�ö¯m§e¬3�d�G�z°j�ª§e©��i�p�p¯�¸
»Z�?�p��	§j�	§jµG��� ³G�+� �d�K©��i�4�d�ª¶'�d���%�oµG©%¨+�i�z§e¬6�e�G�ª��+§j�s���d�
���?�8¨+�ª�ª����µ��Q�d�	¥s§�¡I¸â��µG�dµo�d���d�ª�D�d�s�G°"§e� ©�§?�d�	£ª§e©���¥s�i³
©��ª�p�G�ª�Z¡6�s¥K¥'¯o�K�i¥r;©�§e�d�z£ª§e��£ª¥sµG�p�K²j�I�K�o¬/§?�d©º�?�d�s§j���?¨+§jµG���d�G�
�G�d§e�+�i�p�d�s�ª�I§e¬`�d���s���e¥s°e§e�d�Q�d��©«�?�����§�¡õ�Q�I©º�ª¯��+�i�p¬/§?�d©^�s�
�G���?£i�d�s£ª�j¸
ïZ���Â�oµG©%¨+�i�k§e¬)�+§e�s�4�d�6�e�o��;¨�¯m�%»Z¼G½�o�ª£ª§e©��+§j�p�Q�d�s§j�´§?¬
�´�+§e¥s¯o°e§j�·���?�¢�e¥Q�d���j4¯	¨+�i�ª�3��µ��Q�d�%¡k�ª¥s¥k�ª�D���?¨�¥s�s�p����>¸8�ö¬��
¥s�s��¤I¨+�i�ö¡Z�ª�ª�X»�¼o½��+§e�s�4�d�3�e��¢¼��d�ª�s���i�)�+§e�s�4�d�h£��e�¢¨+�`¬�§jµ���'¶
�s�I©º�ª¯�¨+�%�+§j�p�p�s¨G¥K�¦�d���?��¨+§eµ���o�z§j���d���%�oµG©%¨+�i�Â§e¬k�i³4�p���
�+§j�s���d�����ª£ª�i�p�d�?�p¯%�d§z�d� �p���e���ªo���e¥s�s®ª�f�e��¯X�+§j¥Q¯o����4�d§j�¦£��?��¨+�
¬/§eµ���'¸
¼o§º¬\�!��¶h�d�G�%©��ª�p�G�ª�z°j�i���i���!�d����!�d� é §j�G�D�p���e�s���ª�íz�ª¥K�?µ����ª¯
ïh�i�p���?����4���e¥s�s®��?�d�s§e���ª¶+�?��º��§X£ª§j�G�p�ro�i���?�d�s§e�´�s��°j�s²-�ª�m�d§¢�d�G�
��µ��?¥K�Q�ö¯	§?¬��d����©��ª�p�G�ª�I°j�ª�G�i���?�d�ª'¸�½)�d�ª¥s�s©��s���?�p¯�¡Z§?�d¤	���e�

�p��§�¡6���d���?�z�s���s�ª¶h�K���d���ª§?�p¯�¶'�+§j�p�p�s¨�¥s�¦�d§´£i§j�4²-�i�p�z�d�G�%£ª§e�G±
�D�p���e�s�G��%�d�i�p���e�G��o���?¥s�K®ª�?�d�s§j�G�k�d§I£ª§j�o¬/§?�d©��K�G°I§j�G�ª�`²4�K�z�+§j�s���
�s���p�i�p�d�s§e� �?���íz�i¥r�?µ�����¯��d�iñ����ª©��ª����¸õïZ�G�s�;�s�;¡k§e�d¤�£iµG�p±
�d�ª���d¥Q¯m�K�´�G�d§j°?�d�ª�p�ª¸
ïZ�����?¥s°j§e�d�Q�d�G©����s�´�d�G�s�����e�+�i�6¡k�i�d�I�s©���¥s�ª©��ª���d����s� é9l�l
�e��;©º�eG�zµG�p��dzï@m�¬/§?�6�d�ª��o�i�d�s��°¦§eµG�d��µo�Iû ÿF�?ý¿¸`ïZ���I£i§j©¦±
��µo���?�d�s§j���e¥o°j�ª§e©��i�p�p¯I¬/µG��£i�d�s§e���Û�s©���¥s�ª©��ª���d����e��¢�d�G��»�¼G½
�e�p�p�s�D�d��´�d� �p���e���ªo���e¥s�s®��!�d�K§e���e¥s°j§?�d�Q�d��©�¡6�s¥K¥�¨+�I©º�jo�I��²j�?�K¥Q±
�e¨G¥s�I§j��¥s�s���e¸

nZâ �¦�Qo å æCpº¾ » ç¿ »ñ¹ »Âå �;�
ïZ���f�eµo�d��§?�d�k¡Z§eµ�¥K�¥K�s¤-�6�d§I�d���?��¤sÌ�¸j6'�>�e��¦ô¢¸jmI�s¥s¥K�i�ª�m¬�§e�
�G�d§�§?¬��d���eG�s��°�§e¬6�d�G�K�X�?�p�d�s£ª¥s�j¶`�?��rqG¸Ûú�¨�¥s�ª�X�e���»f¸)íz§�¯o¥s�
¬/§?�6�d���ª�Q���pµ��G�+§e�p��¸

�_ÃWÍ�Ã¶Å�Ã¶ÄOÑ�Ã�Ë
ûQü ý��G�d�i¯X½3¸ qG¸s¶ ó �ª§?�d°j��½3¸ 6Û¸ts}�!��Bvu¡�!�W�!�������h���Cw�ã1ãW� �h�������h���

�B�9xÕ���e���)�Ey[���!K�!�
���d¸-÷f�i�d©��ª��¼o£i�K�i��£ª�`½�µG¨�¥s�s�p���s��°o¶eÿ����F�
û ÿ�ýº»k�i�d�#��¸s¶-ÃÛ���G�D�d�ª�s��í%¸Ez��´�i�p�X°e�ª���i���!�d�s§j�X�e��I§e�G�d�s©º�e¥
�p�d�K�e��°eµ�¥K�?�d�s§e��¸ { íX¸ |3¸ZíÂµ�¶¡�k¸ m¦¸ ��¸�÷f¡Z�e��°o¶���G�Q�d§e�d�ª¶
} ��ñã
Áb�����������3y�Áe�8� �h�;�����Uu[������!���0~e¶���§G¸����s�Q6��ª£i�dµo�d�
ôÂ§?�d�ª�f¼o�i�d�s�ª��§j� é §e©���µo�d�K�G°G¶o���'¸
�1����ü!ÿeë4¸�¹�§?�d¥K�¼o£ª�Q±
�ª���d�Qñ�£j¶G�p�ª£ª§e��;�ªG��¸s¶'ü-���1�

û ë!ýºÃ`o�ª¥s�p¨G�dµG����� �%÷¢¸K¶`ï3�?��ïÂ¸ ¼>¸�zDúf�·Äf���+�i�%»k§eµ���	¬�§e�
é §j�o¬/§e�d©��s�G°�íz�ª¥K�eµG���ª¯Bï��d�K�e�G°jµG¥r�!�d�s§j���ª¸ { æ��E�-�@ ;�F��B
å�~�ñãb������Á� ���A�����ã�Á��B�����h�����F���;����K�!���P~
Y��^�
��T��!�!�����B���
æ¡��� ���'��8�J�
�h���s�1� } ���B�F� Á���~F��Y§ä��������J�µ���W�
YSåFãb�����G¶4���'¸��eë��
�-ÿ�¸+ú é ��½Û�d�ª�p�ª¶Zqjµ��'¸>ü-�F�jÿ

û �?ý é ���i¡�6�¸ ½3¸5z é §e���D�p���e�s�G���íz�ª¥K�eµG���ª¯�ïk�d�K�e�G°jµG¥r�!�d�s§j���ª¸ {
w�� �1��������B�������?¶�²-§e¥\¸
�o¶W�1�(��ü8�F�o¶hü-�F���

û ��ým¼o�G�i¡Z£��4µ�¤QqG¸ Ì¢¸Cz��´�i�p��°e�ª���i���!�d�s§j��¬/§?�IG§e©º�e�s����¡6�Q�d�
�p©º�e¥s¥6�e�G°j¥s�ª�ª¸ { æ��E�-���������������(� � ��B
���������)���!�
��B ���e�
Áe�F�
�~��ãb������Á�¼���&�����ã�Á��B�����h�����F�b�;������!���0~�Yc�����;���#���;��Y
} B������e¶��G��¸>üP��ü-�4¸>ú é �«½)�d�ª�p�ª¶�ÿ����F�

û �!ým¼o�G�i¡Z£��4µ�¤�qo¸ Ì�¸�z é §e���D�p���?�K�G��|íÂ�ª¥K�eµ����ª¯õïh�i�p���?���i±
o���?¥K�s®��!�d�s§j���;�e���½)�d§?²e�e¨G¥Q¯ ó §�§4�»k§jµG����!�p¯�Ì��ª£ª§!²�±
�i�p¯�¸ {}æ��E�-�!���������;���#� � ��B
�;�,����BQ���e�)�!�!�������h�����F�ts}�!��B;�����
�_��Á��W���B�'D8���PYJ����Be�1����YL���PF��S����
Yv�§å�wz¶h����¸�ü-�eë��4ÿ����o¸
ú é �«½)�d�ª�p�ª¶+ÿ��F�jÿ

û ��ým¼o�G�i¡Z£��4µ�¤�qG¸ Ì�¸ zö¹ù���?�B�s� � ó §�§4�6��s�����!� Ã�¥s�i±
©��ª���P� �����d�i�d�+§e¥r�!�d�s§j��¶ é §e��G�Q�d�s§j�G�s��°G¶´�e����Âµ��e¥s�Q��¯
�´���e�pµo�d�ª�ª¸ { æ����-���������������n� � ��B
�K�'�@��B����
�)�!���W�����h���W�F�
s4�!� B����;�N�.��Áb�����B�'D8���PY�����Be�1����Y����PF��S�����
Y��§å�wz¶Û�G��¸
üjü-����ü�ÿ��4¸'ú é ��½)�d�ª�p�ª¶>ÿ��F�jÿ

û �!ým¼o�G�i¡Z£��4µ�¤KqG¸ Ì�¸�zDï��i�p���e�G��o���?¥_�´�ª�p� ó �ª���i���!�d�s§j��¨�¯
íz�ª¥K�eµG���ª¯(Ì��iñ��G�ª©��ª����¸ {�x¶��Á����)���!�e��BOw¡�e�
Áe�F�Så�~�ñãb��	
����Á� �������ñã�Á��B�����h���W�F�
�;������!���0~�Y�s����
�����!ãb��� ���Y-s���Y
�§å�wz¶G���'¸e�F���;�1��¸>ú é �«½)�d�ª�p�ª¶�ü-�F���

û �!ý��´µG�d�G�4¯3��¸s¶��´§eµ����¦í%¸ ��¸s¶ ó �e¨�¥s� é ¸ ¹�¸�zDúì½3§e�K���p±
½�¥K�?£ª�ª©��ª���3¼4�p���?�d�i°e¯z¬�§e� é §e�G¬�§e�d©��s��°�íz�ª¥K�eµG���ª¯Iï��i�p���?±
����4���e¥s�s®��?�d�s§e��¸ { ���
�)�!���W�����h���W�F�@¡���Áb���W����� ��} ��ñã
Áb�B��	
���h�����F�>u¡������!���0~á�����Kw�ã1ãW� �h�������h���
�d¶I²-§e¥¿¸�üeüj¶I�G§G¸¡�o¶
�F���������-ÿ�¶�ÿ��F�4ü

ûQü-�!ý é ���i¡ 6�¸ ½3¸ z ó µ��!���e���d�ª��4± �Âµ��e¥s�Q��¯ ï'�d�r�?��°eµ�¥K�?�
�´�ª�p���i�ª¸ {ìï��ª£ �'¸¶Ì��ª�'¸O���?±)�F�eëo¶Ûíz�ª���?�p�d©��ª����§?¬ é §j©¦±
��µo�d�i�f¼o£ª�s�ª�G£ª�j¶ é §e�d�G�ª¥s¥hÄÂ�G�s²-�i�d�p�Q��¯�¶>ü-���F�

ûQüjü ý é §j�G�ª�G±�¼4�d�i�K�G�i�ùí%¸s¶�G��d`� ��G�£¢�i�d� Ã6¸ é ¸s¶¤aÂ²o�s�G�ª£ ��¸
z é §e�G¬/§?�d©��s��°ÂíÂ�ª¥K�eµ����ª¯¢ï��d�K�e��°eµ�¥K�?�d�s§e�����K�XëeíX¸ {�æ����-�@
� � ��B
�¤y�����B��)���!�e��B_w¡�
�eÁe�F�«å.~��ãb������Á� ��� } ���ã�Áb	
�B�����h�����F��u¡����K�!���P~
Y_ä��������J�µ������Y.åFãb������¶`���'¸kü-�����4ÿ��F�4¸
ú é �«½)�d�ª�p�ª¶+ÿ��F�jÿ

ûQü!ÿ�ý é ��§e�h¼+¸�z�ïZ���fíz�ª¥K�eµG���ª¯¦�d�i�p���?����4���e¥s�s®��?�d�s§j�;¬��d§j©þíz�i±
¥K�eµ����ª¯��p�d�K�e�G°jµ�¥K�!�d��B�pµo�p¬\�?£ª�ª�ª¸ { æ����-�@ #� � ��B
��y�����Bb	
�)���!�
��B>w¡�e�
Áe�F�
å.~��ãb������Á�¼��� } ���ã�Á��B�����h�����F��u¡�����	
�!���P~
YKä��������J�µ������Y�åFãb�����G¶z�G��¸züJ�;����ü@���o¸Âú é � ½Û�d�ª�p�ª¶
ÿ����-ÿ

ûQü�ë!ý é ���?®ª�ª¥s¥s�¦»f¸s¶>½)�?¥K�s§e��6�¸3z�ï��d�K�e��°eµ�¥K�?�d�s�G°´����§e�G±w£ª§e�o²j�i³
�+§j¥Q¯4��¯o�+�j¸ { æ����-���������������Ô� � ��B
��¥ � ��B ���
�eÁe�F�s�~��	
ãb������Á� ��� } ��ñã�Á��B���������W�F�ñ�;������!���0~?¶X�G��¸fëF�eë��1�1�F�4¸
ú é �«½)�d�ª�p�ª¶�ü-�F���

ûQü8�?ý¦mI�ª�s¥�qG¸ ��¸������W�'D��-����� �r} ���ã�Á��B�����h�����F�>u¡������!���0~?¶
£ ���e�'¸�üeüj¶G����¸e�1�4üP���4ü-�4¸�ÃÛ¥s�p�ª²4�K� ��¶>ÿ����F�

ûQü@��ý � ¡Z�ª�·¼>¸ qG¸�z�úì¼oµG�d²j�i¯�§e¬6ÄÂ�G�D�p�dµ�£i�dµo�d��n�´�i�p� ó �ª�G±
�i���?�d�s§e��ïh�ª£�����§e¥s§j°e¯�¸ {næ��E�-�!���������;���YJ§@��BQ���
�)�!���W�����h���W�F�
s4�!� B����;�U�_��Á��W���B�,D8���PYKåW�������h�r�.�����h���W�F�@¨Õ�'D@ �Y¤�§å�wz¶
���'¸�ÿ?ëF���oÿ��F�4¸ � £i��¸'ü-���F�

ûQü-�!ýº»Z�e¥KG�e®ª®ª� é ¸s¶o½)�?§j¥sµ�®ª®i�>ú¢¸5zE�o�d§j©|½3§j¥Q¯o¥K�s�G���d§¢½3§j¥Q¯o°j§e�
²4�r�N© � Ì��p�d�ª�j¸ { ïh�ª£���¸MÌ��ª��¸Û�öô_�h±)���?±6���o¶`íz�s��¸Ûíz�s�p£j¸
¼o£ª�s�ª����¸s¶GÄÂ���s²-� �d�p�s���#Ìf§e©º�Xï��d�e¶�Ì�§j©��j¶o�ö���?¥Q¯�¶'ü8�F���

ûQü@��ý���µ�£����m÷X¸s¶JmI��o�ª©ª|)¸ ��¸s¶ÂôÂ�ª¯G¥s§?��»f¸ �k¸«z � �ù²4�s�p�s¨�¥s�
�pµG�p¬/�e£ª�z°e�ª��� ���?�d�s§j�;¨4¯¦�X�o�d�K§?�d���p�d�ª�Â�D�p�dµG£i�dµG�d�i�ª¸ {Aæ�����	
���������������ñ� � ��B
��§@��B¦w¡�e�
Áe�F� } ��� � �!���!��������� } ���ã�Á��)�!�
u�����ã.B��h�J�[���W�����
�)�!���F�J���¬T��"����0B��e�\[JÁ
�!�Y¶å��������h���PYL®����B�	
�������B����Y"�§å�wz¶G���'¸'ü�ÿ�����ü�ëeëo¸'ú é ��½Û�d�i�p�ª¶hü-���F�

ûQü-�!ý�ôz�ª¯o¥s§e�6»f¸�z é §j�G�D�p�dµ�£i�d�s�G° ó §�§4´½)�!�p�d�s�d�s§e���s��°�ï'�d�ª�ª�ª¸ {
u�����ã.B��h�J�¦���
�)�!� � �1���°¯ ±,²�Y3M�������e�B� } ���W�F�1�e¶`����¸`ü-�4üP�
ü-�4üj¸��8�ª¯�ü-���jë

ûQü-�!ýKÌfµG���+�i�p�>qG¸s¶6¼4�ª�KG�ª¥[Ì�¸³z � ���d���8o�H·�£ªµ�¥Q�ö¯·§e¬f�d�i�p���?±
����4���e¥s�s®ª�s��°�ë?±öG�s©��ª�G�p�K§e���?¥m�G§j�o±ö£i§j�4²-�i³��+§j¥Q¯o����4���o¸ {
æ��E�-���������������#� � ��B
�´¥ � ��B����e�
Áe�F�¶�~�ñãb������Á�â��� } ��s	
ã�Á��B�����h�����F�
�;������!���0~e¶G���'¸4ëF�����4ë��-ÿ�¸�ú é ��½)�d�ª�p�ª¶>ü-���F�

û ÿ��!ý��´�Q�d£ �G�ª¥s¥�¼>¸ ú�¸K¶µd`��²j�?�p�s�%¼+¸ ú¢¸�z �Âµ��?¥K�Q�ö¯3�´�ª�p� ó �i���i�p±
�?�d�s§j�	�K��ïZ�G�d�i��íz�s©��ª���p�s§j�G�ª¸ { æ��E�-�@ 9����Bnå.~��ãb������Á�
���4����ñã�Á��B�����h���W�F�§�;������!���0~
Y¦�§�e�¬T��!�!�����B���Õæ¡�F� ���'��8�J�
�h���
�;� } ���B�F� Á���~F��YSä��������J�µ������Y¤åFãb�����G¶o����¸�ÿ�ü!ÿ��4ÿjÿ�üj¸>ú é �
½Û�d�i�p�ª¶hü-���-ÿ

û ÿ4ü ýº»k�i�d����¸�z é §j©����?�d�s¨�¥s�;�d� �p���e���ªo���e¥s�s®��!�d�K§e���ª¸ { æ����-�@
±���B�w¡�
�
Áe�F��å�~�ñã� } ��ñã�Á��B�����h���W�F�Cu¡������!���0~�YAåW���
¶.�B�h�1��Y��^å�wÂ¶��G��¸�ÿ��4üP�oÿ��F�4¸>ú é �«½)�d�ª�p�ª¶�ü-�F�eë

û ÿjÿ�ýº»k§�¡�¯��i��ú�¸Ez é §e©���µG�d�s�G°fíz�Q�d�s£���¥s�i�)�d�ª�p�p�ª¥s¥K�?�d�s§e���ª¸ {r-B
�
} ��ñã
Áb�)�!�"¡���Á����W�F� ¶�²-§j¥\¸�ÿ��o¶��G§G¸�ÿ4¶hü8�-ÿ(��ü-���o¶3ü8�F�4ü

û ÿeë!ý¦¹·�!�d�p§j�¢í%¸�z é §j©���µo�d�s��°��d�����G±öG�s©��ª�G�p�s§j���?¥-íz�ª¥K�?µ����ª¯
�d�ª�p�p�ª¥s¥K�?�d�s§j�;¡6�s�d�;�e�G��¥s�s£��?�d�s§e�;�d§"dÂ§e�d§e��§e�'�+§e¥Q¯o�d§e�+�ª�ª¸ {
-B
� } ��ñã�Á��)�!�5¡���Á����W�F� ¶�²j§j¥\¸jÿ��G¶-��§G¸jÿ�¶�ü-�F����ü@�jÿ�¶+ü-���oü

û ÿ��?ýº½)�?�d�i�d�p§e����¸ ¼+¸s¶Jak�e§��k¸ �k¸�z�ÃM·¦£ª�s�ª���8»k�s���?�p¯ð¼4���?£ª�
½)�?�p�d�Q�d�s§j�G�	¬/§?�·÷Â�K�o�ª�G±�¼4µG�p¬\�?£ª�²Ìf�ª©�§!²e�e¥%�e��ò¼4§j¥s�K
�´§4G�ª¥s�s��°o¸ {�¶.���!�J���!�)�K����� } ���ã�Á��B�����h�����F�9u¡������!���0~?¶
²-§j¥\¸��4¶e�1�F���b���jë4¶)ü-�F���

û ÿF��ým¼o£��G�d§���o�i�k¹�¸K¶e�8�!�p�d�s�Qm¦¸s¶�6�§?�d�ª���p§e�m»f¸�-Be�Q·§����Áe�F� ��	
�!�����h���OM�-�F� �����S	1wñ�O¸9D¬¹@���J�h	0¸����B�!�e�)���"w�ã1ã��E�-�1�0B��B��²�¶
u�����ã.B��h�J�d¸k½Û�d�ª���d�s£ª�i±w÷Â�e¥s¥\¶>ÿ?��;��o��¸s¶'ü-�F���

Generalization of the Kantorovich Method of Dimensional Reduction

Dr. Krishnan Suresh
Department of Mechanical Engineering

University of Wisconsin, Madison

suresh@engr.wisc.edu

ABSTRACT

 Boundary value problems posed over thin solids are often amenable to a dimensional reduction in that one or more spatial
dimensions may be eliminated from the governing equation. One of the popular methods of achieving dimensional reduction is

the Kantorovich method, where based on certain a priori assumptions, a lower-dimensional problem over a ‘mid-element’ is

obtained. Unfortunately, the mid-element geometry is often disjoint, and sometimes ill defined, resulting in both numerical and

automation problems.

 A natural generalization of the mid-element representation is a skeletal representation. We propose here a generalization of
the Kantorovich method that exploits the unique topologic and geometric properties of the skeletal representation. The proposed

method rests on a quasi-disjoint Voronoi decomposition of a domain induced by its skeletal representation. The generality and

limitations of the proposed method are discussed using the Poisson’s equation as a vehicle.

Keywords: Geometric simplification, medial axis transforms, dimensional reduction, plate theory, CAD/ CAE.

1. INTRODUCTION

 Engineering analysis typically entails solving

boundary value problems via computational procedures
such as the finite element method. When the underlying

geometry is relatively thin, boundary value problems are

amenable to a dimensional reduction in that one or more

spatial variables may be eliminated from the governing

equation, prior to a finite element discretization. This
results in significant computational gains with minimal loss

in accuracy [Donaghy 96]. A popular means of achieving

dimensional reduction is the Kantorovich method
[Kantorovich 64], [Pilkey 94], [Shames 85]. The essential

aspects of the method are summarized below for the
Poisson’s equation. This summary will also help identify an

important limitation of the method that we address here.

1.1 The Kantorovich Method

Consider a thin rectangular domain illustrated in

Figure 1-1, where lh << . Let),(yxU be a field that

satisfies the Poisson’s equation:

 interiorfor 0
2 ∈+∇ (x,y)k =U

 Subject to: boundaryfor 0 ∈= (x,y)U

The problem of determining),(yxU is two-dimensional,

but since lh << it may be reduced to an approximate one-

dimensional problem via the Kantorovich method.

l
2h

y

x

Midelement

Figure 1-1: Mid-element of a rectangle.

 The first step in the Kantorovich method is to exp ress

the Poisson’s equation as an equivalent variational

statement [Reddy 84], [Shames 85]:

 Minimize () ()∫ ∫
−

−+=Π
l h

h
yx dydxkUUUU

0

2
,

2
, 2

2

1
 (1-1)

 Subject to: boundaryfor 0 ∈= (x,y)U

The next step is to seek an approximate solution),(yxU
)

that satisfies the boundary conditions on the ‘dominant

parallel edges’, i.e., on hy ±= . A non-trivial function

satisfying this requirement is:

)(1),(

2

xu
h
y

yxU

−=

)

Higher-order polynomials in y or even trigonometric

functions may be used, provided 0),(ˆ =±hxU .),(yxU
)

 is

referred to here as a Kantorovich trial function; it defines

the ‘function space’ in which a solution is being sought.

Note that)()0,(ˆ xuxU = where)(xu is an unknown

function over the line-segment 0=y . This line-segment is

incidentally called a mid-element of the rectangle.

 In the assumed function space, one can find)(xu by

substituting the trial function in the variational statement

and integrating over y , i.e., eliminating y . This results in:

Minimize () dx
khu

h
uhu

uu
l

x
x ∫

−+=Π

0

22
,

,
3

4

3

8

15

16
,

 Subject to: lxu ,0for 0 ==

Thus a 2-D variational problem has been reduced to a 1-D

variational problem over the mid-element involving)(xu .

One can now proceed to minimize the 1-D problem using

standard 1-D finite element techniques [Reddy 84],
[Shames 85].

 Thus the above Kantorovich method may be viewed as

a two-stage approximation process as opposed to a single

stage finite-element method, as illustrated in Figure 1-2

[Babuska 94].

n-D problem

Numerical
Solution

(n-1)-D problem

over mid-element
n-D finite-element

trial functions

(n-1)-D finite-element
trial functions

Kantorovich
trial functions

Figure 1-2: Mid-element dimensional reduction.

 By considering Kantorovich trial functions that

completely span the solution space, a hierarchical system of

solutions),(yxU n
)

 that converge to the exact solution may

be obtained; see hierarchical methods proposed by Babuska

and others [Vogelius 81], [Babuska 94]. The two-stage

approximation results in considerable computational gains

since the first stage is executed once in a symbolic sense.

 Various lower-dimensional theories of beams and
plates are derived along similar lines. The starting point for

such theories is the principle of virtual displacement, a

generalization of the above variational statement, which

states that for a system in static equilibrium, the work done

by a virtual displacement must be zero [Shames 85]:

 0ˆ

2

=−− ∫∫∫
S

ii
V

ii
V

ijij dDutdVufdV δδδεσ

If the solid is sufficiently thin, one may assume certain trial

functions for the displacements iu , and a spatial variable

may be eliminated resulting in a lower dimensional

problem over the mid-element [Shames 85], [Wang 00].

2. LIMITATIONS OF THE MID-ELEMENT
BASED KANTOROVICH METHOD

 We now identify a serious drawback of the mid-

element based Kantorovich method. Consider the notched

rectangle illustrated in Figure 2-1. For simplicity, we shall

assume that a field defined over the solid satisfies, as

before, the Poisson equation and zero Dirichlet conditions.

Figure 2-1: A notched rectangle.

 Recall that, in the Kantorovich method, one must seek

a trial function that satisfies the boundary conditions along

the ‘dominant parallel edges’. Due to the irregularity of the

solid, it is not possible to define a single analytic function

over the entire domain that meets this requirement. The

domain is therefore divided into 3 quasi-disjoint regions

1Ω , 2Ω and 3Ω as illustrated in Figure 2-2. Further one

can define a mid-element iM and a thickness ih2 with

each region. The pairs ()ii hM , constitute the mid-element
representation of the solid that unambiguously captures the

geometry of the notched rectangle.

1Ω 2Ω
3Ω

1M
2M

3M

Figure 2-2: Mid-element based decomposition.

 Observe that, due to the decomposition, the variational

statement of Equation (1-1) can now be expressed as:

 Minimize ()∑ ∫ ∫
= −

−+
3

1 0

2
,

2
,

ˆ2ˆˆ

2

1

i
ii

l h

h
iyixi dxdyUkUU

i i

i

where the x-axis conveniently coincides with the mid-

element iM . We now define three trial functions 1U
)

, 2U
)

and 3U
)

, one in each of the three domains per:

)(1),(

2

ii
i

i
iii xu

h
y

yxU

−=

)

Observe that 0),(ˆ =± iii hxU , and)()0,(ˆ
iiii xuxU = where

)(ii xu are unknown functions.

 With these definitions in place, one can eliminate iy

as before by substituting the assumed trial functions in the

above variational formulation. This results in a variational

statement governing three unknown functions iu over the

3 independent mid-elements iM .

 At first glance, it appears that the above formulation is

no different from that associated with a rectangle.

However, this is not true … we have now violated the
admissibility criterion of a variational formulation! It is a

well-established fact that in a variational formulation,

whenever a domain is sub-divided, and different trial

functions are defined over each sub-domain, the trial

functions must satisfy an admissibility criterion [Strang 73].
The admissibility criterion states that if the variational

statement involves derivatives up to order m, then the trial

functions must be at least 1−mC continuous across the

boundaries of adjacent sub-domains.

 In our case the variational statement involves only the

first derivative of),(yxU . However, one can easily verify

that the assumed trial functions),(yxU i
)

 are not
0C continuous across the common boundaries, violating

the admissibility criterion. This fact is often ignored,

leading to both automation and numerical problems.

 Since the assumed trial functions are not admissible

from a variational standpoint, any attempt to couple the

three functions 1u , 2u and 3u , and their derivatives is

necessarily ad hoc and approximate … it does not follow

from the mid-element based geometric decomposition.

More importantly, since the admissibility criterion is

violated, no formal claims can be made about the
convergence or accuracy of the mid-element based

Kantorovich method, as it applies to such solids.

 Further, a mid-element based decomposition does not

always exist since the mid-element representation is

incomplete for a large class of solids. For example,
consider a dovetail section illustrated in Figure 2-3. Since

there exists no mathematical definition of a mid-element,

we rely on the dimensional reduction process to yield

appropriate mid-elements. This would yield the mid-

elements illustrated in Figure 2-3. However, it is now
impossible to assign a thickness – even a varying one – to

each of the mid-elements such that the solid may be

recovered, i.e., the mid-element representation is

incomplete. The two problems identified above are much

more pronounced and difficult to resolve in 3-D.

Figure 2-3: Disjoint mid-elements for a dovetail

2.1 Prior Work

 The Kantorovich method (and its variations) has been
extensively investigated, as it applied to uniform-thickness

plates and shells. The works of Reissner, Hencky, Mindlin,

Lo, Reddy and others (see references in [Reissner 85]) fall

into this category, so does the modern work on hierarchical

modeling [Vogelius 81], [Babuska 91], [Madureira 99].
 However, focusing our attention on geometrically

more complex but thin solids, Armstrong and colleagues

[Armstrong 94], [Donaghy 96] were the first to propose the

use of medial axis transform (defined below) to resolve

some of the geometric issues associated with the mid-
element representation. The medial axis transform, or

skeletal representation as it is referred to in this paper, is a

natural generalization of the mid-element representation,

and it consists of a skeleton and a radius function, where

the skeleton ‘follows’ the shape of the solid, while the
radius function captures the local thickness. The skeleton of

the dovetail is illustrated in Figure 2-4. Observe the

similarities and differences between Figure 2-3 and Figure

2-4. The most important difference is that the skeletal

representation is an unambiguous and complete geometric
representation, whose mathematical properties are now

well understood [Choi 97], [Sherbrooke 96], and its role in

engineering analysis is well documented [Tam 91],

[Armstrong 95], [Price 95], [Armstrong 98], [Monaghan

98], [Sheffer 98], [Armstrong 99], [Shim 01].

Figure 2-4: The skeleton of the dovetail.

Since the skeletal representation of a solid is well

defined, numerous authors [Donaghy 96], [Onodera 01]
have proposed computing an approximate mid-element

from the skeleton. However, the approximation involves

heuristics since the mid-element is not mathematically well

defined. Moreover, the resulting mid-element is not

necessarily continuous, leading to a violation of the
aforementioned admissibility criterion. Finally, there is an

inherent loss in geometric information during the

approximation. This loss can never be recovered in that the

computed field solution will never converge to the exact

solution in the sense of [Babuska 94].
In this paper, we propose a direct skeletal

representation based Kantorovich method that does not rely

on heuristics, and can therefore be fully automated. Further,

the proposed method will not only satisfy the admissibility

criterion, but also the conformance criterion [Strang 73],
and is therefore expected to converge to the exact solution.

2.2 Skeletal Representation Based
Generalization of the Kantorovich Method

The method proposed here combines the Kantorovich

principle of two-stage reduction with the unique topologic
and geometric properties of the skeletal representation, and

has three essential features.

• First is the decomposition of a solid into its S-Voronoi
decomposition (see Section 3).

• Second is the definition of generalized Kantorovich
trial functions defined over the decomposition. By

construction, the trial functions will not only satisfy

the admissibility criterion, but will also be complete

and satisfy essential boundary conditions.

• Third is the elimination of one of the space variables

(essentially, the thickness parameter), by appropriate

mathematical transformations.

In Section 3, we review the properties of skeletal
representations. In Section 4, we describe the proposed

method in detail using the Poisson’s equation as a vehicle.

In Section 5, numerical experiments involving Poisson

problems over 2-D polygonal solids are presented. In

Section 6, we propose a strategy for inclusion of
singularities, and Section 7 summarizes the main

contributions of the paper.

3. SKELETAL REPRESENTATIONS

 Skeletal representations (s-reps) are characterized by

two entities, namely a skeleton (or medial axis) and a

radius function. The two entities are defined through the

concept of a maximal ball [Sherbrooke 96]:

• A closed ball nrpB ℜ⊂),(is the set of points q

such that rqp ≤−

• A closed ball
nrpB ℜ⊂),(is maximal with respect to

Ω if it is contained in Ω , but not in any other closed

ball contained in Ω .

• Skeleton of Ω is the locus of the centers of all

maximal balls of Ω , plus the limit points of the locus.

• Radius function at a point on the skeleton is the

radius of associated maximal ball.

The s-rep of a 2-D L-bracket is illustrated in Figure 3-1. A
mathematical analysis of s-reps can be found in [Choi 97],

[Calabi 68], [Sherbrooke 96].

s
R(s)

Figure 3-1: S-rep of an L-bracket.

We shall assume here that the skeletal representation

of a 2-D solid can be computed using, for example, the
techniques proposed in [Meshkat 87], [Srinivasan 87],

[Ramanathan 02]. Techniques for 3-D computation of a s-

rep may be found in [Sapidis 91], [Hoffman 94],

[Turkiyyah 97], [Etzion 99], [Etzion 02].

 3.1 S-Voronoi Decomposition

 The theory developed in this paper is restricted to

geometrically complex thin solids whose skeletal branches

are of dimension ‘n-1’ and terminate at the boundary.
Polygons and polyhedrons, for example, exhibit this

property [Blum 78], [Nackman 82]. Such solids posses a

convenient S-Voronoi decomposition discussed below.

 On the other hand solids such as the one illustrated in

Figure 3-2 are not considered here since one of the skeletal
branches terminates in the interior of the domain. We

expect to extend the theory to such solids in a forthcoming

paper.

Interior Skeletal Point

Figure 3-2: Interior skeletal point.

 Focusing our attention on thin 2-D solids, let

())(),(ss ii ηξ , Ni ≤≤1 be the N skeletal branches of a

solid, where s is the arc length parameter ranging from 0

to il , the length of the skeletal branch. Further, let)(sRi ,

Ni ≤≤1 be the associated radius functions. Given a triple

())(),(),(sRss iii ηξ we define the following.

 Define)(siα to be the angle made by the tangent at

())(),(ss ii ηξ to the global x axis, i.e.,

 () ()sisi
ii

ii ds
d

ds
d

,, ,,sin,cos ηξ
ηξ

αα ≡

≡

Further, let)(siθ be the angle between the tangent vector,

and the vector to the nearest boundary point. One can show
that [Blum 78]:

−= −

ds
dR

s i
i

1
cos)(θ

Figure 3-3 illustrates a skeletal branch that is a bisector of

two boundary segments, and the definition of α and θ .

x

y
+Ωi

−Ωi

skeleton
boundary

θ

Figure 3-3: Geometry of a skeletal curve.

One can now associate two sets +Ωi and −Ωi with each

skeletal triple ())(),(),(sRss iii ηξ as follows:

()
()

10;0

sin),(

cos),(

<≤≤≤

++=

++=
≡Ω

+

+
+

κ

αθκηκ

αθκξκ

i

iiiii

iiiii
i

ls

Rsy

Rsx
 (3-1)

()
()

10;0

sin),(

cos),(

<≤≤≤

+−+=

+−+=
≡Ω

−

−
−

κ

αθκηκ

αθκξκ

i

iiiii

iiiii
i

ls

Rsy

Rsx
 (3-2)

The sets +Ωi and −Ωi lie on the left and right side,

respectively, of a directed skeletal branch, as illustrated in

Figure 3-3. Equations (3-1) and (3-2) are transformations

from (){ }10,0, <≤≤≤=Ψ κκ ii lss to ±Ωi .

 If none of the skeletal branches terminate in the
interior, then one can show that the solid can be expressed

via the following S-Voronoi decomposition:

 ()U
i

ii
−+ Ω+Ω=Ω (3-3)

On the other hand, if there are internal terminal points for a

skeleton, then the decomposition has additional terms:

 () UU
k

k
i

ii
0Ω+Ω+Ω=Ω −+

 (3-4)

 We use the term S-Voronoi decomposition to

distinguish it from the standard Voronoi decomposition

[Srinivasan 87], the latter being a coarser version of the

former. For example, Figure 3-4 illustrates the difference
between the two for a rectangle.

(a) S-Voronoi decomposition

(b) Voronoi decomposition
Figure 3-4: S -Voronoi versus Voronoi decomposition.

 Observe in Figure 3-4a that the S-Voronoi

decomposition consists of 10 sub-domains, 2 sub-domains

per skeletal branch. On the other hand, Figure 3-5b consists
of 4 sub-domains, one per boundary segment.

 Figure 3-5a illustrates the S-Voronoi decomposition of

the dovetail consisting of 26 sub-domains. Figure 3-5b is a

detailed view of Figure 3-5a about the left reentrant corner.

Figure 3-5: S-Voronoi decomposition of dovetail.

 We shall assume here that the solid can be

decomposed per Equation (3-3). If such is the case, then the

boundary of the solid can also be decomposed as:

 ()U
i

ii
−+ Γ+Γ=Ω∂ (3-5)

where the two boundary curves)(si
+Γ and)(si

−Γ are

obtained by setting 1=κ in Equations (3-1) and (3-2):

3.2 Jacobian Transformation

 For transformations given by Equations (3-1) & (3-2),

one may define standard Jacobians matrices [Bronshtein

85] that are employed in Section 4 of this paper:

≡ ±±

±±
±

κκ
κ

,,

,,).(

ii

sisi
i

yx

yx
sJ (3-6)

By definition, we have:

iy

x
i

i

s

U
U

J
U
U

=

 ±

±

,

,

,

,

κ
 (3-7)

One can show that the determinant of the Jacobian is given

by:

)(sin),(,, sisiiiii RRsJ αθκθκ +±−±=± (3-8)

The determinant will be employed in Section 4 in the

transformation of area integrals between the),(yx space

and the),(κs space. For polygons, the expression for the

determinant can be vastly simplified by observing that a

skeletal branch is one of three types summarized in Table

3-1 [Kim 95]. For each of the 3 types, the functions si,θ

and si,α appearing in Equation (3-8) simplify significantly,

as summarized in Table 3-1 below.

Boundary
Segments

Skeletal
Branch

s,α s,θ

Line-line Line-segment 0 0

Point-
point

Line-segment 0

)(

sin

sR
θ

Point-line Parabola

)(2

sin

sR
θ

)(2

sin

sR
θ

Table 3-1: Types of skeletal branches.

 Finally, one can show that the Jacobian transformation

defined per Equation (3-6) is invertible, i.e., the

determinant is non-zero, in the interior of a domain. Thus,

we have:

 ()
±

−±

=

i

s
i

iy

x

U
U

J
U
U

κ,

,1

,

,

4. PROPOSED METHOD

 In this section, we propose a generalized Kantorovich

method for a variational formulation, using the variational

statement of the Poisson’s equation as a vehicle:

Minimize () ()∫ ∫
−

−+=Π
l h

h
yx dydxkUUUU

0

2
,

2
, 2

2

1
 (4-1)

Subject to: Ω∂∈Γ=),(for)(ˆ yxuU

The proposed method consists of the following steps.

Step-1: The first step is to compute the skeletal

representation of the solid, and to express the solid as an S-

Voronoi decomposition as in Equation (3-3). We assume
that this can be carried out using one of technique proposed

in [Meshkat 87] or [Etizon 99]. Due to the decomposition,

the above minimization problem simplifies to:

 ()()∑ ±±Π
i

ii UMinimize

where each term of the integral is of the form:

() ()

−

 +

=Π

∫∫

∫∫

±

±

Ω

±

Ω

±±

±±

i

i

dxdykU

dxdyUU

U
i

yixi

ii

2

,

2

,
2

1

)((4-2)

Step-2: The next step is to exploit the Jacobian

transformation described in Section 3, to make a variable

change () ()κ,, syx → in Equation (4-2):

() ()

=

−

=Π

±

±
±

±±

±±
−

±±±
±

∫ ∫

∫ ∫

κ

κ

κ

,

,

0

1

0

0

1

0

1

2

1

)(

i

si
i

l
ii

l
iii

T
ii

T
i

U

U
U

dsdJkU

dsdJUJJU
U

i

i

i

 (4-3)

We then define a set of generalized Kantorovich trial

functions),(κsU i
± that satisfy:

• Admissibility criterion

• Completeness criterion

• Conformance criterion

• Essential boundary conditions.

These requirements are identical to the ones imposed on
finite element trial functions to ensure convergence [Strang

73], and are discussed below.

Admissibility: For the Poisson problem, the admissibility

criterion states that the trial functions must be at least 0C

continuous across the boundaries of adjacent sub-domains

in the (x, y) space. In Figure 3-5, sub-domain 1 is adjacent
to sub-domains 2, 3 and 4. The trial functions defined in

region 1 must therefore be at least 0C continuous with the

trial functions in 2, 3 and 4.

 Observe that there are two types of adjacency. The

first type (type-1) involves regions that share a common

skeletal branch; the adjacency between regions 1 and 2 is of

this type. Since a skeletal branch corresponds to 0=κ in

Equations (3-1) and (3-2) type-1 adjacency requires that

)0,()0,(sUsU ii
−+ = .

 On the other hand, in a type-2 adjacency, neighboring

regions (example: 1 and 3) do not share a common skeletal
branch but a common branch-point. This corresponds to

0=s or ils = in Equations (3-1) and (3-2), leading to

compatibility conditions that describe how unknown

functions defined on one skeletal branch are related to

unknown functions over neighboring skeletal branches.
Completeness: Next consider the completeness criterion.

Recall that a polynomial)(κg is complete up to order m ,

if)(κg contains
mκκκ ,...,,

10
. We impose a similar

condition with respect to the thickness variable κ on

),(κsU i
±

Conformance : In the posed problem, the requirement for

conforming trial functions is the same as the admissibility,

i.e., the trial functions must be at least 0C continuous

across the boundaries of adjacent domains.

Boundary Conditions: Finally,),(κsU i
± must satisfy

essential boundary conditions on ±Ωi . Let)(swi
±

 is the

Dirichlet boundary condition on the boundary curve

)(si
±Γ . The trial functions must therefore satisfy

)()1,(swsU ii
±± =

Trial Functions of type 0C : Consider the following trial

functions, where { })(sui are unknown functions:

 { }κκκ)()1)((),(swsusU ii
++ +−= in +Ωi (4-4a)

 { }κκκ)()1)((),(swsusU ii
−− +−= in −Ωi (4-4b)

One can verify that),(κsU i
± satisfy all the above

requirements (additional compatibility conditions must be

imposed on)(sui at branch points).

Trial Functions of type 1C : While the above trial functions

meet the necessary requirements, better convergence can be

expected if higher order continuity is imposed. For

example, one can show that the following trial functions

satisfy 1C continuity:

+−

 +

+−

=

+

+

2

2,

2

)(

)(
sin)(

cos

)1)((

),(

κ

κκ
θ

θ

κ

κ

sw

sq

u
R

su

sU
i

si

i

i in +Ωi (4-5a)

+−

 −

+−

=

−

−

2

2,

2

)(

)(
sin)(

cos

)1)((

),(

κ

κκ
θ

θ

κ

κ

sw

sq

u
R

su

sU
i

si

i

i in −Ωi (4-5b)

where { })(),(sqsu ii are unknown functions (compatibility

conditions must be imposed on { })(),(sqsu ii at branch-

points in order to have 1C continuity for type-2

adjacency). Henceforth, we assume that the trial functions

for the Poisson’s equation are of type 1C and are given by

Equations (4-5a) and (4-5b).

Step-3: The next task is to substitute Equations (4-5a) and

(4-5b) in Equation (4-3) and carry out a symbolic

integration over the thickness variable κ . As stated earlier,

the task is vastly simplified since),(κsU i
± involves low

order polynomials. This task was executed using

Mathematica, a symbolic software package.

 Once κ is eliminated, the problem reduces to solving

for { }N
iii sqsu 1)(),(= in:

()()∑ ±Π=Π
i

siissisiii qquuuUMinimize ,,, ,,,,)((4-6)

subject to compatibility conditions at branch points.

Step-4: The final step is to apply a finite element

procedure to minimize Equation (4-6) in an approximate
sense using finite element approximation is standard

[Shames 85]. We do not discuss the details here, except to

note that we employ a Hermitian approximation of)(sui

and a linear approximation of)(sqi .

5. NUMERICAL EXPERIMENTS

 In the previous section, we enforced all the required
conditions to ensure convergence of the proposed method.

In order to study the accuracy of the proposed method, we

consider a few field problems whose exact solutions are

known. In addition, a few problems with no known closed-

form solutions are also considered, and the results are
compared to finite element solutions.

 Recall that the Kantorovich method consists of two

distinct approximation stages (Figure 1-2):

• Stage 1: Approximation via Kantorovich trial functions

• Stage 2: Approximation via finite element trial functions.

Each stage introduces an approximation error, referred to as

stage-1 and stage-2 error. Depending on the problem, one

or both errors may be present. We measure the total

numerical error using a pair of normalized ∞L errors:

u

uu
Eu

max

ˆmax −
= ;

q

qq
Eq

max

ˆmax −
=

Experiment 1

 The first numerical experiment involves solving the

Laplace equation 0),(2 =∇ yxU over 2 convex solids: (a) a

rectangle of length 1 and height 0.1, (b) an equilateral

triangle of side 1. Dirichlet boundary conditions are

specified and their values are such that the exact solution is

a quadratic field “)(2.0)(),(22 yxyxyxU ++−= ”.

 Note that for convex solids, the geometric

transformation between (s,κ) space and (x, y) space, given

by Equations (3-1) and (3-2), is linear. Thus the quadratic
Kantorovich trial functions of Equation (4-5) and (4-5) are

sufficient to capture the field exactly, i.e., one would expect

the stage-1 error to be theoretically zero.

 Further, in the finite element approximation, we have

employed a quadratic approximation of)(ˆ su and a linear

approximation of capture)(ˆ sq . Thus stage-2 error is also

expected to be theoretically zero. Both these expectations

are confirmed in Table 5-1.

+
+−=

)(2.0

)(
),(

22

yx
yxyxU

#Finite Elements ~5

uE qE

Rectangle 1210− 1110−

Triangle 1210− 1110−

Table 5-1: Normalized errors for Experiment 1.

The computed solution)(ˆ su over the skeleton of the

triangle is illustrated in Figure 5-1. This experiment

suggests the generality of the proposed technique. In

contrast, a ‘mid-element’ based Kantorovich method is
inconceivable for the triangle.

Figure 5-1: Computed solution over the skeleton.

Experiment 2
 The next set of numerical experiments is similar to the

first except that the exact solution is a Laplacian field

“)3(),(23 xyxyxU −= ” over a rectangle of length 1 and

height 0.1. We would expect to see stage-1 inaccuracy
since the exact field is cubic while the approximating

Kantorovich functions are quadratic. Stage-2 inaccuracy is

expected to diminish with increasing number of elements.

The normalized errors are summarized in Table 5-2. As

expected, the errors diminish with increased number of
elements, but never reach zero due to the presence of stage-

1 error.

)3(),(23 xyxyxU −=

Rectangle (1x 0.1)

uE qE

#Finite Elements = 5 45 −e 0211.0

#Finite Elements =13 573.2 −e 0022.0

#Finite Elements = 23 646.7 −e 46 −e

#Finite Elements = 80 66 −e 405.1 −e

#Finite Elements = 200 66 −e 475.0 −e

Table 5-2: Normalized errors for Experiment 2.

Experiment 3

 The third set of numerical experiment involves solving

the Poisson’s equation 2),(2 −=∇ yxU over two non-

convex solids (a) dovetail (Figure 2-4), and (b) a modified

L-bracket (see Figure 5-2). Dirichlet boundary conditions

are specified and their values are such that the exact

solution is the Poisson field “ 2/)(),(22 yxyxU +−= ”.

Figure 5-2: A modified L-bracket.

 The normalized errors are summarized in Table 5-3.

The major contributor to the total error is stage-1. Observe

that geometrically complex domains can be handled with

equal ease.

Field: 2/)(22 yx +−
#Finite elements: 100

uE qE

Dovetail 310− 210−

L-bracket 410− 210−

Table 5-3: Normalized errors for Experiment 3.

The computed solution over the modified L-bracket is

illustrated in Figure 5-3.

Figure 5-3: Computed solution on the skeleton of
a modified L-bracket.

Experiment 4

 The final set of numerical experiments involves

computing torsional stiffness for various 2-D cross-
sections. Closed-form solutions typically do not exist for

such problems, barring a few exceptions. We assume here

that Saint Venant’s torsional assumptions hold true [Pilkey

02], [Chou 92]. For solids without holes, the problem

reduces to solving 22 −=∇ ϕ in Ω and 0=ϕ in Ω∂ ,

where ϕ is the Prandtl’s function … then computing the

torsional stiffness given by ∫ Ω= dJ ϕ2 .

 Note that this experiment goes beyond just computing

the two unknown functions)(ˆ su and)(ˆ sq over the

skeletal functions in that an integral of the 2-D solution

over the entire domain must be computed.
 We first consider the simple case of a thin rectangle

whose torsional stiffness is known in closed-form. Figure

5-4 illustrates the computed Prandtl’s function ϕ over the

skeleton of a rectangle of dimensions 05.0,1 == HL .

Figure 5-4: Prandtl’s function ϕ over the skeleton

of a thin rectangle.

The exact, computed and St. Venant’s estimate for the
stiffness of a rectangle for 2 different aspect ratios are

summarized in Table 5-4.

 Exact Proposed
method

#Elements
=20

Proposed
method

#Elements
=200

St.
Venant’s
Estimate

L=1;
H=0.1

4123.3 −e 40228.3 −e

(96.8%)

4076.3 −e

(98.5%)

4333.3 −e

(106.7%)

L=1;
H=0.05

5035.4 −e 59105.3 −e

(96.9%)

5001.4 −e

(99.1%)

51667.4 −e

(103.2%)

Table 5-4: Torsional stiffness estimates for a
rectangle.

Further examples appear in Table 5-5. St. Venant’s

estimate of the torsional stiffness is implicitly based on a

mid-element representation; it leads to fairly accurate

estimate stiffness for solids such as the rectangle and I-
beam, but is inaccurate, as one would expect, for

geometrically complex solids such as the dovetail

 2-D FEM
Estimate

#Finite
Elements

=100

St. Venant’s
Estimate

I-Beam 94208.2 −e 94009.2 −e

(99.1%)

9395.2 −e

(98.9%)

Dovetail 440112.1 −e 43832.1 −e

(98.7%)

4875.1 −e

(133.1%)

Table 5-5: Torsional stiffness estimates for
irregular geometry.

6. INCLUSION OF SINGULARITIES

 In Sections 4 and 5 we used polynomials of κ as trial

functions – Equations (4-5a) and (4-5b) – to approximate

an unknown field),(κsU . Polynomials are sufficient if the

field is sufficiently smooth or if only a global property of

the field is desired. However, elliptic fields often exhibit

singularities at the boundary that must be captured to
predict, for example, failure of a stressed member.

 The most common source of a singularity is the reflex

or reentrant corner where the internal angle between two

adjacent boundary edges exceeds 0180 . Figure 6-1

illustrates an example of a reentrant corner with an interior

angle of α .

αθ
r

Figure 6-1: Singularity at a reentrant corner.

 The nature of the singularity near a reentrant corner

depends on the boundary conditions on the adjacent edges,

and can be determined a priori up to an unknown constant.

For example, let a field),(yxU satisfy the Poisson’s

equation over the domain in Figure 6-1, and let zero

Dirichlet boundary conditions be specified over the entire

domain. Then the first term of the singularity near the

reentrant corner of Figure 6-1 in polar coordinates is given

by [Strang 73]:

=

α
θπ

θ α
π

sin),(KrrU

where K is an unknown constant to be determined.

 Unfortunately, polynomial trial functions cannot

capture such singularities accurately. We propose here a

simple strategy by augmenting polynomial functions with
explicit singularity functions; this is similar to how

singularities are handled in classic finite element analysis

[Strang 73]. The proposed strategy is as follows:

1. First create an artificial ‘singularity region’ of radius

ε centered about the reentrant corner, as illustrated in

Figure 6-2.

2. Then represent the field in the ε -region by a

singularity function, and elsewhere, by polynomial

trial functions as before.

3. Finally enforce 0C or 1C continuity, as appropriate,

along the common boundary of the ε -region.

ε-region

Figure 6-2: Isolation of the ε -region

At the present time, we have not implemented the above

strategy, and expect to do so in the future.

7. CONCLUSIONS

The preciseness and algorithmic nature of the

proposed method leads to a high degree of automation and
accuracy. Standard solid modeling, finite element and

graph theoretical concepts are sufficient, i.e., ‘special’

modeling techniques used in mid-element based techniques

are not required. The proposed method permits use of

singularity functions if desired.
On the other hand, there are two significant challenges

associated with the proposed method: (1) it requires the

computation of a skeletal representation; while this is

known to be a hard problem, especially in 3-D, recent

research, example, [Etizon 02], is promising, and (2) the
skeleton is ‘sensitive’ to small changes or representational

inaccuracies in the boundary [Rezayat 96], and may require

‘smoothening’ or de-featuring [Donaghy 96].

8. REFERENCES

[Armstrong 94] Armstrong, C. G., “Modeling

Requirements for Finite-Element Analysis”, Computer
Aided Design, vol. 26, no. 7, July 1994.

[Armstrong 95] Armstrong, C. G., Robinson, D. J.,

McKeag, R. M., Li, T. S., Bridgett, S. J., Donaghy, R.

J., McGleenan, C. A., “Medials for Meshing and

More”, Proceedings, 4th International Meshing
Roundtable, Sandia National Laboratories,
Albuquerque, Oct 1995.

[Armstrong 98] Armstrong, C. G., Bridgett, S. J., Donaghy,

R. J., McCune, McKeag, R. M., R. W., Robinson, D.

J., "Techniques for Interactive and Automatic
Idealization of CAD Models", Numerical Grid
Generation in Computational Field Simulations, Ed.
M. Cross., B. K. Soni, J. F. Thompson, J. Hauser, P.
R. Eiseman, Proceedings of the 6th International

Conference, held at the University of Greenwich,
pp.643-662, July 1998.

[Armstrong 99] Armstrong, C. G., Bradley, B., "Design

Optimization By Incremental Modification Model",

Proceedings, 8th International Meshing Roundtable,

South Lake Tahoe, CA, U.S.A., pp.293-298, October
1999.

[Babuska 94] Babuska, I., Lee, I., Schwab, C., “On the a

posteriori estimation of the modeling error for the heat

conduction in a plate and its use for adaptive

hierarchical modeling”, Applied Numerical
Mathematics, 14, pp. 5-21, 1994.

[Blum 78] Blum, H., and Nagel, R. N., “Shape Description

using Weighted Symmetric Axis Features”, Pattern
Recognition, vol. 10, pp. 167-180, 1978.

[Bronshtein 85] Bronshtein, I. N., and Semendyayev, K. A.,
Handbook of Mathematics , Van Nostrand Reinhold

Company, New York, NY, 1985.

[Calabi 68] Calabi, L, and Hartnett, W. E., “Shape

Recognition, Prairie Fires, Convex Deficiencies and

Skeletons”, American Mathematical Monthly, pp. 335-
342, April 1968.

[Choi 97] Choi, H. I.,Choi, S. W., Moon, H. P.,

“Mathematical Theory of Medial Axis Transform”,

Pacific Journal of Mathematics , Vol. 181, No. 1, pp.

57-88, 1997.
[Chou 92] Chou, P. C, Pagano, N. J., Elasticity: Tensor,

Dyadic and Engineering Approaches, Dover

Publications, 1992.

[Donaghy 96] Donaghy, R. J., Cune, W. M., Bridgett, S. J.,

Armstrong, C. G., Robinson, D. J., McKeag, R. M.,
“Dimensional Reduction of Analysis Models”, 5th
International Meshing Roundtable, Sandia National

Laboratories, pp. 307-320, 1996.

[Etzion 99] Etzion, M., Rappoport, A., “Computing the

Voronoi Diagram of a 3-D Polyhedron by Separate
Computation of its Symbolic and Geometric Parts”,

Proceedings, Fifth Symposium on Solid Modeling,

Ann Arbor, MI, pp. 167-178, 1999.

[Etzion 02] Etzion, M., Rappoport, A., “Computing

Voronoi Skeletons of a 3-D Polyhedron by space
subdivision”, Computational Geometry, 21, pp. 87-

120, 2002.

[Hoffman 94] Hoffman, C. M., “How to construct the

skeleton of CSG Objects”, Computer-Aided Surface
Geometry and Design, Oxford University Press, edited
by Bowyer, A., pp. 421- 437, 1994.

[Kantorovich 64] Kantorovich, L. V., Krylov, V. I.,

Approximate Methods of Higher Analysis,

Interscience, New York, 1964.

[Kim 95] Kim, D-S, Hwang, I-K, Park, B-J, “Representing
the Voronoi diagram of a simple polygon using

rational quadratic Bezier curves”, Computer Aided
Design, Vol. 27, No 8, 1995.

[Madureira 99] Madureira, A. L., “Asymptotics and
Hierarchical Modeling of Thin Domains”, Ph.D.

thesis, Department of Mathematics, The Pennsylvania

State University, August 1999.

[Meshkat 87] Meshkat, S. N., and Sakkas, C. M., "Voronoi

diagram for multiply-connected polygonal domains II:
Implementation and application", IBM Journal of
Research and Development, vol. 31, no. 3, pp. 373-

381, May 1987.

[Monaghan 98] Monaghan, D. J., "Coupling 1D Beams to

3D Bodies", Proceedings, 7th International Meshing
Roundtable, Sandia National Lab, pp.285-293,

October 1998.

[Nackman 82] Nackman, L. R., “Curvature Relations in

Three-Dimensional Symmetric Axes”, Computer
Graphics and Image Processing, 20, pp. 43-57, 1982.

[Onodera 01] Onodera, M., Nishigaki, I., “Medial Surface

Generation Technique for CAD-CAE Coupling”,

Transactions of the Japan Society for Computational
Engineering and Science, August 2001.

[Pilkey 94] Pilkey, W. D., Wunderlich,W., Mechanics of
Structures: Variational and Computational
Methods , CRC Press, 1994.

[Pilkey 02] Pilkey, W. D., Analysis and Design of Elastic
Beams: Computational Methods , John Wiley &

Sons, 2002.
[Price 95] Price, M.A., Armstrong, C. G., "Hexahedral

Mesh Generation by Medial Surface Subdivision: Part

I, Solids With Convex Edges", International Journal
for Numerical Methods in Engineering, Wiley, Vol 38,

Num 19, pp.3335-3359, October 1995.
[Ramanathan 02] Ramanathan, M., Gurumoorthy, B.,

“Constructing medial axis transform of planar

domains with curved boundaries”, Computer-Aided
Design, 35, PP. 619-632, 2002.

[Reddy 84] Reddy, J. N., Energy and Variational
Methods in Applied Mechanics , John Wiley and

Sons, New York, 1984.

[Reissner 85] Reissner, E., “Reflections on the Theory of

Elastic Plates”, Journal of Applied Mechanics, vol. 38,

no. 11, pp. 1453-1464, 1985.
[Rezayat 96] Rezayat, M., “Midsurface abstraction from

3D solids models: general theory and applications”,

Computer Aided Design, Vol. 28, No. 11, pp. 905-915,

1996.

[Sapidis 91] Sapidis, N. S., Perucchio, R., “Domain
Delanuay Tetrahedrization of Arbitrarily Shaped

Curved Polyhedra Defined in a Solid Modeling

System”, Proc. Symposium on Solid Modeling
Foundations and CAD/CAM Applications, Ed. J.

Rossignac and J. Turner, pp. 465-480, June 1991.
[Shames 85] Shames, I. H., Dym, C. L., Energy and Finite

Element Methods in Structural Mechanics ,

McGraw Hill, New York, 1985.

[Sheffer 98] Sheffer A., Etzion, M., Rappoport, A.,

Bercovier, M., “Hexahedral mesh generation using
Voronoi skeletons”, Proceedings of the Seventh

International Meshing Roundtable, Michigan, October

1998.

[Sherbrooke 96] Sherbrooke, E. C., Patrikalakis, N. M.,
Wolter, F-E., “Differential and Topological Properties

of Medial Axis Transforms”, Graphical Models and
Image Processing, Vol. 58, No. 6, pp. 574-592, 1996.

[Shim 01] Shim, K. W., Monaghan, D. J., Armstrong, C.
G., "Mixed Dimensional Coupling in Finite Element
Stress Analysis", Proceedings, 10th International
Meshing Roundtable, Sandia National Laboratories,

pp.269-277, October 7-10 2001.

[Srinivasan 87] Srinivasan, V., and Nackman, L. R.,

"Voronoi diagram for Multiply -Connected Polygonal
Domains I: Algorithm", IBM Journal of Research and
Development, vol. 31, no. 3, pp. 361-372, May 1987.

[Strang 73] Strang, G., Fix, G. J., An Analysis of the Finite

Element Method, Prentice-Hall, 1973.

[Tam 91] Tam, T. K. H, Armstrong, C. G., "2D Finite
Element Mesh Generation by Medial Axis

Subdivision", Advances in Engineering Software,
Elsevier, Vol 56, Num 13, pp.313-324, 1991.

[Turkiyyah 97] Turkiyyah G. M., Storti, D., Ganter, M.,

Chen, H., Vimawala, M., “An accelerated
triangulation method for computing the skeletons of

free-form solid models”, Computer Aided Design, 29

(1), pp. 5-19, 1997.

[Vogelius 81] Vogelius, M., Babuska, I., “On a

Dimensional reduction Method I. The Optimal
Selection of Basis Functions”, Mathematics of
Computation, Volume 37, Issue 155, pp. 31-46, 1981.

[Wang 00] Wang, C. M., Reddy, J. N., Lee, K. H., Shear

Deformable Beams and Plates: Relationship to
Classical Solutions, Elsevier Science, 2000.

Invited Speaker

Jami Shah
Arizona State University

ABSTRACT:

Evolution of geometric feature recognition techniques through four generations

Research in automatic feature recognition from 3D CAD models spans three
decades. This talk will give a historical perspective of feature recognition
methods. It will discuss the simple rule based systems of the 1970s, graph based
systems of the 80s, volume decomposition and hint based systems of the 90s,
and current hybrid systems. A very brief summary of the foundations of each
approach and its limitations will be presented. The talk will also show snapshots
of four generations of feature recognition systems developed in our lab. It will
compare current feature recognition approaches from several criteria:
robustness, computational complexity, range of features recognized, and
extensibility. If time permits, work in progress in automatic recognition will be
discussed.

arvasey
273

arvasey
274

Session 3A
Structured Meshing

AUTOMATIC NESTED REFINEMENT – A TECHNIQUE FOR THE
GENERATION OF HIGH QUALITY MULTI-BLOCK STRUCTURED

GRIDS FOR MULTI-SCALE PROBLEMS USING GRIDPRO®
Krishnakumar Rajagopalan1, Peter. R. Eiseman2

1Program Development Company, White Plains, NY., U.S.A. krishna@gridpro.com
2Program Development Company, White Plains, NY., U.S.A. eiseman@gridpro.com

ABSTRACT

 A technique for the generation of conformal adaptive refinement of hex meshes is presented. Automatic Nested Refinement is
a technique for generating recursively nested topology automatically. It can be applied inside GridPro's topological paradigm to
generate block structured grids which can resolve tiny features in the problem while providing for a smooth and consistent way to
transition to a larger scale. The selection of self-similar, ‘fractal-like’ topological templates makes the selection of number of
levels easy, while making the technique feasible for infinite levels of adaptive refinement. The technique has been programmed
and integrated into the GUI of GridPro, making it very accessible and easy to use. This method illustrates a way of generating
structured grids in an unstructured way, made possible because of the topological paradigm of GridPro. Because the technique
uses the topological paradigm, it inherits all the advantages the paradigm offers, including the ability to handle very complex
geometries, parametric variation of surfaces, and the ease of use, speed and quality of GridPro. The technique has been
illustrated using a variety of applications. This method has proved to be a fast, efficient, automatic and reliable means to perform
physical simulations that have a disparity in scale.

Keywords: mesh generation, multi-scale problems, multi-block grids, nested refinement, fractals, conformal adaptive hex
meshing, GridPro®

1. INTRODUCTION

 The term multi-scale problems are usually applied for
computational analysis of geometries having widely varying
length scales. For example, full-field oil reservoir simulations
are usually multi-scale problems. For full field simulations of
oil reservoirs, the scale of the field is usually of the order of
miles, while the scales of pipes and other such flow regions
are of the order of inches. Computational analyses of multi-
scale problems are usually hard because of the need to
generate a computational mesh which can resolve both the
higher end and lower end of the scale of the geometry, and
also taking care that the transition is smooth and consistent.
At present, there are a variety of methods to generate meshes
for such problems. They generally involve hybrid or
completely unstructured methods, or structured methods with
hanging nodes and other techniques.

 Multi-scale problems usually require a different approach
to grid generation. To accurately resolve the solution of the
field near the smallest spatial scales, the size of the
discretized spatial cells need to be of the order of these
smallest scales. If the same size cells are used in the large-
scale field too, then there will be too many cells at places
where it is not needed, and this can cause the computational
time of the numerical simulation to be too big for any

practical purposes. The field near the small-scale geometries
needs to be resolved with small cells, while the rest of the
flow field should be discretized with cells of large size. These
kinds of problems require special kinds of grids - grids which
can transition from a small size near the small features to
large cell sizes in the general field.

 Multi-scale problems are common in reservoir
simulations. But these problems can also occur in other
applications such as the analysis of very thin turbine blades,
the analysis of flow and heat transfer about/inside thin pipes
in biological flows etc. Also, as the need to produce more
complete and reliable analysis grows, problems which are not
usually multi-scale can become so. For example, the flow
past an aircraft or a car is not usually a multi-scale problem.
The study of fluid flow around a small appendage such as an
antenna is usually considered redundant. But cases can occur
where such analysis might be useful and needed, and in such
cases, a reliable method to produce grids for such cases needs
to be available. Other examples, like the analysis of the flow
past a thin structure like a strand of hair, or the analysis of
flow over riblets, etc can also be considered as multi-scale
problems. Sometimes, such a multi-scale grid may be
necessary to reduce the aspect ratio of the cells in certain
locations. The modern CFD (computational fluid dynamics)
algorithms are generally quite tolerant to high aspect ratios.

But there can be cases when low aspect ratio cells are desired
in certain key locations.

Figure 1 shows a simple example to illustrate how the
topology paradigm works in GridPro. Both topology 1 and
topology 2 produces almost identical grid point positions.
The iterative grid optimization algorithms in GridPro are very
robust and ensure the highest quality of the grid for a
particular topology. Another example to illustrate the
flexibility of topology is shown for a simple case below. The
robust optimization algorithms can untwist a folded block as
shown in figure 3.

 In this paper we show a technique by which one can easily
generate conformal multi-block grids for multi-scale
problems. The basic idea was to stack up elementary
topological elements in a certain way so as to handle scale
geometries in grids. A recursive way of stacking up a single
element was preferred because such a technique could be
programmed and hence provide for an easy and automated
way to handle multi-scale problems. Such a recursive or
'nested' structure is called a nested refinement in that region.

 A program called nest was developed which takes in a
certain input and gives a nested topology as output. The user
then loads in this nested topology (as a file), and links it to
his existing topology in a few mouse clicks. Nest operates in
an abstract topological level only, and does not need to know
anything about the actual surfaces. The grid generation
engine in GridPro takes care of topology conforming to the
actual surfaces. To make the utility more accessible, a button
was added in the GridPro GUI which leads to a dialog box
which runs the program to create the nested topology.

 Figure 2. Topology and Corresponding GridPro
Grid

2. GRIDPRO’S TOPOLOGICAL PARADIGM

 GridPro’s topology paradigm is a very powerful and
unique technique. This paradigm reduces the problem of
generating multi-block grids to that of generating a set of
loosely positioned topology corners and their connectivity.
The advantages of such a technique are its ease of use and
automation – because one does not have to worry about
positioning the corners exactly. Also, topology can be used as
a template and can be quite independent of the surfaces
themselves. This gives rise to an important advantage that
topology need be built only once for a grid generation
problem. Another main advantage is the automation which
can be achieved on the topology paradigm. Nest is one
example of how this kind of automation can be achieved.

Figure 3. Topology corners displaced, but it
produces the same grid

 (a) (b)

(c)

Figure 4. Grid Optimization in GridPro. Grid for
iteration step - (a) 100 (b) 500 (c) 3000

Figure 1. Loose positioning of topology corners

 Figure 4 illustrates the grid point movement algorithms by
showing pictures of a grid at different iteration steps for the
grid generation engine. Again, we see that the folded grid
cells in (a) have been unfolded and neatly placed in (c). This
illustrates the robustness of the GridPro’s grid generation
engine.

 The following pictures illustrate the idea of a self-similar
topological structure which has a high resolution in the
bottom and less in the top. A self-similar topological template
is chosen and recursively stacked to make such a structure.
As mentioned, this process is completely automatic once the
top and the bottom surfaces have been specified.

 Now that we have a robust topology engine behind us, we
have several possible options. One option is to develop
schemes to automatically generate topology. Another is to
develop an interactive topology generator. An interactive
topology generator called the AZ manager comes with
GridPro which has numerous features for automating small
parts of topology creation. This provides a kind of semi-
automatic approach to topology creation. The fully automatic
approach to topology creation is a present research topic in
Program Development Company. For more details on
topology creation and other aspects of grid generation in
GridPro, please refer to the GridPro TIL manual [1] and the
GridPro tutorials [2].

3. THE NEED FOR NESTED REFINEMENT

Consider the geometry as shown in figure 5(a) or figure 8.
There are many ways we can go about generating a grid for
such geometries. But suppose we set quality criteria on the
grid. – Set the worst aspect ratio of the grid to be less than 10,
and the grid should be smooth etc. A simple way is to just
build a structured grid with a lot of grid points to capture the
small features in the geometry. If we take this strategy, then
the grid in figure 5(a) will have about a million cells. In
figure 8, the radius of the tiny tube is about 0.005, and the
box dimensions are of the order 10*10*10. This means that a
simplistic strategy like the one described above will yield a
grid having more than 10 billion cells! Even for such simple
geometries, the problem starts becoming intractable using
simple methods.

Figure 5(a). Nested Topology and Grid

 Traditionally, because of the difficulties in generating
tractable structured grids for multi-scale problems,
triangular/tetrahedral or hybrid meshes, meshes with hanging
nodes etc have been the only grids used for such problems.
Automatic nested refinement offers to fill in for a structured
method which can do multi-scale problems in a reliable and
automatic way, offering the advantages of an unstructured
approach but a locally structured grid at the same time.

4. AUTOMATIC NESTED REFINEMENT

 The basic idea behind nested refinement is simple and
has been around for sometime. There are many ways of
generating topology to get such grids in GridPro. Some
references can be quoted from the GridPro TIL manual [1],
where a nested refinement structure has been used to
illustrate the idea of components in the topology input
language (TIL). Nested refinement can be looked at as a
generalization of a structure called the clamp[3].

Figure 5(b). Nested Topology and Grid – zooming in

to the boxes in 5(a)

 Figures 5a, 5b, 5c, 5d illustrate how nested refinement can
be applied in a topological sense and how this reflects in a
grid for the geometry shown. The geometry consists of a
regular two dimensional box with tiny sinusoidal waves
covering the bottom. In this case, there are 50 sinusoidal
waves covering the bottom. For a good resolution, one wave
needs to be captured with about 40 grid cells. This means we
need about 2000 grid cells in the bottom surface. In the grid
shown, there are more than 3000 grid cells in the bottom,
while there are only 12 in the top. There are 5 levels of nested
refinement in this case. The construction of a self-similar
structure makes it possible to produce a grid which expands
smoothly out into a low resolution region. Also, the
optimization algorithms in GridPro make it possible to get a
high quality grid throughout.

Figure 5(c). Nested Topology and Grid – zooming in
to the boxes in 5(b)

 Figure 5(f) Flow field solutions

 Figure 5(f) shows flow field solution for the wavy wall
problem computed using Fluent®. Comparisons between
flow field solutions using the nested grid (shown in figures 5a
through 5e) and a overpopulated grid on the same geometry
shows that the nested grid runs much faster but gives the
same results. For more details on this comparative
simulation, refer to [1].

Figure 5(d). Nested Topology and Grid – zooming in
to the boxes in 5(c)

 This concept can be easily extended into three dimensions.
Nest does this by simply extruding a two dimensional
topology. Nest can be applied consecutively in two transverse
directions to get a true three dimensional nested refinement.

5. IMPLEMENTATION OF NEST

 Nest can be accessed from the AZ manager, the Graphical
User Interface of GridPro. Clicking on the nest button will
pop up a dialog box like the one shown in figure 6.

 In GridPro, arbitrary groups of topology corners can be
identified as a group. At the time of this writing, there can be
32 such separate groups of corners. The first line in the dialog Figure 5(e) Grid near the wall

box in figure 6 specifies the group of corners which identifies
the region of the grid where a high resolution is required.
Similarly, lines 2 and 3, called the low density group number
and direction group numbers respectively, specifies the group
of corners which identifies the low density region and a
special group called the direction group. The direction group
is necessary because the nested refinement is done in one of
two possible directions at a time, and the direction group of
corners identifies the direction.

 The number of levels is a crucial number which needs to be
chosen with care by the user. This is the number of times the
self-similar structure is sub-divided. For now, only 5 groups
have been given in the dialog box. But the user can nest up to
arbitrarily many levels of nested refinement using the
program from the command line. In the limit of infinitely
many recursions, it will converge to a fractal structure.

 The ratios specified alongside the number give the overall
cell size/resolution ratio which will be achieved between the
high and low density regions. For example, in the case of the
wavy wall shown in figure 5, the number of cells required in
the top is 12 and the number of cells we need in the bottom is
around 3000. This threshold ratio is close to 200, and hence,
the number of levels can be chosen to be 5, which will give
an average ratio of 243. The ratios go as 1:3n , where n is the
number of levels of nested refinement. This can be
mathematically proved [1].

Figure 7(a). Oahu, Hawaii. The complete grid.

 In figure 7(a), the island is the tiny white dot in the middle.
As we can see the size of the cells far away from island is of
the order of the size of the island itself.

 Figure 7(b) shows a closer view of the grid where one can
note how nested refinement helps in reducing the propagation
of many grid lines by redirecting many of them back into the
island.

 Figure 7(c) shows the grid very close to the island. This is a
structured grid which lies inside a cocoon of nested
refinement. Zooming in closer the section shown by a
rectangle figure 7(c), we note a smooth high resolution grid
capturing the coastline of Oahu.

 Figure 6. Nested Refinement dialog box

6. APPLICATION OF NEST TO SOME
GEOMETRIES

6.1 Island of Oahu, Hawaii
 Nest has been used to obtain a grid around the Hawaiian
island of Oahu. This is a typical example of a multi-scale
problem. The coast line of the island is crinkly and this
typically requires a large number of cells close to the island.
But the cell size far away from the island (in the far field –
the ocean) can be the size of the island itself. The following
pictures show the nested grid around Oahu.

Figure 7(b). Oahu, Hawaii. Zooming in closer…

 Figure 7(e). Oahu, Hawaii. Zooming in closer…

Figure 7(c). Oahu, Hawaii. Zooming in closer…
 6.2 Curved Wavy Tube in a Box
 A thin curved tube in a box whose radius fluctuates by a

small amount is another example of a multi-scale problem.
Figure 8 illustrates such a geometry. The arrows indicate a
flow direction, and the problem posed can be that of
calculating the drag experienced by the tiny tube by such a
flow.

Figure 7(d). Oahu, Hawaii. Zooming in closer…

 Figure 7(e) shows a close up of the top right section of the
grid in figure 7(d).

 Figure 8. Curved wavy tube in a box

 Figure 10 shows two cross-sectional sheets perpendicular to
each other. This illustrates the resolution of the grid near the
wavy tube. Nest achieves the high resolution near the tube
and the gentle transition to a lower resolution as one moves
away from the tube.

 Figure 9(a). Cross-sectional view of a sheet

 Figure 11. Streamlines of the flow past the tube

 Figure 11 shows the results from a simulation performed
using Fluent®. Further details of the simulation can be
obtained by referring to [1].

7. CONCLUSION

A technique called ‘automatic nested refinement’ was
implemented in the framework of GridPro for addressing
multi-scale problems in the context of multi-block structured
grids. It offers automation and great flexibility in handling
scale differences for grid generation. Future work will
involve developing topological structures which will provide
for more optimized adaptation and more automation. One
means to do this is to use three dimensional templates in a
recursive way to do such adaptation [4], [8]. Verification and
validation of the use of nested refinement by comparing
performance of nested grids with other hybrid and
unstructured grid methods will also be an important future
direction.

 Figure 9(b). Cross-sectional view zoomed in

 Figures 9a and 9b show a cross-sectional grid sheet for the
grid generated on this geometry using nest.

ACKNOWLEDGEMENTS

 The authors would like to acknowledge the helpful
interactions with Prof. Houston Wood, Department of
Mechanical and Aerospace Engineering, University of
Virginia, Charlottesville, Virginia.

REFERENCES

[1] Automatic Nested Refinement - – A Technique for the
generation of high quality Multi-Block structured grids for
Multi-Scale problems using GridPro® - Master’s Thesis for
Krishnakumar Rajagopalan presented to the University of
Virginia, May 2003 Figure 10 Two cross sectional sheets

[2] GridPro TIL Manual – Program Development Company,
White Plains, NY

[3] Parallel Multi-Block Structured Grids – Jochem Hauser,
Peter Eiseman, Yang Xia, Zheming Cheng- Chapter 12,
Handbook of Grid Generation, CRC Press.

[4] Robert Schneider - Quadrilateral and Hexahedral Meshes,
Chapter 21, Handbook of Grid Generation [3]

[5] Peter. R. Eiseman, GridPro and the Topology paradigm,
article in SGI world, June 1999

[6] Getting a Grip on Grid generation, Article in NASA
SpinOff magazine, 40th anniversary publication, 2002.

[7] S. Balaven, C. Bennis, J.D. Boissonnat, S. Sarda,
Generation of Hybrid Grids using Power Diagrams,
Proceedings of the 7th international conference on Numerical
Grid Generation in Computational Field Simulations, 2000

[8] Ko-Foa Tchon, Julien Dompierre and Ricardo Camarero,
Conformal Refinement of All-Quadrilateral and All-
Hexahedral Meshes According to an Anisotropic Metric,
Proceedings of the 11th international Meshing Roundtable,
2002.

MULTIPLE STATIONARY AND MOVING BOUNDARY HANDLING IN
CARTESIAN GRIDS

Kerem Pekkan

Georgia Institute of Technology, Atlanta, GA., U.S.A. kerem.pekkan@bme.gatech.edu

ABSTRACT

A Cartesian grid generation methodology is developed for unsteady control volume computational fluid dynamic (CFD) solvers.
Arbitrary combinations and numbers of moving and stationary boundaries are allowed to exist in the two-dimensional Cartesian
grid template. Specific definitions for the possible cases, CFD solver requirements and moving geometry handling algorithms of
Cartesian grids are described. Applications are selected from bio-fluid dynamics and aerospace propulsion to demonstrate the
capability of the method.

Keywords: Cartesian grids, moving boundaries, computational fluid dynamics

When Cartesian grids are used, even in a simple two-
dimensional problem, triangular, quadrilateral and
pentagonal elements may coexist. Since the geometric
possibilities are close to unlimited a systematic approach is
necessary. Structured programming, CAD algorithms and
approaches from constructive solid geometry are employed
for the realization of this highly geometric task.

1. INTRODUCTION

Moving boundary problems of nature[1][2] and
technology[3][4][5] is an attractive research area. Besides
the trivial computational difficulties of interface movement,
additional complexity is introduced due to surfaces that are
irregular and not aligned with the orthogonal coordinate
planes. Moreover in some problems multiple stationary and
moving surface combinations can exist.

 In moving boundary problems, in addition to the
structured[6] and unstructured boundary confirming
grids[7], embedded Chimera like moving zonal
procedures[8] and level-set methods[9], Cartesian or cut-
cell techniques can be used to define the solution domain.
Cartesian grid approach is an efficient, versatile and rapid
geometry definition[10][11][12]. Grid types consist of
irregular cut-cells and uniform rectangular volumes that are
located near the boundaries and in the far field,
respectively. As will be demonstrated Cartesian grid
intersections depend on the local topological character of
the boundary curves, therefore making the Cartesian
approach problem independent and suitable for broad
research interests.

Unless a structured boundary layer grid (obtained by
normal offsetting of the boundary) and optional tetrahedral
transition elements are introduced, Cartesian grids may not
be in the best possible quality for the given application but
still can be preferred due to their high turnaround time and
wide ranges of applicable geometry. For boundaries with
many sharp corners it is another alternative to unstructured
(tetrahedral) and multi block structured grids.

Figure 1. Solution algorithm and time loop.

Fig. 1 shows the main components of a moving boundary
CFD solver that employs Cartesian grids. Details of the
grid generation routines will be described next, followed by
selected applications.

In a general problem there may be moving and solid
boundaries connected in series, as shown in Fig. 2. These
series of curves are termed as “streams.” In streams
intersection points of moving and solid curves are labeled
as “kink points”. A stream can be composed of a single
moving or solid curve. Streams are allowed to loop,
forming voids or closed bodies, with coinciding start and
end points.

2. DEFINITIONS

The Cartesian grid terminology for stationary boundaries is
quite complete in the literature[13][14]. In this section an
extension will be made to cover domains that involve
multiple stationary and moving boundaries.

A boundary curve, passing through a template cell,
intersects its sides in two points. Tracing the curve with the
solid region being on the left-hand side, first intersection is
denoted as “point 1a” and second as “point 2a.” Cell
intersection points are stored with respect to coordinates
relative to the cell.

In Fig. 2, a rectangular “template” containing stationary
(solid) and moving boundaries, having five and seven
“square cells” along x- and y- directions is plotted. Given
the length and width of the template, integer number of
square grids can be generated inside. Template boundary
sides are termed as EAST, WEST, SOUTH and NORTH,
where inflow/outflow, reflective, transmissive, injecting,
moving wall boundary conditions can be specified. Also for
the side of any cell inside the template, a boundary
condition can be assigned when needed for specific
applications.

If number of intersection points in a cell exceeds two, cell
types that are not covered by the solvers’ cell-type-domain
may appear. These cells need special treatment and named
as “degenerate cells” in the Cartesian literature [13]. In that
case, extra intersection points will be labeled and stored as
“point 1b” and “point 2b,” to be used in degenerate cell
handling routines, §3.7 A simple degenerate cell example is
given in Fig. 2.

In all problems, solid and moving walls are bordering the
flow field of interest. “Curves” that form the boundaries of
solid/moving walls are specified as line segments, in an
order so that when the curve parameter increases, solid
bodies are always on the left.

3. CARTESIAN GRID GENERATION
ROUTINES

Cartesian Grid Solvers does not require a separate grid

0 1 2 3 4 5 6 7
i

1

2

3

4

j

(i, j)

uy

ux

Intersection with
Vertical Grid Lines

Intersection
with
Horizontal
Grid Lines1

2

5

1 Stream
Start

2 Stream
EndA DEGENERATE CELL with

four intersection points. The
intersecting segments are of
different type. Segment 1a-2a is
a moving curve, where as
segment 1b-2b is solid.

1a
2a 1b

2b

1a

2a
1a

2a

Cell Intersection Search Region

Cell Intersection Points

Solid or Moving Curve. Its
direction is from "1" to "2".

Template Boundaries with 7x5
cells Kink Points

Stream. Defines the flow
boundaries

Coordinates are relative to
cell

uy, ux:

A closed solid body with
moving boundaries

A closed solid body with
stationary boundaries

1a, 2a Start and end points of the
first cut segment

1b, 2b Start and end points of the
second cut segment

1
0

1

Figure 2. Terminology for cell intersections

generator program, while for arbitrary moving complex
geometries; generation of the template grids and finding
local intersections is a complicated geometric task.

Unlike boundary-conforming grids where global re-
meshing, at each time step, alters the positions of grid
points, Cartesian grid points are stationary. Thus for
Cartesian control volumes that are not cut by a moving
boundary, a geometric conservation law or Jacobian
transformations is not needed.

3.1 Modeling Solid/Moving Wall Boundaries
Curves that form the boundaries of solid or moving walls
are approximated with line segments. A line segment is the
lowest object of the stream structure. It is defined by the
parametric equation of straight line. Parametric
representation of line segments is found useful especially in
finding cell intersections. For this type of representation
position vectors of the start and end points of the straight
line are needed. A single curve parameter defines the
position of any point on the line segment. Segment center
velocity and its magnitude are also stored to allow for
variable offsetting along a moving curve types.

The curve structure used in the code composed of the line
segments, number of line segments that make up the curve
and type of curve, which may be moving or solid. Line
segment sequence of each solid/moving curve is arranged
so that solid bodies are always on left. The geometric
information of the input curves are kept in the following
structure:
struct curve {
 struct line seg[N_SEGMT] ;
 int type ; /* SOLID or MOVE */
 int n_segmt ; /* end indis of seg[] */
 };

3.2 Cell Size and Number of Cartesian Grid
Lines
Since the domain is rectangular and the cells are square,
number of grid lines in x- and y- directions is dependent on
each other. First the minimum number of grids in each
direction is calculated, which is the coarsest possible grid
for the given template dimensions. Then, if an extra
refinement is required, number of grids is increased in both
directions with the same ratio. If the template side
dimensions are not whole numbers, then they should be
expressed in rational form, i.e. numerator over
denominator. In that case, to calculate cell size and
template grid line locations accurately, integer arithmetic
needs to be performed.

3.3 Finding Streams
A general geometry is composed of arbitrary number of
solid and moving curves. At the start of the problem, i.e. at
initial state, some part of the solid boundaries may be
covered with moving curves and may not saw the flow
region. For a regressing material this situation is sketched
in Fig. 3. As the solution proceeds, these solid boundaries
will expose out and start affecting the flow. To obtain the

transient solution without any restart, at each time step the
flow boundaries should be identified. Curves defining flow
boundaries or wetted areas are called “streams” and the
corresponding process is called “stream generation.”

 A

REGRESSING
MATERIAL

SOLID
BODY

FLOW
REGION

B

a

b

c e

d

1 2

time = t

t + delta t

Figure 3. A Solid Boundary Exposing out Which is
Initially Covered with a Regressing Material. (A-B
is the Stream at Time t. a-b.b-c.c-d.d-e is the
Stream at a Later Time.)

In Fig 3, initially there is one moving curve (A-B) and one
solid curve (1-c.c-2). Solid curve is composed of two line
segments and the initial stream is made up of the moving
curve (A-B) only. As the boundary moves, at a later time
step the number of moving curves increases to two. The
stream is now made up of three curves (a-b, b-c.c-d, d-e).
In a general problem the number of streams may be more
than one. Algorithms developed in this study allow
multiple streams, cover situations involving merging and
break-up of moving boundaries and can also generate loop
streams.

If there are no moving walls and all of the geometry that
defines fluid boundaries is solid, then each solid wall is
assigned as a new stream. If there are moving walls, new
streams are generated by tracing moving and solid curves
alternatively. In this trace, “A stream can form a closed
loop or start and end at a template boundary” is the basic
rule. Until this rule is satisfied, each trimmed/extended
moving curve is traced first in its start direction and then
towards its end. During these traces, intersections with
other curves will be detected. Each new detected curve
during this trace is kept in the order as a member of the
generated stream. Boundaries that form loops can also be
detected by this procedure.

3.4 Cartesian Cell Intersections
The basic geometry is illustrated in Fig 1. For each line
segment, of each stream, intersections with vertical and
horizontal grid lines are searched. If an intersection is
found, intersection point and its type (moving or solid) are
stored in the cell structure relative to cell coordinates. The
coordinates should be specified relative to square cells
because of the accuracy considerations. This algorithm is
different than the one proposed in [1]. In that study
boundary curves were traced and cell coordinates are

1

2

CUT2S
CUT2M
KINK2

COND 1:
COND 2:

1
2

A
1

2

B
1

2

D

1

2
C

E V2 V2 E
W V1 W V1

N V3 V3 N
S V2 S V2

S V1 V1 S
N V4 N V4

W V4 V4 W
E V3 E V3

1

2

CUT1S
CUT1M
KINK1

COND 1:
COND 2:

1

2

A
1

2

B

1

2

D

1

2
C

S
W

N
E

W
N

E
S

1

2

CUT3S
CUT3M
KINK3

COND 1:
COND 2:

1

2
A

1

2

B

1

2

D
1

2

C

E V2 E V2
N V4 V4 N

W V4 W V4
S V2 V2 S

N V3 V3 N
W V1 W V1

S V1 V1 S
E V3 E V3

 defined as integer variables taking discrete values to
overcome the accuracy problem. The intersection routine
that is developed here considers the sense of each line
segment and differentiates different cases. Including
specific orientations of segments, like cases parallel to
Cartesian grid lines. Two intersections are allowed and
typical for each Cartesian cell. If more than two
intersections are found, their positions are stored for
degenerate cell considerations.

1

2 3

1

2

CUT FULL FLOW SOLID KINK
Line segment
1-2 is solid or

moving.

Line segment
1-3 is moving

and 3-2 is solid

Figure 4. Basic cell types (SOLID, FULFLOW,
CUT-M/S, KINK)

Figure 5. Cell sides (E, W, S, N) and four corner
vertices (V1, V2, V3, V4) are labeled, defining the
possible locations of the intersection points.

For geometries involving moving and solid boundaries,
there are five basic cell types. These are: full flow, solid,
cut-solid, cut-move and kink cells, Fig. 4. Cut cells contain
a single curve segment, which may be moving or
stationary. Kink cells are cut cells where a solid curve ends
and a moving curve starts or vice versa. The same
convention also holds for segments inside cells: the solid
part is on left, in the direction of curve parameter increase.

3.6 Cell Sub-Types
The intersection type (cut segment crossing whether in or
out of the Cartesian cell), and the cell side each intersection
point is located determine the cell sub-type. As a solver
convention, these sub-types are grouped and presented in
Fig. 5. Depending on the conditions given in Fig 5, the
solver differentiates 48 different cell sub-types. Although
only cut-moving/solid (CUT-M/S) cells are drawn, for each
cut cell sub-type there is also a corresponding KINK cell
with intersection points at the same locations. In that case
the kink point, point-3 in Fig. 4, is located at an arbitrary
position inside the Cartesian cell.

3.5 Cell Structure
In the solution domain each square formed by the grid lines
defines a control volume, named as cell. Number of cells
are equal to the number of grids. For each cell, besides flow
variables the following information is also stored:

• Basic cell type (Fig. 4) 3.7 Degenerate Cells
• Cell sub-type (Fig. 5) In the solution domain, if arbitrary intersections with the

input geometry are allowed, some cells that are not
recognized by the Cartesian solver may appear. These cells
are named as “degenerate cells” in the Cartesian literature.
(A simple example is a cell with more than two
intersections, Fig. 2)

• Position vector of first and second intersection
points.

• Intersection types of first and second intersections.
(Which depends whether the cell is intersected at that
point by a solid or a moving curve.)

• Position vector of first and second degenerate
intersection points and their types. PROBLEM TYPE NUMBER of UNIT

GEOMETRIES

P1 32
P2 8
P3 64

P4diagonal 16
P4 88

• Position vector of the kink point.

• List number that the cell is combined.

• Cell area.

• Position of cell center.

Table 1. Number of possible unit geometries for
each degenerate cell problem type.

• The boundary condition specified for any of the cell
sides.

By increasing grid size or slightly shifting the input
geometry some of the problematic cases can be overcomed.
However such remedies work only for bodies that are not
moving. For applications involving continuously changing
shapes and offsetting, these problematic geometries must
be identified and suitably approximated.

Depending on the number of intersections in the degenerate
Cartesian cell, geometrically possible problem types can be
grouped in to four. These problem topologies will be
labeled as P1, P2, P3 and P4 cells (With one, two, three and
four intersections in a Cartesian cell respectively.) For each
problem type, the rotations and symmetries of the basic
geometry should be considered, together with the type
(moving or solid), of the intersecting boundary. The total
number of unit operations that is taken into account for
each problem type is given in Table 1.

P1 PROBLEM

P1

(cell s) (cell se)

1

2

(cell c)

1a only 1a2a
1a

2a 1a

2a

(cell e)
P1

(cell s) (cell se)

1

2

(cell c)
1a only 1a2a
1a

2a

(cell e)

1a

2a
1a 2a

Basic Geometry Ia Basic Geometry IIa
1

2

2a only
P1

(cell c)
(cell e)

(cell n)

Basic Geometry Ib Basic Geometry IIb

P1

(cell n)

(cell ne)

(cell c)
(cell e)

1

2
2a only 1a 2a

1a2a

1a
2a

 P2 AND P4 PROBLEMS

1 SOLID

2 SOLID
P2

All P2 cells, whether their
intersecting line segment
type is same or different, are
marked as FULL FLOW.
(cell a)

1 SOLID

2 MOVE
P4

1 SOLID

2 SOLID

All P4 cells, that has the
following points (1b and 2a)
and (1a and 2b) placed in
opposite sides are marked
as FULL FLOW or SOLID.
(cell b, d, e, g)

P4P4

1a2a

2b

1b

(cell d)
(cell e)

P4
P4

1a2a

1b

(cell g) (cell h)

2b

(cell f)
KINK

P4 cells that 1a and 2b
points are placed on
different sides and 1b and
2a are placed on the same
side, make boundary
approximation.
(cell h, c, f)

P4 P4
(cell b) (cell c)

1a
2a

2b
1b

(cell a)

Figure 8. P1 problem: P1 problem is possible if the
segments that make a sharp corner are of the same type
and one of the segments coincide with the template grid
lines. There are two basic geometry types. (And each
type has two variations, a and b) For the basic geometry
type 1a (top left figure), the ambiguity in cell
intersections is corrected by; Mark (cell c) and (cell s) as
FULL FLOW. Move Point 1a of (cell se) to Point 2a of
(cell e). Each of the four plotted topologies has also four
different orientations depending on the position of the
cell that is marked 1a/2a-only.

To disclose the scope of the work some examples of the
primary geometries and rules that are used in the code are
given in the Figs. 6, 7 and 8. For degenerate cells with
intersections of different curve types (solid/move),
approximated geometry is sharp and defines a kink type of
cell. Without considering these topologies a general
moving body Cartesian solver is not possible.

Figure 6. P2 and P4 type degenerate cells: In all figures
dashed lines represent the final approximated boundary
after degenerate cell corrections. Both line segments
are of same type (Both MOVE and both SOLIDS). For the
definitions of cell intersection points: 1a, 2a, 1b and 2b
refer to Fig. 2.

3.8 Marking Solid Cells
Procedures describe in the previous sections specify the
geometric properties for each cut cell in the solution
domain. The remaining cells are either solid or full flow.
For solid cells, no flow solution is needed. Therefore they
must be distinguished from the fluid flow cells before
starting the solution.

1

P4Scc

P4Scc

Basic Geometry C-B
(Same Type)

Converging From
Corner-NW Towards

Corner-SE

1a 1b

2b
1

2

2a

Basic Geometry
(Same Type)

1a

1b

2b

1

2

2a

Basic Geometry C-B
(Different Types)
Converging From

Corner-NW Towards
Corner-SE

1a 1b

2b
1

2

2a

Basic Geometry
(Different Types)

1a

1b

2b

1

2

2a

Basic Geometry C-B
(Same Type)

Converging From
Corner-SE Towards

Corner-NW

Basic Geometry
(Same Type)

1a 1b

2b

2

2a

2
1

1a

2a

1b

2b

Basic Geometry C-B
(Different Types)
Converging From

Corner-SE Towards
Corner-NW

Basic Geometry
(Different Types)

1a 1b

2b

2

2a

2
1

1a

2a

1b

2b

1

The procedure that is used is similar to the one used in [1].
All the Cartesian cells are traced first horizontally and then
vertically. During each trace, cell type does not changed
until, a cut cell is reached, and at that cell, the marking type
is reversed and switched to either FULFLOW or SOLID.
The tracing proceeds with this marking type afterwards. By
taking into account the detected cut cell sub-type, initial
cell type assumption and previous type marks are corrected.
The algorithm is tested in various geometries and found to
be working flawlessly in all cases considered so far.

The solid cell marking procedure of [1] does not take the
cut cell sub-type into account. For this reason an extra
trace, either in horizontal or vertical direction is needed.
Even with this extra trace, ambiguous geometries are still
possible. In this study since in marking type switches,

Figure 7. Diagonal P4 problem -one of the four sub-
types. The four cases that are shown on the left are
same type of curve intersections. Different type
intersections are plotted on right.

For all the combined cells in the template, cell states are
area-averaged, area and cell center of the combined cells
are found. A different list number is assigned to each
combination.

depending on the cut cell sub-type initial cell type
assumption is corrected and the number of horizontal and
vertical traces are decreased to two.

In Fig. 10, Cartesian grid Information for various template
locations of the letters ‘S’ and ‘A’ are plotted. Close-up
regions demonstrate some critical locations and treatment
of degenerate cells. The numbers shown on Cartesian cell
centers, represent the combination list that the cell belongs.
F, C and S stand for FULLFLOW, CUT and SOLID
respectively. Due to the boundary movement, cell
information is regenerated at each time step.

3.9 Cell Combinations
Intersections of arbitrary line segments may produce tiny
cells, which minimize the time step size. If a fast Cartesian
solver is the aim, these tiny cells must be combined and
treated as a single control volume. The segment mid-point
normal rule [1] is practiced here. Which will be referred as
the best combination.

CELL (i, j)

CELL (i, j+1)

CELL (i+1, j)CELL (i-1, j)

1

2
3.10 Boundary Offsetting, End
Trimming/Extending

Prior to the next time step, segment center points are
displaced in the wall velocity direction, for cells that
contain a moving type cut segment,. New curve points for
the moving wall are generated without loosing the curve
parameter sense. Curves that form loops are separately
detected and displaced. Moving curve ends are trimmed or
extended to a nearest solid wall or a template boundary.

Figure 9. Cell (i, j) is combined with the first of the two
alternatives.
Around confined regions and for cut cells with neighboring
template boundaries, the best possible combination may not
exist or the planned combination may produce an undesired
size increase that decreases the local spatial accuracy. In
order to acquire a consistent control volume size as much
as possible, throughout the template, maximum three
alternatives of the four neighboring cells are returned to the
code in the order of the best combination possibility. In
cases when the best combination cell does not exist other
alternatives are considered in order, Fig. 9.

At the end of the trimming and extending process, each
moving curve should start from or end at a solid boundary
/template side, or form a loop, so that the stream generation
algorithms that are discussed in the previous sections can
trace the moving and solid curves without any breaks.

F F F F F F F F F F F F F F F

F F F F F F F F F F F F F F F

F F F F F F F F F F F F F F F

F F F F F 9 16 C C C 29 32 F F F

F F F F 6 9 16 S S S 29 32 C C F

F F F C 6 S S S S S S S S C F

F F 1 1 S S S 20 20 25 30 S S 40 40

F F C S S 10 10 10 20 25 30 33 S S 44

F 0 0 S S 11 11 F F F F 33 S S 45

F F C 2 7 C F F F F F C S S 46

F F F 2 7 F F F 22 26 34 34 S S 47

F F F F F 12 17 C 22 26 S S S S C

F F F F 8 12 17 S S S S S S 41 41

F F F C 8 S S S S S S 35 38 C F

F F 3 3 S S S S 23 27 C 35 38 F F

4 6 8
3

4

5

6

7

8

F F F 95 95 S S S S S S S S S S S

F F F F C S S S 106 111 115 117 122 S S 13

F F F F 97 97 S S 106 111 115 117 122 S S C

F F F F 98 98 S S 107 107 F C S S 130 13

F F F F F C S S 108 108 118 118 S S 131 13

F F F F F 101 101 S S C 119 119 S S C F

F F F F F 102 102 S S 112 112 S S 126 126 F

F F F F F F C S S 113 113 S S 127 127 F

F F F F F F 104 104 S S S S S C F F

F F F F F F 105 105 S S S S 123 123 F F

F F F F F F F C S S S S 124 124 F F

F F F F F F F 109 109 S S 120 120 F F F

F F F F F F F F C C C C F F F F

F F F F F F F F F F F F F F F F

F F F F F F F F F F F F F F F

16 17 18 19 20 21

7

8

9

10

11

 Figure 10. Cell type and combination information. Lower left corner of letter “S” and top right of letter “A”.

4. MOVING WALL EXAMPLES As the result of detailed considerations of degenerate cells,
some simple merging and break up situations can be
detected, without any extra merge/break-up routines.
Break-up region is realized by marking some degenerate
cells as full flow. Fig. 12 demonstrates an offsetting
sequence leading to break-up. Template is square of side 8
mm. Offset velocity is 2.5mm/s and grid size is 46x46.

Geometry handling and moving wall-offsetting functions
will be demonstrated via three examples. Geometric
problems encountered during normal offsetting involve
edge separation and degenerative close loops. These are
related to the local curvature and offsetting distance. For
the following examples wall offset velocity is constant. Wall offsetting accuracy can be assessed by comparing

 flow area vs. perimeter plots. For an expanding and
acting circular body, Fig 13, such plots are generated
o grid sizes. A difference of ~10% is observed for the

ted coarse grid, Fig 14. The circular body is initially
sented by a 20-segment polygon and wall speed was
ant. Increasing the grid size 1/3 resulted closer values.

Cartesian mesh
100x100

Initial Curve
20 segment Polygon

Cartesian mesh
100x100

Initial Curve
20 segment Polygon
exact
contr
for tw
selec
repre
const

 Figure 11. Offsetting in a Cartesian template. One of
g the four consecutive time steps are plotted
Fig. 11 is a regressing diameter pipe with an arbitrary
shape. This geometry is selected because of its high convex
curvatures, which may cause problems in geometry
dependent offsetting codes.

Figure 13. Contracting circle in 100x100 grid. Wall Speed
5 units/sec, Template size 4 units square, Time step 0.001
sec. (Part of the mesh is shown)

Break-up Region time = 0.147 s.

Break-up Region time = 0.1485 s.

Figure 12. Break-up of an arbitrary solid body. Demonstrating the degenerate cell handling procedures and stream formation.
The initial geometry is drawn using thick lines. Not all the zones are plotted. During break-up, time step is modified

Expanding

Contracting

0.5 Units Radius
Expanding-Contracting Circle
(Area vs. Perimeter Plot)

EXACT

GRID SIZE
100x100

GRID SIZE
150x150

Expanding

Contracting

0.5 Units Radius
Expanding-Contracting Circle
(Area vs. Perimeter Plot)

EXACT

GRID SIZE
100x100

GRID SIZE
150x150

Expanding

Contracting

Expanding

Contracting

0.5 Units Radius
Expanding-Contracting Circle
(Area vs. Perimeter Plot)

EXACT

GRID SIZE
100x100

GRID SIZE
150x150

REFERENCES

[1] M. S. Triantafyllou, G. S. Triantafyllou,

“Hydrodynamics of Fishlike Swimming,” Annual
Review of Fluid Mechanics, Vol. 33 pp.33-53 (2000)

[2] Zhi B. Gao, et. al., “Bioprosthetic Heart Valve Leaflet
Motion Monitored by Dual Camera Stereo
Photogrammetry,” Journal of Biomechanics, Vol.33
pp.199-207 (2000)

[3] K. Pekkan, A. Ucer, “A 2D Moving Boundary
Cartesian Grid Solver for Internal Flow Fields of
SPRM’s,” Advances in Rocket Performance, Life and
Disposal, RTO Specialists Meeting NATO-AVT-089,
Denmark, (2002)

[4] Ravi Ramamurti, “Simulation of Flow about Flapping
Airfoils Using Finite Element Incompressible Solver,”
AIAA Journal, Vol 39(2) p.8 (2001)

[5] K. Stein, R. Benney, T. Tezduyar, J. Potvin, “Fluid-
Structure Interactions of a Cross Parachute: Numerical
Simulation,” Computer Methods in Applied Mechanics
and Engineering, Vol 191, pp. 673-687 (2001)

[6] W. Shyy, H. S. Udaykumar, M. M. Rao, R. W. Smith,
Computational Fluid Dynamics with Moving
Boundaries, Taylor-Francis, (1996)

[7] P. I. Crumpton, B. Giles, “Implicit Time-Accurate
Solutions on Unstructured Dynamic Grids”,
International Journal for Numerical Methods in
Fluids, Vol 25 pp.1285-1300 (1997)

[8] Kozo Fujii, “Unified Zonal Method Based on the
Fortified Solution Algorithm”,Journal of
Computational Physics , Vol 118 pp.92-108 (1995)

[9] J. E. Sethian, Level Set Methods and Fast Marching
Methods: Evolving Interfaces in Computational
Geometry, Fluid Mechanics, Computer Vision and
Materials Science, Cambridge University Press, (1999)

[10] Randall J. LeVeque, Donna Calhoun, “Cartesian Grid
Methods for Fluid Flow in Complex Geometries,”
Computational Modeling in Biological Fluid
Dynamics, IMA Vol. 124, Eds. Lisa J. Fauci and Shay
Gueron, Springer-Verlag, (1999)

[11] H. Forrer, R. Jeltsch, “A higher-order boundary
treatment for Cartesian-grid methods,” Journal of
Computational Physics, Vol.140 pp.259-277 (1998)

[12] H. Johansen, P. A. Colella, “A Cartesian grid
embedded boundary method for Poisson’s equation on
irregular domains,” Journal of Computational Physics,
Vol.147 pp.60-85 (1998)

[13] J. J. Quirk, “ An alternative to unstructured grids for
computing gas dynamic flows around arbitrarily
complex two-dimensional bodies,” Computers and
Fluids, Vol.23(1) pp.125-142 (1994)

[14] M. J. Aftosmis, J. E. Melton, M. J. Berger, “Adaptation
and surface modeling for Cartesian mesh methods;”
AIAA Paper 95-1725-CP, pp.881-891 (1995) Figure 14. Area vs. Perimeter comparison for an

expanding-contracting flow area.

CONSTRUCTING ANISOTROPIC GEOMETRIC METRICS

USING OCTREES AND SKELETONS

Ko-Foa Tchon Mohammed Khachan François Guibault Ricardo Camarero

Centre de recherche en calcul appliqué (CERCA)
5160, boul. Décarie, bureau 400, Montréal (Québec) H3X 2H9, Canada.

[tchon|khachan|francois|ricardo]@cerca.umontreal.ca

ABSTRACT

A three-dimensional anisotropic metric for geometry-based mesh adaptation is constructed from a triangulated domain definition.
First, a Cartesian background octree is refined according to not only boundary curvature but also a local separation criterion from
digital topology theory. This octree is then used to extract the domain skeleton through a medial axis transform. Finally, an efficient
anisotropic metric is computed on the octree using the curvature tensor estimated from the boundary triangulation and the local
domain thickness information embedded in the skeleton. Applications to geometric adaptation of overlay meshes used in grid-based
methods for unstructured hexahedral mesh generation are also presented.

Keywords: geometric adaptation, anisotropic metric, octree skeleton, boundary curvature, domain thickness.

1. INTRODUCTION

Accuracy of finite element and finite volume methods is
strongly dependent on the quality of the domain discretiza-
tion and, more precisely, its mesh. Control of the size,
stretching and orientation of the mesh elements is thus cru-
cial. User experience can guide the generation of the mesh
to manually adapt it to the problem at hand. Higher vertex
densities can be requested in expected high load regions or
boundary layers, for example. Such ana priori approach
is, however, tedious and error prone. Automatic methods
based ona posteriorierror estimators have received exten-
sive attention over the years and proved the effectiveness of
solution-based mesh adaptation. See [1] and the references
cited therein, among others. The Object-Oriented Remesh-
ing Toolkit (OO��) developed at CERCA implements such
methods [2]. However, if no solution is available, when
generating an initial mesh for example, alternative methods
based on domain geometry must be used

The numerous unstructured mesh generation methods pre-
sented in the literature propose many different geometric
adaptation approaches. However, like their solution-based
counterparts, these algorithms always need to first map the
characteristics of the target mesh elements at every point
of the domain. Early advancing front methods relied on
user specified sample points manually triangulated to form
a coarse simplicial background mesh [3]. Target mesh prop-
erties are then computed at any point of the domain by lo-
cating the host background element and linearly interpolat-
ing the sample vertex values. Automated alternatives have
then been developed using unconstrained Delaunay triangu-
lations of the vertices of pre-meshed domain boundaries [4].

The target mesh spacing is then interpolated in the domain
from boundary specified parameters. Furthermore, the dis-
cretization of the boundary itself can be automated using
curvature, angle and proximity criteria, see [5] for exam-
ple. However, such so-called empty Delaunay meshes are
very coarse and can result in unwanted abrupt variations of
the target mesh properties. To alleviate this side effect, an
alternative interpolation scheme based on natural neighbors
has been proposed [6]. Even smoother maps can be gener-
ated by diffusing target mesh parameters in uniform Carte-
sian background grids using point and line sources and a
Poisson equation [7]. The resulting mesh gradation is very
smooth and the uniform structure of the background grid fa-
cilitates host location for target parameter interpolation. A
uniform grid cannot, however, capture very complex target
maps with extreme length scale variations. Quadtrees, in
two dimensions, and octrees, in three dimensions, are better
suited for such maps because they enable local refinement
while retaining implicit recursive structures facilitating host
location. The use of quadtrees and octrees for unstructured
simplicial mesh generation has been pioneered two decades
ago [8] and a review can be found in [9]. These methods
recursively divide the domain bounding box until the bound-
ary features are adequately resolved and store the result in
a tree structure. Allowing only a difference of one refine-
ment level between neighboring cells results in smooth gra-
dation. To generate a valid mesh, the tree cells are then usu-
ally split into simplicial elements and the boundary is recov-
ered. However, since the size distribution of the terminal
cells is well adapted to the domain geometry by construc-
tion, the final tree structure can also be used almost directly
as a target map for other meshing algorithms such as the ad-

vancing front method [10–13]. Quadtrees and octrees can
also be used solely as support mediums for more elaborate
sizing functions. Their refinement is then not directly based
on the domain geometry but rather on the adequate capture
of the sizing function gradients [14].

The above list of geometry-based mesh sizing control strate-
gies is far from exhaustive and their combination would give
infinite possibilities. Two main ideas emerge however. First
of all, target mesh specifications may take many forms but
storage in a background mesh, instead of on the fly recom-
putation for example, is the most flexible approach. It decou-
ples the control map from both the adaptation algorithm as
well as the target mesh type, structured, unstructured or hy-
brid for example. This approach is thus potentially compat-
ible with solution-based adaptation algorithms. The second
common idea is that geometric adaptation should be based
on the local curvature of the domain. Curvature-based siz-
ing is commonly used for curvilinear and surface meshes
and has a solid theoretical foundation [15]. It is, how-
ever, insufficient to simply diffuse such a sizing throughout
a three-dimensional domain. An additional adaptation cri-
terion based on the local thickness of the domain must be
introduced to take into account regions with narrow gaps
for example. Designing such a criterion is not trivial. At
present, most attempts use heuristics based on proximity be-
tween boundary vertices, segments and facets and strongly
depend on the boundary mesh itself. The present work pro-
poses to use digital topology theory to extract local thickness
information from the domain skeleton on a Cartesian back-
ground octree. To resolve possible small gaps in the domain,
this octree is first refined according to not only boundary cur-
vature but also a topologic separation criterion. Furthermore,
to enable anisotropic adaptation, the octree is only used as a
support for a Riemannien metric extracted from the domain
boundary curvature tensor and the local thickness informa-
tion retained by the skeleton. The resulting algorithm has
been implemented in a package called�eo�etric and ap-
plied to overlay mesh adaptation for grid-based unstructured
hexahedral mesh generation methods.

2. SOME DIGITAL TOPOLOGY

Pioneered by Azriel Rosenfeld [16], digital topology is
mainly used in image processing and provides discrete
analogs to Euclidean topology. It is build on the notion
of connectedness of adjacent pixels in two dimensions and
voxels in three dimensions. Consider, for example, a two-
dimensional grid that partitions space in square pixels. Con-
nectivity in this grid is based on two types of adjacency: two
pixels are 4-adjacentif they share an edge and 8-adjacent
if they share a vertex. Note that 4-adjacencyimplies 8-
adjacencybecause two pixels sharing an edge also share ver-
tices. Similarly, a three-dimensional digital grid partitions
space in cubic voxels. Two voxels are 6-adjacent if they
share a face and 26-adjacentif they share a vertex. Further-
more, two pixels (resp. voxels) are�-connectedif there is a
path of�-adjacentpixels (resp. voxels) between them. The
set of�-adjacentneighbors of a pixel or voxel� is called
its �-neighborhoodand noted����� or simply�� (Figs. 1
and 2). Using these definitions, digital analogs to curves,
surfaces and skeletons are presented hereafter for uniform
grids before being extended to quadtrees and octrees.

(a) 4-neighborhood (b) 8-neighborhood

Figure 1: Two-dimensional neighborhoods.

(a) 6-neighborhood (b) 26-neighborhood

Figure 2: Three-dimensional neighborhoods.

2.1. Digital Curves and Surfaces

One of the fundamental topological property of Euclidean
space is the Jordan theorem stating that a simple, i.e., non-
self-intersecting, closed curve in two dimensions, or surface
in three dimensions, partitions it in exactly two components:
an interior and an exterior. Digital curves and surfaces obey
the discrete version of the theorem [17]. Consider a two-
dimensional binary grid where each pixel is either black or
white. Let us call� �

� the black or object pixels of a neigh-
borhood�� and��

� its white or complement pixels. A 4-
connectedpath of black pixels is a digital curve if and only
if each of its pixels is simple, i.e., it verifies the following
properties:

1. its��
� neighbors are divided in exactly two 8-connected

components, i.e., the interior and the exterior;

2. its� �
� neighbors are 8-adjacentto these interior and

exterior components.

In Fig. 3, the�� neighborhood of the simple curve pixel�
contains pixels 1 to 8. Pixels 1, 2, 5 and 8 are black and
form � �

� . Pixels 3, 4, 6 and 7 are white complements and
represent��

� . This complement is indeed divided in two 8-
connectedcomponents satisfying thereby Property 1. Pixel
4, 6 and 7 constitute one component, the interior for exam-
ple, while the other component, i.e., the exterior, is com-
posed only of pixel 3. The��

� neighborhood of pixel�
contains only two black pixels, 2 and 5. Both pixels are 8-
adjacentto the interior and the exterior satisfying thereby
Property 2. Figure 4 shows an example of a digital curve.

Similarly, a 6-connectedpath of black voxels in a three-
dimensional binary grid is a digital surface if and only if each
of its voxels is simple, i.e., it verifies the following proper-
ties:

1. its ��
�� neighbors are divided in exactly two 26-

connectedcomponents, i.e., the interior and the ex-
terior;

2. its� �
� neighbors are 26-adjacentto these interior and

exterior components.

This concept of digital surface is essential to determine the
grid resolution necessary to digitally represent a topological
equivalent of a given domain geometry and will be used as a
criterion for the background octree refinement.

32

i4

8

5

76

1

Figure 3: Simple curve pixel.

Figure 4: Simple closed 4-connected curve with two 8-
connected components in the complement.

2.2. Digital Skeletons

The skeleton concept was introduced in continuous space
by Blum as a shape descriptor [18]. Its discrete counter-
part, the digital skeleton, is now used as a compact repre-
sentation of binary shapes in image processing and pattern
recognition. Conceptually, skeletonization transforms a two-
dimensional object into its one-dimensional median line and
a three-dimensional object into a two-dimensional median
surface. Practically, digital skeletons are thin subsets of a
binary shape that reflect its connectivity.

Topological thinning algorithms are commonly used to ob-
tain skeletons. Those algorithms erode layer by layer a digi-
tal object by turning off all pixels that can be removed with-
out altering the topology of the original object. Thinning
algorithms tend, however, to produce excessive erosion and
have to be constrained. Alternatively, skeletons can also be
generated using a Medial Axis Transform (MAT). LetÆ be
the distance to the boundary of any point inside an object.
This distance transformÆ, measured in grid cells, can be
computed for each pixel or voxel� as follows:

1. Initialize Æ�� to � for all interior and boundary pixels
or voxels and to� all exterior ones;

2. SetÆ�� � Æ�� � ���
�������

Æ���� ;

3. Iterate step 2 untilÆ�� � Æ���� .

The MAT skeleton is then formed by all the pixels or voxels
such thatÆ�� � �	

�������
Æ�� . Figure 5 shows a square shape

before and after skeletonization using a distance transform.

The medial axis, or skeleton, is the locus of the centers of the
maximal balls contained by an object and can, therefore, be
used to extract boundary proximity and local domain thick-
ness information.

2.3. Extension to Quadtrees and Octrees

Quadtrees and octrees can be considered as irregular polyg-
onal and polyhedral meshes and the above definitions can
be extended to such meshes [19]. Two polygonal cells are

0

1

0

01

0

0

0

1

0

1

0

0

0 0

11

1 1 1 10

0

0

1

0 0 0 0 0 0 0

0

1

1

1

1

1

1

1

10

0

1

1 1

1

1

1

(a) Initial shape

2

1

1

1

2

2

1

2

2

1

2 2

3

2

1

1

1

1

1

1

1

111

00

0

0 0

0

000 0 0 0

0

0

000

1

0

0

0

0

0

0

0

(b) Skeleton

Figure 5: Skeletonization of a square shape using a dis-
tance transform with a 4-neighborhood.

edge-adjacentif they share an edge. This is equivalent to
4-adjacencyin a two-dimensional regular grid. Similarly,
two polyhedral cells areface-adjacentif they share a face.
This is equivalent to 6-adjacencyin a three-dimensional reg-
ular grid. Furthermore, two polygonal or polyhedral cells
are vertex-adjacentif they share a vertex. This is equiva-
lent to 8-adjacencyin a two-dimensional regular grid and
to 26-adjacencyin a three-dimensional regular grid.Edge-
adjacencyand face-adjacencyimply vertex-adjacency. Let
� with the subscripts�, � and � note theedge, face, and
vertex-neighborhoodsrespectively. Using this notation, a
polygonal cell of a two-dimensionaledge-connectedcurve
is simple if it verifies the following properties:

1. its��
� neighbors are divided in exactly twovertex-

connectedcomponents, i.e., the interior and the exte-
rior;

2. its� �
� neighbors arevertex-adjacentto these interior

and exterior components.

In Fig. 6, the�� neighborhood of the simple quadree curve
cell � contain cells 1 to 7 but not cells 8 and 9. Cells 2, 3, 5
and 6 are black and form��

� . Cells 1, 4 and 7 are white and
represent��

� . This white complement is indeed divided in
two vertex-connectedcomponents satisfying thereby Prop-
erty 1. Cell 1 forms one component, the interior for example,
while cells 4 and 7 constitute the other component, i.e., the
exterior. The� �

� neighborhood of cell� contains only two
black cells, 2 and 6. Both cells arevertex-adjacentto the
interior and the exterior satisfying thereby Property 2.

Similarly, a polyhedral cell of aface-connectedsurface is
simple if it verifies the following properties:

1. its��
� neighbors are divided in exactly twovertex-

connectedcomponents, i.e., the interior and the exte-
rior;

2. its� �
� neighbors arevertex-adjacentto these interior

and exterior components.

1

9

2 3

4

5
6 7

8

i

Figure 6: Simple quadtree curve cell.

Finally, the medial axis transform can also be extended to
quadtrees [20] and octrees by modifying the distance trans-
form to take into account variable cell sizes:

1. Initialize Æ�� to half the cell size for all interior and
boundary cells and to� all exterior ones;

2. SetÆ�� � Æ�� � ���
�������

�
Æ�� � Æ����

�
;

3. Iterate step 2 untilÆ�� � Æ���� .

Let the largest box associated with each cell be the square,
for a quatree, or the cube, for an octree, of size�Æ centered
at the cell. A maximal cell is then a cell� whose largest box
is not completely contained by the largest box of any other
cell, i.e.,Æ�� � �	

�������

�
Æ�� � Æ�� � Æ��

�
, and the skeleton is

the set of all maximal cells.

3. OCTREE GENERATION AND
SKELETONIZATION

The skeletonization process described above is meaningful
only if the octree is fine enough to resolve the significant
features of the domain geometry. To ensure such a resolu-
tion, both local curvature and thickness refinement criteria
are used. After presenting the required geometry definition,
this section describes these criteria as well as the refinement
process itself and the skeletonization of the resulting octree.

3.1. Domain Geometry Definition

The required input for the Cartesian background octree gen-
eration is a domain geometry definition. This definition
must enable us to perform boundary intersection and inside-
outside tests for the octree cells as well as closest point and
local curvature interrogation. For the present project, trian-
gulated boundary representations, from STereo Lithography
(STL) files for example, were used. Since such triangula-
tions simply serve as a support for geometric information,
they do not have to be of high quality. They can be too fine
but should not be too coarse or essential details will be lost.
Ultimately, the user decides the level of details to be taken
into account. Triangulations can also be dirty, i.e., not water-
tight. Dirt size should, however, be inferior to the size of the
neighboring cells to make it invisible to the octree. One way
to insure that is to make dirt size inferior to the size of the
smallest possible cell. To accelerate intersection tests, the tri-
angles are stored in an Alternating Digital Tree (ADT) [21]
and, to improve accuracy and robustness, adaptive precision
arithmetic is used [22]. Furthermore, Simulation of Simplic-
ity (SoS) copes with degenerate intersection configurations
such as barely touching entities [23]. Finally, curvature in-
formation can be given by the user along with the triangle
vertices or it can be estimated directly from the triangula-
tion [24].

Figure 7 shows the triangulation of an intricate mechanical
part, a water jacket, downloaded from AVL [25]. The dupli-
cate vertices of the STL file were first merged and the result-
ing triangulation was partitioned along sharp feature lines.
The curvature tensor was then estimated separately for each
patch. This geometry will be used throughout the present
paper to illustrate the different steps of the algorithm.

Figure 7: Water jacket — Triangulated geometry [25].

3.2. Octree Refinement

The Cartesian background octree is generated using recur-
sive non-conformal refinement of the input geometry bound-
ing box. To resolve the significant features of the domain, a
curvature-based criterion is first used. As in [26], each trian-
gle of the geometry definition is associated with a target cell
size based on the maximal curvature estimated anywhere on
the facet. The higher the curvature, the smaller the target
size. Octree cells are then simply refined until their sizes is
smaller than the target sizes of the triangles they intersect.
Note that only interference with the triangle bounding boxes
are checked instead of actual intersection. The resulting oc-
tree will be slightly finer than strictly necessary but it greatly
accelerates the refinement process.

A curvature criterion is, however, insufficient to ensure an
adequate skeletonization. To find the medial axis, at least
some cells must indeed be located strictly inside the do-
main. For example, small and almost planar gaps will not be
adequately resolved using curvature-based refinement only.
To avoid this problem, the octree could be refined until the
boundary of the domain is discretized by a digital surface.
However, in practice, such a refinement proved excessive
for the present application. Digital surfaces as defined in
Section 2 indeed introduce two criteria. The first one is a
separation criterion requiring that the octree can be parti-
tioned around each intersecting cell into an inside and an
outside. The second criterion requires that the digital surface
is thin enough for each intersecting cell to see this interior
and exterior. This last criterion is mainly useful to triangu-
late digital surfaces using marching-cube algorithms. Ap-
plying this criterion tends to drive the refinement of octree
cells intersecting non-axis aligned boundary surfaces up to
the minimum size allowed. However, for our purposes, a
thickness of two octree cells can be allowed as long as the
surface still separates the inside from the outside of the do-
main. The second criterion has thus been dropped and the
separation criterion slightly modified. Let the superscripts
� and� note the boundary intersecting and non-intersecting
cells respectively. Experimentally, it proved sufficient to re-
quire that the extended neighborhood

�
��� �

� ���
��

� ��� of

(a) Boundary intersecting cells

(b) Skeleton cells

Figure 8: Water jacket — Octree generation and skele-
tonization using a curvature criterion only.

each boundary intersecting cell� is partitioned in exactly two
vertex-connectedcomponent, i.e., an interior and an exterior.
This modified criterion results in a thicker discretized surface
in exchange for a substantial reduction of the octree size. The
actual savings depend on the domain geometry but, for the
water jacket case, a reduction of the octree size by a factor
of two was achieved.

Using these two refinement criteria, octree generation pro-
ceeds as follows:

1. Create a root cell encompassing the whole domain
and flag it as intersecting the boundary;

2. Iterate to refine according to curvature:

(a) Mark the set of cells interfering with boundary
triangles whose target curvature-based size is
inferior to their own current size;

(a) Boundary intersecting cells

(b) Skeleton cells

Figure 9: Water jacket — Octree generation and skele-
tonization using both curvature and separation criteria.

(b) Add to this set the� �
� neighborhood of the cells

marked in step 2a;

(c) Refine the cells of the resulting set;

(d) Balance the tree to allow a difference of only
one level of refinement betweenface-adjacent
cells;

(e) Identify boundary intersecting children cells to
update intersection flags.

3. Identify interior and exterior cells;

4. Iterate to refine according to separation criterion:

(a) Mark the set of boundary intersecting cells in-
validating the separation criterion;

(b) Add to this set the� �
� neighborhood of the cells

marked in step 4a;

(c) Refine the cells of the resulting set;

(d) Balance the tree to allow a difference of only
one level of refinement betweenface-adjacent
cells;

(e) Update intersection, interior and exterior flags.

Note that propagation to immediate neighbors and balancing
are used to diffuse and smooth out the refinement. Further-
more, octree cells cannot be refined beyond a minimum size
	�	
. This may preclude adequate resolution of some geo-
metric features, blunt some corners and fill some gaps. Ad-
verse effects are, however, minimized if	�	
 corresponds to
the minimum mesh element size allowed during the actual
adaptation process.

Figures 8(a) and 9(a) show the boundary intersecting cells of
the octree generated for the water jacket geometry without
and with the separation criteria. Those are relatively mod-
erate size octrees counting 204777 and 217769 cells respec-
tively. Practical geometries could however be much more
complex and need bigger octrees. To accommodate such ap-
plications, explicit mesh-like data structures storing the ver-
tices, edges and faces of the cells have been avoided infavor
of an implicit tree structure storing only the parent and chil-
dren for each cell. The size and position of the cells are then
computed from the octree root. Such a data structure can,
however, be very taxing during neighbor searches performed
to verify the separation criterion. That is why binary coordi-
nates were added to each cell to accelerate tree traversal and
cell localization [27]. The resulting data structure is fast and
compact.

3.3. Octree Skeletonization

Using the medial axis transform, skeletonization of the re-
sulting octree is rather straightforward but may result in un-
wanted branches. Corners in the domain can indeed produce
terminal skeleton branches going all the way to its boundary
(Fig. 5). Those terminal branches are not desirable because
the radius of the maximal balls tends to zero as we approach
the boundary and do not always indicate an adequate local
mesh size. For example, if the corner angle is very small
then effectively the local mesh size should be small, i.e., the
minimum allowable. However, if the angle is around 90 de-
grees or more then the size of the maximal balls is not a
good indicator of the necessary local mesh size. Further-
more, skeletonization is sensitive to noise from the domain
discretization by the octree, i.e., its stair-step boundary. It
can produce very small branches terminating at noisy border
cells. Those noise induced branches behave like corners with
very wide angles close to 180 degrees.

A skeleton simplification to prune those unwanted branches
is thus needed. The same strategy was used to prune corner
and noise induced terminal branches. Following [28], the
separation angle filters unwanted skeleton cells. By defini-
tion, this angle is formed by the vectors connecting an actual
medial axis point to its closest boundary points (Fig. 10). It
is approximated on skeleton cell edges by the angle formed
by the vectors to the closest boundary point of each end ver-
tex. For each skeleton cell, it is then taken as the minimum
of its edge separation angles. The separation angle is big for
branches resulting from sharp corners and small for blunt
ones. Cells with a separation angle smaller than a given

medial axis

p

θ

boundary

maximal ball

Figure 10: Separation angle � for a medial axis point � of
the two-dimensional object.

threshold are pruned from the skeleton. Best results were
obtained with a threshold of 120 degrees.

Note also that the present medial axis tranform is based on
a chessboard distance measure on the octree and may thus
suffer from digitization bias [30, 31]. The induced error is,
however, acceptable for our purposes and is partly compen-
sated by the pruning algorithm that uses Euclidean distances.

Figure 9(b) presents the final skeleton for the water jacket
geometry. When compared to the skeleton extracted from
an octree refined using a curvature criterion only (Fig. 8(b)),
the necessity of the separation criterion is clear. Without it,
some important branches of the skeleton are missing. Note
also that these skeletons are rather fat, and sometimes dis-
connected. Because the octree is refined only at the domain
boundary, the center of the domain is coarsely discretized
and the resulting skeleton is only a rough approximation. It
is, however, sufficient because only an approximation of the
local thickness of the domain is needed. The skeleton is fat
in thick regions of the domain and svelte in thin ones. The
relative error made on the size of the maximal boxes reflect-
ing the local thickness of the domain is thus more or less
constant and quite acceptable for our purposes.

4. METRIC EXTRACTION

By construction, the size distribution of the final octree cells
adequately resolves the domain because it takes into account
both boundary curvature and local thickness. This informa-
tion is, however, isotropic and not optimal, i.e., it only gives
the most constraining limit. Consider, for example, a long
and narrow gap misaligned with the root cell. The octree
leaf cells in the neighborhood of this gap reflect the thick-
ness of the gap and not its length. Meshing such a gap with
elements restricted to the size of these cells would be waste-
ful. This octree is, however, the ideal support medium for
an anisotropic geometric metric map because it is already
adapted to its expected variations. After a brief summary
on Riemannian control metrics, this section presents the ex-
traction of more efficient anisotropic geometry-based sizing
information for such a map from the domain boundary trian-
gulation and the octree skeleton.

4.1. Riemannian Metric

To control adaptation, an anisotropic control map must be
used to prescribe not only the size but also the stretching and
orientation of the mesh elements to be built. These specifi-
cations can be given as the metric of the transformation that

maps a perfect mesh element into a unit cube for hexahe-
dral meshes or a unit equilateral tetrahedron for simplicial
meshes. In three dimensions, this Riemannian metric is de-
fined at every point of the domain by a symmetric positive-
definite� � � matrix�. This matrix can be factored as the
product of a rotation matrix� and a diagonal scaling matrix
:

� � ���� � �

�
	��� � �
� 	��� �
� � 	���

�
��� (1)

where	�, 	� and	� are the target element sizes along the
three axes of the local coordinate system defined by�. Such
a size specification map can be given analytically or con-
structed froma posteriorierror analysis, from the geometri-
cal properties of the domain, as in the present paper, or from
any other user defined inputs. An isotropic size specification
map reduces to an identity matrix multiplied by	�� where	
is the desired element size. Whatever it’s origin, the control
metric contains information on the prescribed size, stretch-
ing and orientation of the mesh to be built as an anisotropic
metric field. See [32] as well as [33] and [1] for a more com-
plete discussion on metrics.

Using metrics promotes decoupling of the actual adaptation
algorithm from the target mesh specifications. Algorithm
traditionally used for solution-based adaptation through global
remeshing or local mesh modifications can then be used for
geometric adaptation.

4.2. Extracting Thickness and Curvature Data

The adaptation metric has to take into account both the lo-
cal thickness and curvature of the domain. Thickness infor-
mation can be extracted from the octree skeleton cells us-
ing the distance transformÆ. Curvature information, on the
other hand, can be extracted from octree cells intersecting
the triangulated domain boundary. To construct the geomet-
ric metric, these two types of information must be combined
and diffused in the whole domain.

For each octree cell,Æ is an approximation of the distance
to the closest domain boundary. By definition, it is also an
approximation of the radius of the maximal ball centered on
a skeleton cell and the local thickness
 of the domain is
equal to twice this radius. However, at non-skeleton cells,

is not related to the local value ofÆ but rather to the thickness
associated to the closest skeleton cell. Computing
 at those
non-skeleton cells could thus be reduced to searching for the
closest skeleton cell. To get a smoother distribution,
 can
also be simply diffused from the skeleton cells to the rest of
the octree using a Laplacian operator:

���
� �
�� �

�
���� ���

�

�� �
��

�
�����

���� ���
�����

(2)

where is an iteration counter and��� is the Euclidean dis-
tance from the center of cell� to the center of cell�. This
latter approach was used. Dirichlet conditions were imposed
at skeleton cells where
 was set to twice the value of the
distance transformÆ. To simplify the metric interpolation
and minimize memory requirements to store the background
octree, the metric, and therefore
 , was considered constant

over each octree cell. The octree resolution proved exper-
imentally sufficient since the generation process locally re-
fined cells in expected high gradient regions.

After its diffusion, the local thickness
 can be combined
with the curvature tensor at each boundary intersecting cell
to give the following metric:

� �
�
� ��� ���

�	 � 	��
 � �
� 	���� �
� � 	����

��
� ��� ���

�
(3)

where� is the unit normal to the boundary while��� and���
are the unit tangents in the direction of the principal curva-
tures�� and�� evaluated at the boundary point closest to the
center of the intersecting cell. The directional target sizes	
 ,
	�� and	�� are computed as functions of
 , �� and��. To
diffuse this metric tensor throughout the domain, a term by
term Laplacian operator is used with intersecting cell values
acting as Dirichlet conditions:

����
� ���

� �

�
���� ���

�
��

� ��
�
�

�
�����

���� ���
�����

(4)

where the notation of Eq. (2) is used. Finally note that,
at cells located outside the domain, the metric tensor is set
to the identity matrix times the squared inverse of the pre-
scribed size at infinity, usually chosen as the size of the do-
main bounding box.

5. APPLICATION

The application we propose to explore is geometric adapta-
tion for superposition or grid-based hexahedral mesh genera-
tion methods [35–42]. Such methods overlay an initial mesh,
usually Cartesian, on the domain geometry and keep only its
interior elements. The boundary of the resulting mesh has
then to be fitted to the domain through cutting, projection or
isomorphism. These methods are robust but often generate
poor quality elements at the boundary of the domain because
of the misalignment of the initial mesh [43,44]. Furthermore,
the body fitting step of grid-based methods can be performed
reliably only if local mesh density is sufficient to capture the
features of the domain geometry [26]. The present metric
construction algorithm combined with an appropriate adap-
tation tool is ideally suited to generate the initial mesh re-
quired by such methods.

Relocation algorithms are commonly used for solution-based
adaptation and essentially smooth the mesh in the target
anisotropic metric space. The particular algorithm used here
is based on a spring analogy that considers the mesh as a net-
work of vertices linked by springs. The optimal position of
each vertex� is computed iteratively by the following length
equidistribution formula:

�����
� � ���

� � �

�
�
����
�
���
� � ���

�

�
�

�
����

(5)

where is an iteration counter,� is a relaxation factor,�
denotes all vertices sharing an edge with vertex� and the
spring rigidity constant��� is the metric length of edge��

(a) Interior elements before geometric adaptation

(b) Interior elements after geometric adaptation

Figure 11: Water jacket — Overlay mesh to be used with
a grid-based method.

divided by its Euclidean length. The metric length of an edge
�� is given by:

���� �

� �

�

�
���� � ����	������ ���� � ���� �� (6)

where��� � ����� ���������. This metric length is integrated
numerically using a simple trapezoidal rule with� being
interpolated on the background octree. See [45] for more
details on relocation methods.

Figure 11 presents an initial structured hexahedral mesh for
the water jacket geometry with and without geometric adap-
tation. This cubic overlay grid counts����������� hexa-
hedra. Without adaptation, only����� elements are located
inside the geometry and are retained for the body-fitting step
of the grid-based method. Fine details cannot be captured
adequately by such a Cartesian mesh unless the resolution
is drastically increased. Global refinement would be very

(a) Triangulated geometry [34]

(b) Background octree

(c) Octree skeleton

(d) Adapted overlay mesh

Figure 12: Screwdriver — Geometric adaptation of an
overlay mesh for a grid-based method.

wasteful while local refinement is usually isotropic and re-
sort to non-conformal transition elements. However, with
adaptation by point relocation and a geometric metric, those
details are easily resolved. The adapted overlay mesh counts
������ elements inside the geometry and those elements
are better aligned with the boundary. The present geomet-
ric adaptation strategy should thus make the overlay meshes
less sensitive to misalignment problems typical of grid-based
methods. The anisotropy introduced by the geometric metric
is also much more efficient than the usual Cartesian refine-
ment, global or even local, for long and narrow regions. Fi-
nally, although the general shape of the domain can already
be recognized, the actual boundary of the model has yet to be
recovered. The present adaptation process should, however,
greatly facilitate the body-fitting process.

Figures 12 and 13 present further adaptation examples for
geometries found on the Internet [29, 34]. In addition to the
adapted overlay mesh to be used by a grid-based method, the
triangulated domain, the intersecting cells of the background
octree and the corresponding skeleton are also presented.
Note how much more efficient is the adapted anisotropic
mesh compared to the isotropically refined octree.

As illustrated by these examples, surprisingly good results
can be obtained using only point relocation to adapt the over-

(a) Triangulated geometry [29] (b) Background octree

(c) Octree skeleton (d) Adapted overlay mesh

Figure 13: Horse — Geometric adaptation of an overlay mesh for a grid-based method.

lay mesh. However, for geometries with very large length
scale variations, local mesh refinement may be needed. To
avoid hanging-nodes, a conformal all-hexahedral refinement
method based a pillowing or shrink and connect strategy can
be used [46]. Consider, for example, the toy dinosaur [34]
presented in Fig. 14. Again, the triangulated domain, the in-
tersecting cells of the background octree and the correspond-
ing skeleton are presented in addition to the adapted overlay
mesh. This adapted mesh was generated from a� � � � �
cubic grid encompassing the domain that was coarsely re-
fined using the shrink and connect strategy. Each resulting
hexahedron was then diced in 8 and the point relocation al-
gorithm smoothed the resulting mesh in the target geometric
metric. The final mesh counts 48954 elements located inside
the geometry. Figure 15 plots a cut of the complete overlay
mesh before the removal of non-interior elements and shows
how the geometric metric drives the combined point reloca-
tion and local refinement algorithm to effectively carve the
model geometry out of the initial cube. Although the ele-
ments located outside the geometry are very distorted, the
geometric metric, and the smoothing process used to gener-
ate it, gives very good elements inside the geometry itself
without any inverted cell.

Finally note that, for all the examples presented in this sec-
tion, the following size functions were used:	
 �
�� and
	���� � ��� �����. Furthermore, a relaxation factor� of
��� was necessary in Eq. 5 to stabilize the point relocation
algorithm.

6. CONCLUSION

A new method to construct geometry-based adaptation met-
rics from triangulated domains was introduced in the present
paper. These anisotropic metrics are computed using lo-
cal domain curvature, estimated from its triangulated bound-
aries, as well as thickness. Digital topology theory is used to
extract this thickness from the domain skeleton on a Carte-
sian background octree used as a support medium for the
anisotropic metric. Applications illustrated the effectiveness
of this approach for hexahedral mesh adaptation.

The present geometric metric can, however, be used on any
other mesh type, tetrahedral or hybrid for example, as long
as the adaptation algorithm uses metrics to specify its target.
It could also be combined with other specifications based on
user experience. For example, in computational fluid dynam-
ics applications, the metric could be modified to take into ac-
count boundary layers around solid walls. Although, it could
never replace a solution-based metric computed usinga pos-
teriori error estimators, such a metric is, however, invaluable
to generate and adapt initial meshes when no solution is yet
available.

7. ACKNOWLEDGMENTS

The authors would like to thank NSERC for its financial sup-
port. Many thanks also to Julien Dompierre for his insight
on metrics and mesh adaptation.

(a) Triangulated geometry [34] (b) Background octree

(c) Octree skeleton (d) Adapted overlay mesh

Figure 14: Toy dinosaur — Geometric adaptation of an overlay mesh for a grid-based method.

REFERENCES

[1] P. J. Frey and P.-L. George,Mesh Generation. Applica-
tion to Finite Elements. Paris: Hermès, 2000.

[2] J. Dompierre, P. Labbé, and F. Guibault,
“OORT (Object-Oriented Remeshing Toolkit).”
http://www.cerca.umontreal.ca/oort.

[3] R. Löhner and P. Parikh, “Generation of three-
dimensional unstructured grids by the advancing front
method,”AIAA–88–0515, 1988.

[4] É. Seveno,Génération automatique de maillages tridi-
mensionnels isotropes par une méthode frontale. PhD

thesis, Université Pierre et Marie Curie, Paris VI, Mar.
1998.

[5] A. Cunha, S. A. Canann, and S. Saigal, “Automatic
boundary sizing for 2D and 3D meshes,” inAMD-Vol.
220 Trends in Unstructured Mesh Generation, pp. 65–
72, ASME, July 1997.

[6] S. J. Owen and S. Saigal, “Neighborhood-based ele-
ment sizing control for finite element surface meshing,”
in Sixth International Meshing Roundtable, (Park City,
Utah), pp. 143–154, Sandia National Laboratories, Oct.
1997.

[7] S. Pirzadeh, “Structured background grids for genera-
tion of unstructured grids by advancing-front method,”

Figure 15: Toy dinosaur — Cut of the whole adapted overlay mesh.

AIAA J., vol. 31, pp. 257–265, Feb. 1993.

[8] M. A. Yerry and M. S. Shephard, “A modified quadtree
approach to finite element mesh generation,”IEEE
Comput. Graph. Appl., vol. 3, pp. 39–46, Feb. 1983.

[9] M. S. Shephard, “Approaches to the automatic genera-
tion and control of finite element meshes,”Applied Me-
chanics Review, vol. 41, no. 4, pp. 169–185, 1988.

[10] Y. Kallinderis, A. Khawaja, and H. McMorris, “Hy-
brid prismatic/tetrahedral grid generation for complex
geometries,” inAIAA 33rd Aerospace Sciences Meeting
and Exhibit, no. AIAA-95-0211, January 9–12, 1995.

[11] J.-C. Carette and H. Deconinck, “Adaptive hy-
brid remeshing and SUPG/multiD upwind solver for
compressible high-Reynolds number flows,” in13th
AIAA Computational Fluid Dynamics Conference,
no. AIAA–97–1857, (Snowmass, CO), June 1997.

[12] P. J. Frey and L. Maréchal, “Fast adaptive quadtree
mesh generation,” inSeventh International Meshing
Roundtable, (Dearborn, Michigan), pp. 211–224, San-
dia National Laboratories, Oct. 1998.

[13] A. C. O. Miranda and L. F. Martha, “Mesh genera-
tion on high-curvature surfaces based on a background
quadtree structure,” inEleventh International Meshing
Roundtable, (Ithaca, NY), pp. 333–342, Sandia Na-
tional Laboratories, Sept. 2002.

[14] J. Zhu, T. Blacker, and R. Smith, “Background overlay
grid size functions,” inEleventh International Meshing
Roundtable, (Ithaca, NY), pp. 65–74, Sandia National
Laboratories, Sept. 2002.

[15] P. J. Frey, “About surface remeshing,” inNinth Interna-
tional Meshing Roundtable, (New Orleans, Louisiana),
pp. 123–136, Sandia National Laboratories, Oct. 2000.

[16] A. Rosenfeld, “Digital topology,”American Mathemat-
ical Monthly, vol. 86, no. 8, pp. 621–630, 1979.

[17] T.-Y. Kong and A. Rosenfeld, “Survey digital topology:
Introduction and survey,”CVGIP, vol. 48, pp. 357–
393, 1989.

[18] H. Blum, “A transformation for extracting new descrip-
tors of shape,” inModels for the Perception of Speech
and Visual Form(W. Wathen-Dunn, ed.), pp. 362–380,
MIT Press, 1967.

[19] M. Khachan,Topological study for localization and
reconstruction of geometrical objects. PhD thesis,
University Joseph Fourier, Grenoble, France, January
1998.

[20] H. Samet, “A quadtree medial axis transform,”Com-
munications of the ACM, vol. 26, pp. 680–693, Sept.
1983.

[21] J. Bonet and J. Peraire, “An alternating digital tree
(ADT) algorithm for 3D geometric searching and inter-
section problems,”Int. J. Numer. Meth. Engng, 1991.

[22] J. R. Shewchuk, “Adaptive precision floating-point
arithmetic and fast robust geometric predicates,”Dis-
crete & Computational Geometry, vol. 18, pp. 305–
363, Oct. 1997.

[23] H. Edelsbrunner and E. P. Mucke, “Simulation of sim-
plicity: A technique to cope with degenerate cases
in geometric algorithms,” inSymposium on Computa-
tional Geometry, pp. 118–133, 1988.

[24] G. Taubin, “Estimating the tensor of curvature of a sur-
face from a polyhedral approximation,” inFifth Inter-
national Conference on Computer Vision (ICCV 95),
(Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA), pp. 902–907, IEEE Computer
Society, June 1995.

[25] AVL, “AVL eFAME — Web based meshing and grid
generation.” http://www.avl.com.

[26] K.-F. Tchon, C. Hirsch, and R. Schneiders, “Octree-
based hexahedral mesh generator for viscous flow sim-
ulations,” in13th AIAA Computational Fluid Dynam-
ics Conference, no. AIAA–97–1980, (Snowmass, CO),
June 1997.

[27] S. F. Frisken and R. N. Perry, “Simple and efficient
traversal methods for quadtrees and octrees,” Technical
Report TR2002-41, Mitsubishi Electric Research Lab-
oratories, Cambridge, MA, USA, Nov. 2002. to appear
in Journal of Graphics Tools.

[28] M. Foskey, M. Lin, and D. Manocha, “Efficient com-
putation of a simplified medial axis,” inACM Confere-
once on Solid Modeling, 2003. To appear.

[29] Georgia Tech College of Comput-
ing, “Large geometric models archive.”
http://www.cc.gatech.edu/projects/large_models.

[30] J. N. Tsitsiklis, “Efficient algorithms for globally op-
timal trajectories,”IEEE Transactions on Automatic
Control, vol. 40, pp. 1528–1538, Sept. 1995.

[31] J. A. Sethian, “Fast marching methods,”SIAM Review,
vol. 41, no. 2, pp. 199–235, 1999.

[32] M.-G. Vallet, Génération de maillages éléments finis
anisotropes et adaptatifs. PhD thesis, Université Pierre
et Marie Curie, Paris VI, France, 1992.

[33] P.-L. George and H. Borouchaki,Delaunay Triangu-
lation and Meshing. Applications to Finite Elements.
Paris: Hermès, 1998.

[34] Cyberware, “Sample models.”
http://www.cyberware.com/samples/index.html.

[35] R. Taghavi, “Automatic, parallel and fault tolerant
mesh generation from CAD,”Engineering with Com-
puters, vol. 12, pp. 178–185, Dec. 1996.

[36] R. Schneiders, “A grid-based algorithm for the genera-
tion of hexahedral element meshes,”Engineering with
Computers, vol. 12, pp. 168–177, 1996.

[37] R. J. Smith and M. A. Leschziner, “A novel cartesian
grid method for complex aerodynamic CFD applica-
tions,” in Proceedings of the 5th international confer-
ence on numerical grid generation in computational
field simulations, 1996.

[38] M. J. Aftosmis, M. J. Berger, and J. E. Melton,
“Robust and efficient Cartesian mesh generation for
component-based geometry,” in35th AIAA Aerospace
Sciences Meeting, no. AIAA–97–0196, (Reno, NV),
Jan. 1997.

[39] R. Schneiders, “Octree-based hexahedral mesh gener-
ation,” Int. J. of Comp. Geom. & Applications, vol. 10,
no. 4, pp. 383–398, 2000.

[40] W. Oaks and S. Paoletti, “Polyhedral mesh generation,”
in Ninth International Meshing Roundtable, (New Or-
leans, LA), pp. 57–67, Sandia National Laboratories,
Oct. 2000.

[41] L. Maréchal, “A new approach to octree-based hex-
ahedral meshing,” inTenth International Meshing
Roundtable, (Newport Beach, CA), pp. 209–221, San-
dia National Laboratories, Oct. 2001.

[42] K. S. Walton, S. E. Benzley, and J. Shepherd,
“Sculpting: An improved inside-out scheme for all-
hexahedral meshing,” inEleventh International Mesh-
ing Roundtable, (Ithaca, NY), pp. 153–160, Sandia Na-
tional Laboratories, Sept. 2002.

[43] J. Zhu and T. Blacker, “Overcoming Cartesian grid
generation obstacles,” in7th International Conference
on Numerical Grid Generation, Sept. 2000.

[44] T. Blacker, “Meeting the challenge for automated
conformal hexahedral meshing,” inNinth Interna-
tional Meshing Roundtable, (New Orleans, Louisiana),
pp. 11–19, Sandia National Laboratories, Oct. 2000.

[45] Y. Sirois, J. Dompierre, M.-G. Vallet, P. Labbé, and
F. Guibault, “Progress on vertex relocation schemes for
structured grids in a metric space,” in8th International
Conference on Numerical Grid Generation, (Honolulu,
USA), pp. 389–398, June 2002.

[46] K.-F. Tchon, J. Dompierre, and R. Camarero, “Confor-
mal refinement of all-quadrilateral and all-hexahedral
meshes according to an anisotropic metric,” inEleventh
International Meshing Roundtable, (Ithaca, NY),
pp. 231–242, Sandia National Laboratories, Sept.
2002.

Session 3B
Adaptivity

FULLY AUTOMATIC ADAPTIVE MESH REFINEMENT INTEGRATED
INTO THE SOLUTION PROCESS

Joseph R. Tristano, Zhijan Chen, D. Alfred Hancq, Wa Kwok

ANSYS Incorporated, Canonsburg, PA U.S.A.

{joe.tristano,james.chen,al.hancq,wa.kwok } @ansys.com

ABSTRACT

Finite element analysts and designers need to feel confident in the results of their analyses before sending a product to prototype
or production. Mesh discretization can greatly influence the desired results. In this paper we present framework for adaptive
mesh refinement to obtain FEA results with a desired accuracy. The process involves adaptively refining the mesh based on
solution error norms until the result desired converges to certain accuracy. The adaptive refinement/meshing process must be
fully automatic and very robust. We present an exhaustive method to create a fully automatic and integrated process that takes
advantage of many of the mesh refinement and mesh optimization algorithms found in literature. The results of the process
provide the user with the desired accuracy in the smallest number of iterations possible.

Keywords: h-adaptivity, adaptive mesh refinement, adaptive finite element

REFINE COMPONENT

DRIVER COMPONENT

SOLVER COMPONENT
 solve

get nodelist to be
marked and nodelist to

exclude from
refinement

nodes marked > ∆% of total
or PGR key is set

template
refinement

delete
tetrahedron

Preprocess
surface mesh

refine surface
mesh using
templates

mesh interior with
tetrahedron and refine
interior nodes using

templates

unmark nodes that may cause
problems

conventional mesh
optimization methods

quality ok

quadratic tetrahedron
improvement

quality ok

SET PGR
KEY

YESNO

YES

NO

NO

converged
or num iterations met

stop

YES

YES

Figure 1 Overview of Adaptive Solution Process

1. INTRODUCTION

Finite element analysts and designers need to feel confident
in the results of their analyses before sending a product to
prototyping or production in order to save their company’s
time and money. This is is especially true for users who are
not experts in FEA. The discretization of the model
intended for analysis can greatly influence the outcome of
their desired results. In order to feel confident with the
desired results we have developed a fully automatic
adaptive mesh refinement process that is integrated into the
solution process. The mesh is refined based upon error
norms and other information output by the solver. In order
to make the process reliable and robust, multiple methods
for refining the mesh have been implemented. The process
also needs to be efficient, i.e., the process needs to mark
enough nodes for refinement such that the iterations are not
wasted in the solver. The importance of this work lies in
the method to integrate the tools and procedures found in
literature into a fully embedded automatic and robust
adaptive solution process.

The remainder of this paper will first discuss the overall
framework of the process. We will then discuss the
previous work in the area on which the building blocks for
the process were built. We will then go into detail of the
sub processes within the process such as methodology for
selecting nodes and elements for refinement and the
refinement process itself. We will finally show some
examples and discuss areas for future work. This paper will
focus on refinement of tetrahedral meshes. However, the
method can easily be extended to other element types.

1.1 Process Overview

The adaptive solution process is an iterative process
illustrated Figure 1.

It is clearly seen that this adaptive solution process does not
lend itself to failure. Various techniques are used to protect
the refine process from producing poorly shaped elements. It
is imperative that the mesh generated from the refinement
process is of adequate quality.

The process is as follows. The initial solve takes place. The
solver driver then determines which nodes must be refined
and which nodes must be excluded from refinement (to
prevent refinement of singularities). Depending on the
amount of nodes marked, two paths may be taken. The first
path is the template based tetrahedron refinement based on
Staten’s work. The second path uses a Pseudo Global
Refinement (PGR) method that: deletes the tetrahedron,
refines the surface mesh and performs some optimization of
the surface mesh, re-meshes with tetrahedron and refines any
marked interior nodes using templates. Extensive tetrahedron
optimization is performed using conventional methods of
B.Joe [1] for each method of refinement. If the conventional
optimization methods fail, more specialized quadratic
tetrahedron optimization methods are called (Kwok et al.
[2]). This process iterates until the solution has converged or
the number of adaptive iterations has been met.

If either method fails, various styles of the PGR algorithm
work to refine the model to create a high quality tetrahedron
mesh.

The processes communicate via data passed through COM
Interfaces. These interfaces allow us to maintain each
procedure of the process independently. The interfaces are
implemented in several components (DLL’s). The solver
component solves the FE model. The driver component
determines what elements should be refined based on
analysis type specific criterion. This component
communicates between the solver and mesh refiner and
determines when the adaptive loop should stop. This
component also charts the progress of adaptivity for the user,
which enables the user to track the convergence of the result
per refinement iteration along with displaying the number of
nodes and elements for each iteration. The mesh refiner asks
the driver for a mesh object and the nodes and elements to be
refined and excluded from refinement. This component is
self-encapsulated and determines whether templates or PGR
refinement should be executed. If the quality of the output
mesh is not adequate, more refinement and mesh
optimization are performed to increase the quality to
acceptable levels. This componentization also enables quick
prototyping and implementation of new refinement
algorithms, solvers, and error estimators.

1.2 Previous Work
The literature contains many works regarding error estimates
[3],[4] and refinement methods[5],[6], however, the methods
used to fully automate and integrate these tools into a robust
failsafe algorithm have been trivialized. When dealing with

complex real world geometry and quadratic tetrahedron, this
process is never trivial.

1.2.1 Adaptive Refinement
Diaz-Morcillo [7] presented an adaptive mesh refinement
process for electromagnetic problems. Since the elements are
usually linear and the geometry is usually simple for this
class of problems, the framework for the algorithm is allowed
to be quite simple: solve, estimate error, refine. Jones [8]
also describes a method very similar to Diaz’s. His work also
concentrates more on the refinement algorithm’s than
creating a fail-safe process that can run on real world
geometry.

1.2.2 Template Based Refinement
We have chosen to use Staten’s [6] (Figure 2) template based
refinement over existing methods of refinement. This
method was chosen over Delaunay[5] refinement because it
has shown the ability to maintain overall mesh quality after
successive refinements.

Figure 2 Staten’s Template Based Refinement

2. ADAPTIVE REFINEMENT SUBPROCSESES

2.1 Methodology for Choosing Candidates for
Adaptive Refinement

Adaptive H refinement is supported for structural, thermal,
and modal analysis. The result quantity φ , the expected
accuracy E (expressed as a percentage), and the region R on
the geometry that is being subjected (scoped) to adaptive
analysis may be selected. The user-specified accuracy is
achieved when convergence is satisfied as follows:

()
)(,3,2,1 ,

2
1

100
1

1 RinniE
ii

ii K=<

+

−

+

+

φφ

φφ (1)

Elements will be flagged for refinement on some basis
measure. The criterion for which elements and nodes are
selected for adaptive refinement depends on analysis type and
on what results quantities are requested. In addition,
depending on analysis type and the requested result type of φ,
nodes may be flagged for refinement to augment the element
list. This is done to help ensure that true convergence is
achieved on the result φ.

2.1.1 Element Selection Methodology,
Structural and Thermal Analysis

A basis measure must be employed to identify poorly shaped
elements that are causing analysis inaccuracies. The
procedure to select the elements for refinement, aside from
the error calculation itself, is the same for both structural and
thermal analysis and will be discussed first. For structural
analysis, a displacement based error measure developed by
Zienkiewicz-Zhu[3] is used as this basis. Essentially an
elemental stress error is calculated from the difference
between the average nodal stress and the element nodal
stress. This stress error is then integrated over the element
volume to calculate an energy error that is then used as the
structural error basis. This calculation is performed over the
element set and can be seen mathematically by [9]:

vectorerrorstress}{
elementtheofmatrixstrainstress][

volumeelement
ielementforerrorenergy

:

)(}{][}{
2
1

:

ielementofnnodeofvectorstress}{

nnodetoconnectedelementsofnumber

}{
nnodeatvectorstressaveraged}{

ielementofnnodeatvectorerrorstress}{
:

}{}{}{

1

1

=∆
−=

=
=

∆∆=

=

=

==

=∆

−=∆

∫

∑

−

=

σ

σσ

σ

σ
σ

σ

σσσ

D
vol
e
where

voldDe

elementeachforThen

N

N

where

i

vol

T
i

i
n

n
e

n
e

N

i
i
na

n

i
n

i
n

a
n

i
n

n
e

(2)

A similar calculation for temperature-based problems using
elemental heat flux was given by Huang and Lewis[4] and is
used a basis for thermal energy error.

After all the element errors are collected, a cutoff range
technique is employed where the elements with the largest
error are flagged for refinement. A critical value is calculated
and elements with an error above this value will be flagged
for refinement according to the equation:

()

.75 ofdefault factor, cutoff

setelement in error element minimum
setelement in error element maximum

refinementfor flagged be o t
 requirederror element minimum

:where

1
0

min

max

minmaxmax

ℜ∈=

=
=

=

−−=

ββ

β

e
e

e

eeee

crit

crit

(3)

As can be seen from the equation above, a cutoff factor of
zero would cause only elements with the highest error to be
flagged while a factor of one would flag all elements for
refinement. At first glance, the default β of .75 would seem
to allow a disproportionately large number of elements to be
flagged but experience has shown this value to be valid. This
is due to a typically large gradient in the distribution of

element error throughout the element set. Although highly
dependent on the loading and geometry, typical percentages
of elements flagged for refinement range from 5 to 20
percent.

2.1.2 Element Selection Methodology, Modal
Analysis

In selecting elements for modal refinement, a different basis
mechanism as well as different cutoff technique is employed.
The basis function is simply largest element volume. The
element set is sorted on that basis and then a cutoff element
technique is employed so that a set percentage of the largest
elements are flagged for refinement. Typically, 25 percent of
the elements will be flagged for refinement but this value is
controllable by the user.

2.1.3 Node Augmentation Selection
methodology

Although the element selection methods described above
perform well in obtaining an accurate global solution, node
augmentation based on the result may be required to ensure
that a local converged result is achieved. This is applicable
to results where local refined meshes are required to achieve
an accurate solution. Consider the case where φ is based on
equivalent stress and a stress concentration exists. Consider
also that in that region the element error is low enough
compared to another region such that the other region in the
model is flagged for refinement. Thus, as a result, the change
in φ will be likely small enough to satisfy the requested
accuracy E, although true convergence has not been reached.
To aid in this, a list of nodes on the region R will be flagged
for refinement that have values near φ and thus ensures that a
false convergence will not occur. This is node augmentation
is only applicable to certain type of results where this false
convergence can occur and includes:

• Structural stresses and strains

• Structural post tools based on stress and/or strain

• Structural contact results

• Thermal heat fluxes

Nodes are selected for refinement based on a cutoff range
technique. However, since convergence may be applied to
either the minimum or maximum of φ, and in addition, φ may
be positive or negative, logic is required to handle each
permutation. Each node in the set will test the following
logic statement and will be flagged for refinement if the
statement is true:

() ()
() ()

.8 ofdefault , factor, cutoff

n nodeat quantity result
upon converged be oquantity tresult

:
00
00

on Convergingon Converging

1
0

minmax

ℜ∈=

=
=

<∧≥>∧≥
<∧<>∧<

αα

φ
φ

φαφφαφφφ
αφφφφαφφ
φφ

n

nn

nn

where (4)

Care must be taken when compiling this node list. Artificial
singularities may exist in the model due to the applied loads
that could cause a divergent refinement series. A list of
boundary conditions known to cause these singularities is
compiled and any nodes in the region R that exist on these
boundaries are excluded as candidates for node
augmentation. Note that geometric singularities may exist in
model that the program cannot detect and thus care must be
taken by the user to ensure that a proper region R is selected
for the result quantity where convergence is of interest.

2.2 Refinement Process

2.2.1 Refinement Driver Figure 4 Bending Interior Edges
After the nodes and elements are marked for refinement, the
refinement driver loads the refine component. Data, such as
the previous mesh, marked and excluded nodes and elements,
and the BRep are passed into the refine component via a
COM Interface (Figure3).

There may be cases where there is not enough room on the
interior of the model to bend an interior element edge to
create an acceptable quality element (Figure 4). In this case,
we determine if the tetrahedron is a poor element that lies on
the boundary of the topological body. If this poor element
lies on the boundary, a few operations may be performed to
either modify the tetrahedron or simply delete it. Some of
these operators include:

• Splitting the longest edge to create better-shaped
elements

• Swapping element edges to create a better
configuration

• Moving interior corner nodes to improve resulting
element shapes

• Deleting the element if it is a kite or cap on the
boundary Figure 3 COM Interface for Refinement Component

• Modifying a mid-side node of the elements on the
boundary. 2.2.2 Node Marking and Element

Improvement If all of these methods fail to produce a valid configuration,
the nodes marked on the poor element will be unmarked for
refinement. Although the driver component wanted the
nodes to be refined, the unmarking of nodes has been proven
to be an acceptable practice via empirical studies.

The mesh is converted into a local data structure and the
appropriate nodes are marked. During the node marking leg,
the algorithm may determine that some quadratic tetrahedron
may invert during the refinement process. At this time a few
things may happen: Mid-side nodes on element edges
interior to the topological body are perturbed, poor boundary
elements may be deleted, nodes may be unmarked. 2.2.2 Template Based Refinement

The template base refinement follows Staten’s work with
slight modifications. There are cases where after some
refinement that the diagonal to refine the tetrahedron upon
will create invalid elements. In this case, we again try to
bend interior mid-side nodes to create an acceptable quality
element.

When bending interior edges, we examine the diagonal of the
tetrahedron that is chosen to be refined that will invert the
children tetrahedron. The mid-side node is perturbed until the
children elements will have an acceptable shape.

2.2.3 Pseudo Global Refinement (PGR)
In the cases where template based refinement fails, we try a
new method called Pseudo Global Refinement (PGR). The
PGR method is an innovative technique that utilizes template
based surface mesh refinement and local remeshing
techniques to perform mesh refinement during an adaptive
solution process.

The PGR method is comprised of the following steps.

1. Remember marked interior node locations
(“memory nodes”) and delete tetrahedron

2. Split boundary edges that have very high
transitions as to improve the quality of the resultant
mesh

Figure 6 Acceptable Linear Element Becomes
Invalid with the Addition of Mid-Side Nodes

3. Improve quality of surface mesh via triangle quality
swapping

4. Refine marked nodes on surface using template
refinement and clean surface mesh 2.2.3.3 PGR Template Surface Mesh

Refinement 5. Fill body with tetrahedron

6. Refine Interior Nodes closest to “memory nodes”

7. Optimize Mesh

2.2.3.1 PGR Surface Mesh Aspect Ratio
Adjustment

To obtain a successful refinement using the PGR method, the
surface mesh is massaged to prevent poor element quality
later in the process (Figure 5). This preventative method
reduces high transitions in the mesh by looping through
marked nodes and determining if any edge, Ei @ node M, with
length, Li @ node M, exceeds the ratio ß when compared to the
smallest edge length at the node, Lmin @ node M. If this edge
ratio exceeds ß, the edge is split to reduce the high transition.
In practice, we have found that ß=10.0 is a suitable number.

Figure 7 Template Triangle Refinement

PGR Template triangle refinement uses Staten’s method [6]
of refinement to refine the marked nodes (Figure 7). This
refinement is then followed by topological optimization of
the triangles [10] and mixed Laplacian/Optimization
smoothing[11] of the refined surface mesh.

2.3 Tetrahedron Optimization Methods
After the topological body bound by the refined surface mesh
is filled with tetrahedron, mesh optimization is performed on
the mesh. B. Joe’s [1] tetrahedron optimization techniques
have been implemented for the initial optimization leg of the
code. For cases where the mesh cannot be improved by Joe’s
techniques, more advanced and specialized tetrahedron
optimization operators are used. These methods consist of the
same methods used to improve tetrahedron quality during the
node marking leg of the process.

Figure 5 Splitting High Transition Edges

 2.2.3.2 PGR Surface Mesh Optimization
Improving poor boundary element tetrahedron by reposition
their mid-side nodes is one of the most common specialized
tetrahedron operators called in the process (Figure 8). The
operator is quite simple. The smallest or inverted angle is
found on the boundary face. The unconstrained edge is
determined, i.e., the edge that does not lie on a topological
edge is found. The direction of the edge, E , is crossed with
the surface normal,

surfaceN , to determine the direction, moveV ,

in which the mid-side node of the moving edge should move.
This process moves the node a small δ based on the distance
between the mid-side nodes of the adjacent edges until the
quality of the tetrahedron adjacent to the edge are acceptable.

We perform topological optimization of the mesh along with
quality optimization of the mesh. The quality optimization of
the mesh is required for quadratic elements. An element may
have acceptable quality when it is linear but adding mid-side
nodes to the element may invalidate it (Figure 6). Therefore,
the quality swap is extremely important. A quality swap is
one in which a swap is performed if the quality of the
elements will improve in the new configuration. This step
provides a high quality surface mesh to send to the template
based surface mesh refinement.

8a bad
configuration

8b corrected
configuration

8c correcting
configuration

Figure 9 Improving Bad Boundary Element

3. EXAMPLES AND FUTURE WORK

Figure 10 Pressure Vessel Initial Mesh
3.1 Example

3.1.1 Pressure Vessel

The following example illustrates our process on a moderate
complexity CAD geometry of a pressure vessel. The
intersections of the fillets in the model contain many sliver
surfaces, which have been defeatured via “Mesh Based
Defeaturing” [12]. The loading condition is shown in Figure
8. The initial mesh (Figure 10) was intentionally set to the
coarsest setting possible to show the robustness of the
refinement process. It is clearly seen that the initial mesh
contains many high aspect ratio tetrahedron. The model was
set to adapt on the maximum normal stress of the whole
model with a convergence criterion of 7% allowable change
in the maximum normal stress (Figure 11). After four
iterations, the model converged to .5% change in maximum
normal stress (Figure 12, Table 1). The large increase in the
number of nodes is due to the massaging of the surface mesh
during PGR. PGR allows the complex fillets to be refined
while maintaining the overall quality of the mesh.

Figure 11 Convergence Control on Solution

Figure 12 Pressure Vessel Convergence

Figure 8 Pressure Vessel Loading Condition

Table 1 Pressure Vessel Convergence

Figure 15 Plate with Hole Initial Mesh

Figure 13 Pressure Vessel Converged Normal
Stress

3.1.2 Plate with Hole
The next example illustrates an academic problem of a plate
with a hole. The interesting item with this model is the
scoping of results to the top surface (region R as discussed
above). As stated above, the scoping control limits the
marking of nodes to nodes lying on the scoped surface
(Figure 17). The model converges to 1.88 % change in
maximum equivalent stress in four iterations (Figure 16,
Table2).

Figure 16 Plate with Hole Convergence

 Table 2 Plate with Hole Convergence

Solution Number Normal Stress (Pa) Change (%) Nodes Elements
1 1.3980E+07 2080 1056
2 1.9378E+07 32.062 13099 4643
3 2.0886E+07 7.8 35255 22418
4 2.0994E+07 0.51585 123451 83988

Solution Number Equivalent Stress (psi) Change (%) Nodes Elements
1 1088.4 438 174
2 1430.5 27.161 2388 1183
3 1502.9 4.9363 12494 7543
4 1531.6 1.8895 35341 22925

Figure 14 Plate with Hole Loading Condition

Figure 17 Plate with Hole Scoped Equivalent Stress
Result

3.2 Future Work
This paper presented a framework for successfully integrating
fully automatic adaptive refinement into the solution process.

This process is quite robust. However, as with any process,
there is always room for improvement. Future work in this
area may consist of:

• Determining better heuristics for when to choose
PGR over Template refinement

• Using an optimization method to place the mid-side
nodes when bending interior edges or moving the
mid-side node of a poor surface tetrahedron

• Developing new specialized tetrahedron cleanup
operators

• Improve refinement for thin models when the
aspect ratio of the opposite side of the model is
much larger than the side being refined (Figure 18)

Figure 18 Cross-section of thin model with high
aspect ratio tetrahedron

REFERENCES

[1] Barry Joe, “Construction of Three-Dimensional
Improved-Quality Triangulations Using Local
Transformations” Siam J. Sci. Comput., Vol 16,
pp.1292-1307 (1995)

[2] Wa Kwok, Z. Chen, J. Tristano, “Quadratic
Tetrahedral Mesh Improvements”, Submitted to 12th
International Meshing Roundtable

[3] O. C Zienkiewicz,., and J. Z Zhu, "A Simple Error
Estimator and Adaptive Procedure for Practical
Engineering Analysis", International Journal for
Numerical Methods in Engineering, Vol. 24, pp. 337-
357 (1987).

[4] H.C. Huang and R.W. Lewis, “Adaptive Analysis for
Heat Flow Problems Using Error Estimation
Techniques”, Paper presented at the 6th International
Conference on Numerical Methods in Thermal
Problems. Also University of Wales, University College
of Swansea Internal Report CR/635/89 (April 1989)

[5] Maria-Cecilia Rivara, “Local Modification of Meshes
for Adaptive and/or MultiGrid Finite-Element
Methods”, Journal of Computational and Applied
Mathematics, Elsevier, Num 36, pp.79-89, (1991)

[6] Matthew Staten, “Selective Refinement of Two and
Three-Dimensional Finite Element Meshes”, Master's
Thesis, Department of Civil and Environmental
Engineering, Brigham Young University, (1996)

[7] Alejandro Diaz-Morcillo, L. Nuño, J. V. Balbastre and
D. Sánchez-Hernández, “Adaptive Mesh Refinement in
Electromagnetic Problems”, Proceedings, 9th

International Meshing Roundtable, Sandia National
Laboratories, pp.147-155, (2000)

[8] Mark T. Jones and Paul E. Plassmann, “Adaptive
Refinement of Unstructured Finite-Element Meshes”,
Finite Elements in Analysis and Design, Num 25 pp.
41-60, (1997)

[9] ANSYS Inc, Theory Manual
[10] Scott A. Canann, S. N. Muthukrishnan and R. K.

Phillips, “Topological Refinement Procedures for
Triangular Finite Element Meshes”, Engineering with
Computers, Springer-Verlag, Vol 12, pp.243-255,
(December 1996)

[11] Zhijian Chen, J. Tristano, W Kwok, “Combined
laplacian and optimization-based smoothing for
quadratic mixed surface meshes”, Submitted to 12th
International Meshing Roundtable

[12] Anton V. Mobley, M. P. Carroll, and S. A. Canann,
“An object oriented approach to geometry defeaturing
for finite element meshing”, In Proc. 7th Intl Meshing
Roundtable '98, Sandia National Laboratories, (1998)

A NEW TYPE OF SIZE FUNCTION
RESPECTING PREMESHED ENTITIES

Jin Zhu

Fluent, Inc. 1007 Church Street, Evanston, IL, U.S.A. jz@fluent.com

ABSTRACT

This paper describes the creation of a new type of size function – the mesh size function that honors the existing mesh on premeshed
geometry entities and radiates the mesh sizes from the premeshed source entities to the attached entities – from the technology of
using background overlay grids. The creation of faceted meshes from premeshed source entities (i.e. edges or faces) is presented in a
more general way, which allows the use of existing procedure of size function implementations. The introduction of the mesh size
function has greatly enhanced the capabilities of the three types of size functions that were already available (including a fixed size
function, a curvature size function and a proximity size function) and provided nice solutions to the situations where the old size
functions did not work desirably. Meshing results of the new size function with controlled mesh sizes are given.

Keywords: mesh generation, size control, size functions, background grid.

a
b

c d e f g
h

i
j

kl

a
b

c d e f g
h

i
j

kl

1. INTRODUCTION

As everyone knows, the mesh size control is very critical to
mesh quality and to the successful field simulations using the
generated mesh. The mesh sizes need to catch local small
geometry features, and then are smoothly transitioned into
the nearby areas of the geometry unless they reach the given
size limit. Various methods have been used by different
researchers to set up size functions to automatically detect
the geometric features and put appropriate mesh size at
desired locations, thus eliminate the need of manually locate
the local features of the geometry and mesh these entities by
desired sizes [1-7]. The background overlay grid size
functions that were developed in our previous work
illustrated satisfactory performance in mesh size control [8].
However, sometimes creating a mesh that is radiated in a
controlled manner from some premeshed boundaries of the
domain can also be an efficient way of obtaining desired
mesh transition and gradation. The mesh on premeshed
boundaries can come from manual operations as desired, but
more often it comes from the meshing results of other size
functions, or even from imported geometry. In the following,
we will list some problems that would be encountered during
the meshing processes by using the size function capabilities
that had existed, and demonstrate the necessity of creating a
new mesh size function.

Figure 1 An airfoil geometry split and used as the
sources of a fixed size function

of the sources. It is not acceptable to define a constant size
along all the airfoil edges. It is necessary for this problem to
cluster meshes at the leading edge, at an approximate shock
location along the upper surface, and at the trailing edge.
Using the current size function implementation, it is required
to define at least 6 size functions to cluster elements at the
desired locations and then grow the elements away from the
airfoil surfaces. One size function uses vertex a as source,
and other 5 size functions use edges bc , de , fg , hij and

kl , respectively, as sources. These edges can be part of the
airfoil surfaces. This is not a very convenient way and takes
some trial and error to get desirable mesh clustering at the
airfoil surfaces.

A much more convenient and better approach will be to mesh
the edges (that represent the surfaces of the airfoil) separately
and cluster the edge nodes using the standard edge meshing
bunching functionality. Then, have a size function to use
those edges as sources and the existing (and varying) mesh
sizes at those edges as the initial mesh size. The mesh
elements are then allowed to grow using the user specified

In the first place, let’s take the case of meshing a 2D airfoil
as an example, as displayed in Figure 1. The initial mesh size
of a fixed size function is defined as a constant value
specified by the user. This works for many cases where
uniform sizes at the location of the sources are desired.
However, for other cases such as the one in Figure 1, it
requires that non-uniform mesh sizes be used at the location

ratio and size limit. Note that this concept can be extended
into 3D meshing, in which case the size function will take the
existing mesh on source faces as the initial size.

Volume.2

Volume.1

Volume.2

Volume.1

For another example, the geometry in Figure 2(a) contains
two volumes, exterior volume volume.1 and interior volume
volume.2. Four size functions are created (growth rate = 1.2,
size limit = 2, cells-per-gap = 3 for proximity size function
and angle = 25 for curvature size function) and attached to
the geometry as follows:

Proximity size function sfunc.1:

source: volume.1

attachment: volume.1

Curvature size function sfunc.2:

source: all faces of volume.1 (a) Geometry containing two volumes
attachment: volume.1

Proximity size function sfunc.3:

source: volume.2

attachment volume.2

Curvature size function sfunc.4:

source: all faces of volume.2

attachment: volume.2

Suppose volume.1 is meshed first and volume.2 second.
Then the common face between volume.1 and volume.2 is
meshed according to the size functions attached to both
volumes. Since the size functions attached to volume.1 give
smaller mesh sizes than the size functions attached to
volume.2, so the mesh on the common face is dominated by
sfunc.1 and sfunc.2 (actually by proximity size function
sfunc.1), instead of sfunc.3 and sfunc.4. However, when
meshing volume.2, the mesh size is purely controlled by the
two size functions attached to volume.2, which will conflict
with the meshes generated on the common face, thus causes
size jump inside volume.2 or even generates un-usable
meshes. (See Figure 2 (b))

(b) Meshes with big size variation

Figure 2 Problems with old size functions for two
similar volumes, one being enclosed by another

Since size functions attached to the upper topology will also
affect its lower topologies, same problem will occur even if
volume.2 is meshed first. Here the key issue is that the mesh
size on the common face is controlled by four size functions
from two sharing volumes, whereas the mesh size in each
volume is controlled only by two size functions associated
with it.

The mesh size on the common face of above model in Figure
2 is nearly constant. For the similar geometry shown in
Figure 3 where the common face has varying sizes due to the
changing curvature and gap distance from volume.2, same
mismatching of mesh sizes will be encountered.

As one can expect that it is hard to determine which size
functions are the dominant ones that give the smallest mesh
size on the entities to be meshed. To avoid a poor mesh being
generated, a workaround for the above scenario is to attach
the size functions in a crossing way, that is, also attach size
functions sfunc.1 and sfunc.2 to volume.2 and, similarly,

Figure 3 Problems with old size functions for two
connected volumes that are not similar

 For some mesh schemes, the mesh sizes determined by size
function have to be adjusted so that the scheme can work.
For example in a mapped face, the mesh sizes on opposite
paired edges have to be increased or decreased so that their
mesh intervals match each other. In Figure 4, there are two
faces, face.1 and face.2, connected through common edge
ab . The edge at the left-most side is used as source edge of a
fixed size function, and a start size of 0.1 and growth rate of
1.2 are specified. The fixed size function is attached to both
the left face face.1 and right face face.2. When face.1 is
meshed with the map scheme, the mesh sizes on the common
edge of the two faces are decreased (i.e. smaller mesh size
than computed by the fixed size function) in order to match
the mesh intervals on the opposite paired edge which is also
the source edge of the fixed size function. Later, when face.2
that is adjacent to face.1 is meshed with the triangle/pave
scheme, the mesh size obtained from the defined size
function will be very different from the existing mesh on the
common edge, causing big size jump near the common edge.

Source

edge

Source

edge

a

b

Source

edge

Source

edge

a

b

Figure 4 Size jump on the right face from adjusted
uniform edge mesh

Source
vertex

a

b

Source
vertex

a

b

Figure 5 is similar to Figure 4, but now the source entity is
the upper-left vertex, therefore the mesh distributions on the
common edge ab are non-uniform. Suppose face.1 on the left
side is first map meshed. When the right face is meshed with
either the map scheme (Figure 5 (a)) or the quad/pave
scheme (Figure 5 (b)), great size variation can be observed.

From above illustrations it can be seen that the face or
volume meshed first will have great (and usually adverse)
impact on the mesh quality of the face or volume across the
common boundary that is meshed later and whose attached
size functions can not match or smoothly transition the mesh
sizes on the premeshed common boundary. It is difficult, if
not impossible, to handle the mesh size conflict across the
common boundary by using existing size functions, nor by
specifying additional sources to them, because existing size
functions can only measure the mesh sizes of their sources
based on curvature, proximity and fixed sizes, but they can
not evaluate their sources by means of existing meshes on the
sources that may have arbitrary and variable mesh size
distributions that are non-predictable before hand.

 (a) Mapped mesh on right face

Suppose we can define a new size function for the case in
Figure 4 and Figure 5 in such a way that it can use the
common edge as source entity and be attached to the face.2.
This size function is valid only when its source entity has
existing mesh when being evaluated. Then this new size
function will dominate its attached face and give smaller
sizes than previously defined fixed size function in its
affected area, so that the mesh size from the existing mesh on
the source edge will be grown into the neighboring face.2
and the mesh on face.2 will be improved significantly. This
fact suggests that we should create a new type of size
function to address this awkward situation to ensure smooth
transition across the common edge of different mesh
domains. More than just growing the mesh size from
boundary into the interior of mesh domain, the definition of
this new size function will help to resolve the mesh size
conflict that may occur across the common boundaries of
adjacent mesh domains.

(b) Quad-paved mesh on right face

Figure 5 Mesh size inconsistencies from
premeshed edge with non-uniform adjusted mesh

sfunc.3 and sfunc.4 to volume.1. The drawback of this
method will be that the bounding box for the background
grid will be inevitably larger, which usually uses longer time
and larger memory for the background grid to be generated.

Sometimes, imported face or edge meshes that were
generated from outside the meshing product need to be

preserved and used in the creation of a mesh for a geometry
model. Figure 6 demonstrates such a case where face “A” has
imported mesh that needs to be taken into account in the
generation of volume mesh. It is required that the new mesh
grows smoothly from the imported mesh into the rest of the
domain of the geometry. None of the previously
implemented size functions in our meshing product can
satisfy this kind of requirement, thus the mesh size function
to be presented in this paper is indispensable for this purpose.

• Growth rate: This parameter controls the geometric
pace with which the mesh on the premeshed source
entities is grown into affected areas.

• Size limit: This is the maximum mesh size. When the
grown size at the given location exceeds the size limit,
this limit is used instead.

In our previous implementation, all the size functions require
a specific parameter, respectively, to define the mesh sizes on
the source entities for initialization purpose. In the definition
of the mesh size function, the existing meshes on the source
entities are directly used as starting sizes, so only the
common parameters list above will be enough for its
definition.

AA

3. SIZE FUNCTION INITIALIZATION

In preparation for the generation of the background grids, all
types of size functions must be initialized differently. This
initialization establishes the desired sizes everywhere on the
sources. For old size functions, it is needed to generate a
reasonable faceted representation of the source entities and
then an ideal mesh size is computed for each piece of facet
and stored in it.

For the mesh size function, however, we directly use the
meshes on the source edge or source face as input. For a
meshed edge source, each element of the edge mesh is
converted into an edge segment and the length of the
segment represents the local mesh size on that edge. An edge
segment holder is used to store all the edge mesh segments
associated with the premeshed geometry edge. For a meshed
face source, we convert each triangle element of the face into
a facet and pass the size information of that triangle element
to the facet. If the source face has quadrilateral elements,
each quad element is split into two triangle elements each of
which is converted into a facet of the source face. The mesh
size of a face facet is computed as the averaged length of the
three sides of its original triangular element from which it is
converted. A face facet holder is used to store all the face
mesh facets associated with the premeshed geometry face.

Figure 6 Mesh creation from imported mesh

The goal of this work was to create a new type of size
function, named as mesh size function, which respects the
existing mesh on premeshed source entities, controls the
mesh size growth from premeshed source entities to the
attached entities and at the same time, like other size
functions we already had, provides very rapid evaluators that
would be general for any meshing algorithm.

This paper describes how this new type of size function is
implemented using a background overlay grid. The work will
be presented by comparing this new size function with old
ones, and their differences being emphasized. Application
examples of this new size function are given. When evaluating the mesh size at a point in the space, the

point is first projected to a selected edge segment (for edge
source case) or face facet (for face source case). If the
projection is valid, the mesh size stored in that edge segment
or face facet is taken as the start size and then grown to the
given point, according to specified growth rate of the mesh
size function.

2. DEFINITIONS OF SIZE FUNCTIONS

As in our previous implementations, the new mesh size
function is also based on a distance-controlled radiation. The
parameters that are common to all size functions are used for
the new mesh size function too. They are:

4. BACKGROUND GRID GENERATION
• Source entities: Edges or faces that have existing
meshes are used as geometric entities. When the mesh
size function is defined, the source entities may not have
meshes, but they should have meshes available in order
to be valid in meshing the attached entities.

4.1 Improved procedures of establishing mesh
sizes at nodes of background grid
As a result of the size function initialization, the desired size
on all sources is known. The next step is to establish the
complete background grid, realized by the refining process.
This procedure was described in detail in our previous work
[8] and will not be listed here. The only difference is that at
each corner node, the background grid will also use the mesh
size radiated from the mesh size functions and compare it

• Attached entities: The attached entities on which the
mesh size function will have influence include edge, face
or volume. For mesh size function, usually the attached
entity is different from the source.

with all other mesh sizes obtained from old size functions,
when applied together.

pS = (1 - γ) + nS γ 1+nS

The final size is the smallest one of the defined size limit and
the all computed sizes (if a corner point is affected by several
size functions).

However, when establishing values at the background grid
nodes, an improvement can be made regarding the approach
of growing the mesh size from the source entity to a given
point. Previously, we used an interactive procedure to
determine the spacing at a given point as influenced by a
particular source. Using the prescribed geometric growth
factor, 'g', we essentially "march" to the desired point from
the source, applying the growth factor at each interval and
summing the result. Rather than iterate in this fashion, the
desired mesh size can be obtained by analytically summing
the terms of the geometric series given as

4.2 Improvement to projections to source
entities under way
According to our statistics obtained from timing the profile
of size function creation, it is found that the bottleneck of the
size function speed is the projection of the corner nodes of
background grid to the faceted source entities, which counts
for about 90% of the total time. The remaining time is spent
for other operations such as growing the initial mesh size on
source entities to a given point along the distance, inserting
newly computed mesh size into a sorted list, and getting
mesh size at a shared point from the list. The most time used
for projection is spent in searching the best facet to project
the node. An investigation in improving the projection
process is being under way which tries to project a list of
nodes in one background grid to the best facets at the same
time. This approach will significantly reduce the time in
background grid generation once successfully realized.

 = (is the spacing at the source, n ≥ 0) nS 0S ⋅ ng 0S

The distance from the source entity to the given point is the
sum of mesh sizes at incremental intervals except for the first
mesh size on the source, and then the proper terms of the
series can be listed as:

nR = 1−nR g (n > 0)

0R = 0 (n = 0)

Or in full expression:

Geometry Entities

SF Definition

Initializations

BG Grid Generation

Meshing Tools

Fixed Curvature Proximity Mesh

Source Attachment

Evaluator

Geometry Entities

SF Definition

Initializations

BG Grid Generation

Meshing Tools

Fixed Curvature Proximity Mesh

Source Attachment

EvaluatorEvaluator

0R =0, =1R 0S ⋅ g , = , ... =2R 0S ⋅ 2g nR 0S ⋅ ng

Knowing the Euclidean distance (R) from the source to the
node in question, we can sum all the items in the series until

, so that we can then directly solve for the exponent as
follows:
nR

nR = (- 1) / (g - 1) - 0S ng 0S

ng = / + R ()1−g 0S g

 = ln (/ +n R ()1−g 0S g) / (ln g)

Finally we take the integer part of the obtained n value.

n = () int n

which can then be used to immediately evaluate the spacing
at the node without the need for iteration. The desired point
will locate within the region between two subsequent
distances and from source that are measured at
incremental steps n and n+1, respectively. Then the
following condition can be satisfied:

nR 1+nR

 nR ≤ R 1+≤ nR

This would simplify the evaluation of and speed up the
calculation.

nS

A linear interpolation between the two bounding distances is
accomplished by this equation

γ = (R -) / () nR nn RR −+1 Figure 7 Flow chart of the size function
applications

Here (0 ≤ γ ≤ 1). The actual size, S , at the given point, ,
is computed as:

p P

4.3 Flow chart of the background grid size
function approach
No matter what types of the size functions to use, except for
the differences in initializations, the same procedures will be
followed when apply these size functions to the meshing
processes. The following chart in Figure 7 illustrates the
general procedures we used in the meshing processes for all
meshing schemes. After defined, the size functions are
attached to the geometric entities via a specially designed
data structure. Initialization of size functions is triggered if
any of the attached entities or their lower topologies is being
meshed. The background grid generation for the attached
entities follows the initialization process, creating a specific
set of background grid for each group of entities that have
identical size functions attached. The established background
grid serves as an evaluator providing mesh size information
to the meshing process. After entering the meshing session,
the mesh size at a given point is evaluated quickly through
tri-linear interpolations in a background cell into which the
point falls. By the returned mesh size value, the next mesh
node is placed along certain direction.

5. EXAMPLES

A few examples are given below to show the application of
the new mesh size function or its combination with other
types of size functions in the meshing process. Smooth
meshes that were unable to be generated before have been
generated due to the introduction of the new mesh size
function.

5.1 Updated meshing results for co-centric
volumes
Figure 8 is the updated meshing results of the example in the
beginning of this paper (see Figure 2). To prevent the size
jump in the interior volume.2, a mesh size function is created
that uses the common face as source and is attached to the
interior volume. In order for the mesh size function to be
useful to its attachment, the exterior volume.1 should be
meshed first in this case, so that the common face inherits its
meshes from the meshing process of exterior volume before
interior volume.2 is meshed, thus the mesh size function
using the common face as source can be valid for use in
meshing volume.2.

Figure 9 gives the new meshing results corresponding to
Figure 3. Similarly to Figure 8, the meshes of the interior
volume are radiated nicely from the common face, although
the meshes on common face have varying degrees of sizes
than in the previous case.

5.2 Remeshed results for connected faces
Next, referring to Figure 4, we have defined a second mesh
size function that uses the common edge of the two
connected faces as source and attach it to the face on the
right side (see Figure 10). Since the mesh size function has
smaller size distributions everywhere in the right face than
the original fixed size function and so will dominate the
mesh size selection in the whole domain of the right face, the

tri/pave algorithm will use the mesh size from the mesh size
function to position nodes, forming smooth mesh transitions
from the common edge and across the whole face on face.2.
The adjustment to the mesh distributions on the common
edge does not deteriorate the mesh quality on the right face
any more.

Figure 8 Remeshed results from Figure 2 when
mesh size function is applied

Figure 9 Remeshed results from Figure 3 when
mesh size function is applied

Similar results to the above have been obtained in Figure 11
for the case displayed in Figure 5 where the initial size
function start from the upper-left vertex, instead of the left-
most edge as in Figure 4. No matter the right face is meshed
with the map scheme (Figure 11 (a)) or the quad/pave
scheme (Figure 11 (b), the meshes on the face are grown in
such a way that you will not notice any sudden changes of
mesh sizes near the common edge and it looks like the whole
meshes are smoothly radiated from the same upper-left
vertex without size jumping.

5.3 New meshing results for volumes with
imported face mesh

face or created from the imported face (e.g. by sweeping the
given face along specified path) within Gambit product, will
be meshed according to the user’s specification. Figure 12(a)
shows the mesh on the boundary surface of the volume after
the meshing process is finished, and Figure 12(b) is the
internal mesh patterns of the volume. A growth rate of 1.2 is
used in the definition and the size limit is large enough not to
be reached within the domain of the model.

We discussed the impossibility of generating a volume mesh
that is required to radiate from the imported face mesh and
concluded that there was no easy way of doing it with the old
size function capabilities in our mesh sizing tool. However,
with the realization of the mesh size function, this task
becomes very easy. Simply specify the face “A” having
imported mesh as the source face (see Figure 6) and specify
the volume to be meshed as attachment entity of the mesh
size function, and then start meshing the volume. The
volume, which could be imported together with the meshed

Figure 10 Mesh distributions on right face when
the common edge is used for mesh size function

(a) Mesh on boundary surface

(a) Mapped mesh on right face

(b) Internal volume mesh

Figure 12 Meshing results of volume using
imported face mesh as source

CONCLUSION

From the established method of size functions using the
background overlay grids, a new mesh size function has
been set up for controlling mesh sizes and radiation from
premeshed geometric entities (i.e. edges and/or faces). The
defined mesh size function has provided supplemental means
to assist all the meshing tools where the size functions that
were implemented previously sometimes could not meet the

 (b) Quad/paved mesh of right face

Figure 11 Mesh distributions on right face using a
mesh size function from the common edge

special needs. The details on how to construct the new mesh
size function has been described and its comparison with
other size functions presented. The proposed mesh size
function has been implemented in Gambit product, and its
efficiency has been illustrated by successful meshing
examples with satisfactory results.

REFERENCES

[1] Houman Borouchaki, Frederic Hecht and Pascal Frey,
Mesh gradation control, Proceedings of 6th
International meshing roundtable. Oct. 13-15, 1997.
Park City, Utah, USA.

[2] M.A. Yerry and M.S. Shepard, “A modified-quadtree

approach to finite element mesh generation”, IEEE
Computer Graphics Appl., Vol 3(1), pp.39-46 (1983)

[3] W. C. Tracker, “A brief review of techniques for

generating irregular computational grids”, Int. J.
Numer. Methods Eng. Vol 15, pp. 1335-1341 (1980)

[4] M. S. Shepard, Approaches to the automatic generation

and control of finite element meshes, Applied
Mechanics Reviews, Vol 41, pp. 169-185 (1988)

[5] Pascla J. Frey and Loic Marechal, “Fast adaptive

quadtree mesh generation”, Proceedings of 7th
International meshing roundtable. Oct. 26-28, 1998.
Dearborn, MI. USA.

[6] Shahyar Pirzadeh, “Structured background grids for

generation of unstructured grids by advancing-front
method”, AIAA Journal. Vol 31(2), pp. 257-265(1993)

[7] Steven Owen and Sunil Saigal, “Surface mesh sizing

control”, Int. J. Numer. Meth. Engng. Vol 47, pp. 497-
511(2000)

[8] J Zhu, Ted Blacker, Rich Smith, Background Overlay

Grid Size Functions, Proceedings of 11th International
Meshing Roundtable. pp65-73 (2002). Sept. 15-18,
2002. Ithaca, New York, USA.

AUTOMATED ADAPTIVE FORMING SIMULATIONS

Jie Wan, Suleyman Kocak and Mark S. Shephard

 Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, NY, U.S.A.
shephard@scorec.rpi.edu

ABSTRACT

In this study, an automated adaptive mesh control scheme, based on local mesh modifications, is developed for the finite element
simulations of 3D metal forming processes. Error indicators are used to control the mesh discretization errors, and a consecutive
h-adaptive procedure is conducted. The mesh size field used in the h-adaptive procedure is processed to control the geometric
approximation errors on the evolving workpiece boundary mesh. During the simulations the workpiece mesh is adaptively
enriched whenever the mesh is no longer acceptable. Industrial problems are investigated to demonstrate the capabilities of the
developed scheme.

Keywords: adaptive mesh control, metal forming, mesh adaptation

1. INTRODUCTION

The manufacturing and testing process of aerospace
components is expensive and difficult. Mathematical
modeling tools have been developed to reduce/replace the
historic trial and error process. As a mathematical tool, the
finite element method has been widely used to simulate
metal forming problems like forging, extrusion, rolling,
etc., where the mesh of the workpiece evolves to represent
the material flow. These processes often require the mesh
of the deformed workpiece to be enriched whenever the
mesh becomes unacceptable due to severe distortion or
workpiece-die interference occurring during the
incremental flow process. In these cases, it is necessary to
replace the deformed mesh with an updated mesh, which is
better-conditioned and consistent with the current
configuration [1-5]. History dependent state variables also
need to be accurately transferred from the old mesh to the
new mesh [1,3].

Most procedures developed to update the deformed mesh of
the workpiece apply automatic mesh generation techniques
to generate a completely new mesh [1-9]. Typically, a
remeshing process includes the following steps: 1) Update
the boundary mesh representation; 2) Generate a new mesh;
and 3) Transfer the history-dependent field variables from

the old mesh to the new mesh. In remeshing process, the
entire domain of the workpiece is remeshed, even though
there might be only a limited number of elements that need
to be modified. The workload in this process could be
decreased significantly by applying local modification
operators.

The emphasis of the developed procedures is the effective
enrichment of the deformed mesh. The mesh enrichment
process is carried out by applying local mesh modification
operators. An adaptive procedure built on discretization
error indicators is used for the calculation of the mesh size
field. In addition the mesh size field is modified to help
control geometric approximation errors in the next set of
simulation steps. The simulation process is automated by
combining the adaptive mesh control procedure with the
forming analysis engine to enable continuous automated
simulation.

This paper is organized as follows: An overview of
adaptive mesh modification for evolving geometries is
given in Section 2. The model topology update process is
discussed in Section 3. Section 4 is dedicated to definition
of the mesh size field. The controlled mesh modification
process is explained in Section 5. Example problems from
industrial applications are given in Section 6, and finally
some conclusions are drawn in Section 7.

2. OVERVIEW OF ADAPTIVE MESH
MODIFICATION FOR EVOLVING

GEOMETRY PROBLEMS

In metal forming simulations, the workpiece undergoes
large plastic deformation that results in major changes in
the geometry of the model and the mesh. Mesh enrichments
are usually needed due to two reasons (i) element shapes
degrade or (ii) discretization errors become too large. In the
updated mesh, it is the quality of elements that determines
how many time steps can be taken before the next mesh
enrichment is needed. For this reason, special care is given
to the mesh enrichment process.

DEFORMTM [10] is the FEM engine used in this effort.
DEFORM is tailored for large deformation modeling, and it
can analyze various forming and heat transfer processes.
The formulation of the engine is given in Kobayashi et al.
[11]. The engine supports rigid, elastic and thermo-
viscoplastic material models, and it has an extensive
material database for many alloys.

Mesh enrichment process used in this study includes the
following steps:

Update the model topology: During the simulation steps the
geometry and topology (in terms of contact surfaces) of the
workpiece model evolve. Therefore, a consistent model
topology must be constructed before mesh modifications.
In this study, the model is defined as a non-manifold
topological model that reflects the contact configuration as
it evolves during the simulation.

Determine the new mesh size field: Mesh modifications are
conducted based on the mesh size field. In this study, the
mesh size field is determined by an h-adaptive procedure
guided by error indicators and geometric approximation
control.

Apply mesh modification operations: Once the mesh size
field is obtained, the mesh is modified by using local mesh
modification operations. History dependent solution fields
are also transferred incrementally during these operations.

3. MODEL TOPOLOGY UPDATE

In a forming simulation, the geometrical components
consist of the workpiece geometry, die geometries and die
motions. To properly perform an automated forming
simulation, a topological description of the evolving
workpiece boundary must be available to reflect the
simulation status so that the workpiece boundary and the
analysis attributes are appropriately maintained during the
mesh updating.

Since a FEM engine will only track nodal contact
information, a procedure is needed to update the
topological representation of the workpiece boundary
before each mesh enrichment step. The mesh model to be
constructed needs to provide a consistent geometric
interpretation of the contact boundary conditions between
the workpiece mesh and the die surfaces, which are
extracted from the solution information in terms of nodal

contact. The radial edge topology structure [12,13] given in
Figure 1 is used to express the topological model of the
workpiece domain.

Figure 1. The radial edge topology structure for
model

Given the mesh topology [14] and nodal contact conditions,
mesh model construction steps can be summarized as
follows with the aid of Figures 2-4, where represents a
mesh vertex in contact and represents a mesh vertex not
in contact, and 2[C

d
i GM i indicates a boundary mesh entity

classified in contact and 2[F
d
i GM i indicates a boundary

mesh entity classified not in contact:

1. All boundary mesh vertices are marked according
to the nodal contact conditions. The markings
reflect if the mesh vertices are in contact with the
specific die surfaces;

2. For each boundary mesh face, mark it in contact
if all its bounding mesh vertices are in contact
with the same die surface, or not in contact
otherwise. The markings of boundary mesh faces
are illustrated in Figure 2;

3. Consider next the boundary mesh edges. If such a
mesh edge bounds only one contact mesh face, or
does not bound any contact mesh faces but its
two bounding mesh vertices are in contact with
the same die surface, classify it on a model edge

1
jG ; otherwise classify it on a model face 2

jG .

Classifications of boundary mesh edges are
illustrated in Figure 3, where the thickest lines
indicate the mesh edges classified on model
edges;

4. Consider each boundary mesh vertex. If it is
marked in contact and does not bound any mesh
edges classified in contact with a die surface,
classify it on a model vertex 0

jG ; otherwise count

the number of its adjacent model edge classified
mesh edges. In the latter case, if the number is 1
or greater than 2, classify it on a model vertex

0
jG ; or if the number equals to 2, classify it on a

model edge 1
jG . In other cases, classify it on a

model face 2
jG . Classifications of boundary

mesh vertices are illustrated in Figure 4;

5. Model edges are defined by the appropriate
collecting of mesh edges classified on model
edges that connect together;

6. Model faces are defined by collecting of mesh
faces classified in contact with specific die
surfaces or on the free surfaces that are bounded
by loops of model edges.

When the essential boundary conditions are applied,
additional care is needed so that the model topology
defined also reflects those boundary conditions.

The above process naturally results in a mesh model, in

which all mesh entities ji d
j

d
i GM [classified on a specific

model entity jd
jG , where 2≤≤ ji dd , have the identical

boundary conditions. This enables the automatic
maintenance and delivery of contact (and other BC's if
defined) for the workpiece mesh during the local mesh
modifications applied on the workpiece boundary. A mesh
model constructed is shown in Figure 5, where a single
shell consisting of 3 contact model faces and 1 free model
face is defined (the third contact model face is at the
bottom). All mesh entities, d

iM where 20 ≤≤ d ,
classified on any contact model face and its closure, are in
contact with the same die surface.

Figure 2. Marking boundary mesh faces

Figure 3. Classifying boundary mesh edges

Figure 4. Classifying boundary mesh vertices

Figure 5: A mesh model for deformed object

4. MESH SIZE FIELD SPECIFICATION

Mesh discretization errors arise from the use of a finite
dimensional solution space defined in terms of polynomial
basis functions over a set of mesh entities. When the order
of the polynomial basis function approximation is fixed,
these errors directly depend on the mesh size and vanish as
the mesh size approaches zero. Accordingly, these errors
can be controlled by employing an h-adaptive analysis
process when the mesh size is controlled through the
domain. In this study, a mesh size field is built using error
indicators and processed to control geometric
approximation errors.

 4.1 Error Indicators

A recovery-based a posteriori procedure developed by
Zienkiewicz and Zhu (ZZ) [15] is used. The recovered
solution is obtained based on the projection of effective
strain field and is adopted to replace the exact solution in
obtaining the element error indicators. The error τεe for

an element τ is given in 2L error norm by

 2
1

2))((|||| �
Ω

Ω−=
τ

εετε de h (1)

where ε and hε are respectively the exact value and the

finite element approximation of effective strain. Since ε is

unknown, an “improved” solution *ε is obtained by the
recovery procedure and used as an indicator of the
elemental error τε |||| e :

 2
1

2**))((|||||||| Ω−=≈ �
Ω

dee h

τ

εετετε (2)

For a given domain Ω′ , the error norm is estimated as:

2
1

1

2

2 ��
�

�
��
�

�
≈ �

=

n

L
ee

τ
τεε (3)

where n is the total number of the elements within the
domain Ω′ . Furthermore, the error can be interpreted by
taking the relative percentage error η defined as:

Contact surface 1 Contact surface 2

Free surface

 %100
*

×=
ε

η εe
 (4)

where *ε is the corresponding norm of the recovered

solution over the domain Ω′ .

4.2 An H-Adaptive Procedure

Based on the element error indicators and convergence rate
of the finite element method, the mesh adaptivity can be
readily performed to satisfy certain mesh optimality
criteria. A general requirement is to ensure a minimum
percentage error in certain (energy or 2L) norm to be
achieved so that

 ηη ˆ≤ (5)

is met, where η̂ is the maximum allowed relative
percentage error.

The optimal mesh will have the same contribution from
each element to the total error. Adopting an h-adaptive
method, the desired size of the elements in the new mesh is
defined by:

 τττ rhh oldnew ×= (6)

where oldhτ and newhτ denote the current characteristic size

of an element τ and the expected characteristic size of the
new elements inside the subdomain covered by element τ,
respectively. The element size factor τr is computed from
the estimated element errors based on the following
equation [16]:

p

n

i

dp
d

i

dp

e

er

2
1

1

2
2

2*2
2

2 ˆ

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

�
=

+

+
−

ε

τετ

εη
 (7)

where d and p are respectively the dimension and order
of the elements. In this study, 3=d and 1=p .

Figure 6 shows an input mesh and an adapted mesh. As can
be seen from the figure, a finer mesh is obtained where the
strain gradients are high.

4.3 Processing the Mesh Size Field to
Control Geometric Approximations

The mesh size field is adjusted to satisfy the further
requirements over the workpiece boundary mesh to reduce
geometric interference (penetration) between the workpiece
mesh and the die surfaces, and to control mesh gradation
around small model edges and faces that are subject to
substantial deformation in future steps.

(a) Input mesh with effective

strain field

(b) Updated mesh with effective

strain field

Figure 6. Adaptive mesh enrichment based on
error indicators for effective strain

Geometric interference (GI)

The workpiece boundary can become overlapped with the
die geometries during the forming analysis [6,8,10,17]. It
has been observed that an important source of geometric
approximation errors due to workpiece-die overlap leads to
inaccurate representation of the die-workpiece interaction
and therefore results in underestimation of required
forming load and overestimation of required filling material
[10]. Various methods have been devised to control the
overlap in the remeshing-based procedures [8,10,17]. The
die-workpiece interference is generally adopted to measure
the physical overlap between the workpiece and die
geometries. It can be defined as DW QQ ∩=δ , where

WQ and DQ represent the domains of the workpiece and
dies, respectively. In order to improve the simulation
results, it is desired to control the geometric interference in
the updated mesh.

One of the widely used measures for quantifying the
amount of δ is interference depth [8,10,17]. Generally,
interference depth is defined as the minimum translational
distance required to separate two overlapping objects. In
forming simulations, interference depth is usually assessed
as the distance from the middle point of a mesh edge with a
contact node at each end to the die surface in the inner
normal direction innern

�
 of the workpiece boundary at the

middle point [10,17] as illustrated in Figure 7a, where
represents a mesh vertex in contact. Denoting the allowed
interference amount as pδ , if pδδ ≥ at any portion, it is

regarded that the die-workpiece interference has become
exceeding (too large) and needs to be reduced.

GI calculation based on examination of single location
would clearly be unsuitable in the situations illustrated in
Figures 7.b, c and d. The GI would be computed as zero in
Figure 7b and much smaller than the actual amount in
Figure 7c. For the case shown in Figure 7d where
represents a mesh vertex not in contact, which often occurs
in the incoming region, since the mesh edge 1

mM is

bounded by one free mesh vertex 0
iM and one contact

mesh vertex 0
jM , it is not considered at all. As a remedy,

in the developed procedure, interference depth is computed
as the maximum value among the distances measured from
multiple locations (points) along a boundary mesh edge

d
ji GM [1 of the workpiece to a die surface in the inner

normal direction innern
�

 of the workpiece boundary, where

21 ≤≤ d and 1
iM is bounded by 1 or 2 contact mesh

vertices. This approach is illustrated in Figure 8, where 3
measuring points are taken and the computed GI is likely to
be closer to the actual GI than that computed in Figure 7b
and 7c. To calculate the workpiece-die distance at multiple
points efficiently, a searching structure based on an octree
[18] is adopted.

(a) Measure of GI based on
middle point distance

(b) Problematic “Zero” GI

(c) Smaller GI than actual

(d) Situation not covered

Figure 7. A middle-point based GI Measure

Figure 8. A 3-point based GI Measure

In such a searching procedure, an octree is built by
subdividing a die surface into multiple subsurfaces
recursively until each terminal octant contains a limited
number of mesh faces. Denote the values minx , maxx ,

miny , maxy , minz and maxz , which satisfy the inequalities

for any point ()zyxP ,, within a mesh face,

maxmin

maxmin

maxmin

zzz
yyy

xxx

≤≤
≤≤
≤≤

 (8)

the bounding box of the mesh face is defined by two
corners located at ()minminminmin ,, zyxX = and

()maxmaxmaxmax ,, zyxX = . For the mesh face to be
contained in a terminal octant, its bounding box must reside
at least partially inside the terminal octant, namely

tolzzandtolzz

tolyyandtolyy

tolxxandtolxx

oo

oo

oo

−≥+≤
−≥+≤
−≥+≤

min_maxmax_min

min_maxmax_min

min_maxmax_min

 (9)

where, ()min_min_min_min_ ,, oooo zyxX = and

()max_max_max_max_ ,, oooo zyxX = represent the lower and

upper corner points of the octant respectively, and 0≥tol
is a tolerance defined according to the allowed GI, pδ , in

the simulation. In this study, we take ptol δ×= 1.1 so that

only the mesh faces contained in a specific terminal octant
are considered to compute the workpiece-die distance at
any point),,(zyxQ that satisfies:

max_min_

max_min_

max_min_

oo

oo

oo

zzz

andyyy

andxxx

≤≤
≤≤
≤≤

 (10)

Mesh edges on the contact surfaces exceeding the allowed
GI are to be refined by altering the local mesh size field to
capture the local geometric features on the die surfaces.
Figure 9 shows an example application of GI control.

(a) Input deformed workpiece
mesh with exceeding GI

(b) Updated deformed workpiece
mesh with reduced GI

Figure 9. Effect of GI reduction

Mesh gradation control

When small but required model features are defined by the
topology update procedure, the mesh size field around
those small model features is adjusted to avoid introducing
a number of poorly-shaped elements due to large mesh
gradation. In the local mesh illustrated in Figure 10, there is
a short model edge 1

1G bounded by two model vertices 0
0G

and 0
1G . Denoting the length of 1

1G as 1l and the

requested mesh size around 1
1G as 1s . When 11 ls >> , a

poorly-shaped element 2
0M is to be introduced as shown in

Figure 10a. Therefore it is desired to adjust 1s close to

1l so that a smooth mesh gradation is resulted as shown in
Figure 10b.

Contact surface Free surface

(a) Poor mesh gradation

(b) Improved mesh gradation

Figure 10. Mesh size adjustment for good mesh
gradation

5. CONTROLLED MESH
MODIFICATIONS

Adaptive mesh control is executed through the applications
of local mesh modification operations.

5.1 Local Mesh Modification Operations

Before discussing the enrichment processes, the local mesh
modification operations are introduced, which include:

• Splitting of mesh edges, faces and regions
• Collapsing of mesh edges, faces or regions
• Swapping of mesh edges and faces
• Geometry modification of mesh vertices, edges

or faces

Splitting of mesh edges, faces and regions

The most commonly applied splitting procedure is edge
splitting. In the case of simplex elements, it is
straightforward to define a set of templates to account for
the edge splitting in the higher order mesh entities the edge
bounds [19].

Collapsing of mesh edges, faces or regions

There are a number of specific mesh entity collapsing
operations that can be defined for the case of simplex
elements. The most commonly applied collapsing operation
is an edge collapse. The application of a requested
collapsing operation is precluded if it would create a mesh
invalidity [19]. Additionally, some application related
geometric constraints may be applied to control the use of
these operators. This will be discussed later.

Swapping of mesh edges and faces

Efforts to date on the development of mesh entity swapping
procedures have been focused on simplex elements. In 3-D
the swap operations are qualified and a variety of edge and
face swapping operations have been defined. The
application of a requested swapping operation is precluded
if it would create a mesh invalidity [19].

Geometry modification of mesh vertices, edges or faces

The positions of mesh vertices and the shapes of mesh
edges and faces can be altered. In all cases, there is a limit

to the amount of geometric change possible before one or
more connected higher order mesh entities become invalid.

5.2 Mesh Enrichment Process

Given a desired mesh size field and an expected element
shape criteria for the elements, the mesh enrichments are
executed by the controlled applications of local mesh
modifications. Whenever either element size or shape is not
satisfied, a mesh enrichment is determined and performed
to eliminate the deficiency and achieve the best satisfaction
of the requested size and shape.

5.2.1 Mesh entity refinement and
coarsening

When an element does not satisfy the local mesh size, mesh
entity refinement or coarsening, considering control of the
resulting mesh entity shapes, is executed.

Mesh entity refinement is accomplished using splitting
operations with edge splits being most popular due to their
flexibility. It is always possible to introduce the desired
mesh entity refinement in those cases where introduced
mesh entities do not need to have their geometry modified.
In the case where mesh entities are classified on a curved
boundary of the model are split, it is necessary to modify
the geometry of those mesh entities so they lie on the
model boundary. These geometric modifications can
invalidate the shapes of connected higher order mesh
entities. In those cases additional mesh modification
operators are applied to yield a valid mesh [20].

Many of the published mesh coarsening procedures are
restricted to the reversal of previously executed refinement
procedures. For the purposes of a more general mesh
modification processes, a coarsening procedure based on
mesh entity collapsing is more flexible. Edge-based
collapsing procedures are well suited to most collapse
needs. However, recent efforts indicate that other collapse
operations are advantageous in specific circumstances.
Since a specific collapsing operation may not be allowed
due to its producing a mesh invalidity or large geometric
approximation error, it is not always possible to execute a
specific coarsening.

5.2.2 Element shape improvement

Element distortions in the workpiece mesh may cause
degradation in the computed results or discontinue the
simulation. Therefore, the distorted elements need to be
detected and improved efficiently. The modified mean

ratio, which is defined as
36

1

22)15552(�
�

�
�
�

�
�

=i
ilV , where V is

the volume of the tetrahedron and li is the length of i-th
mesh edge bounding the tetrahedron [21], can be used to
evaluate the distortion level. The distortion factor is 1.0 for
an equilateral element and a value of 0.0 indicates a zero
volume element. Depending upon the acceptable distortions
in the FE mesh, local modifications are made to improve
the shape of the distorted elements.

Mesh shape improvement efforts include node-point
repositioning procedures and the application of local mesh
modifications. Emphasis here is on the controlled mesh
modifications.

For a poorly-shaped tetrahedral mesh region, 3
iM , rank its

six bounding mesh edges, 1
jM , where 61 ≤≤ j , by the

order of their lengths squared, 2
jl , as follows:

 2
6

2
5

2
4

2
3

2
2

2
1 llllll ≤≤≤≤≤ (11)

When 2
6

2
1 ll << , the poor shape of 3

iM is due to the exist-
ence of “short” mesh edge(s), otherwise it must contain
large dihedral angles. Figure 11 shows examples of poorly
shaped elements taking the various configurations. Figures
11a and 11b have the case of a short mesh edge, 1

0j
M .

Figure 11c is the case of two large dihedral angles and
Figure 11d is the case of three large dihedral angles.
Accordingly, application of mesh modifications is guided
by the two basic goals of:

• Removal of poorly-shaped mesh regions which
contain “short” mesh edge(s) through elimination
of those “short” mesh edges;

• Removal of the large dihedral angles based on
operators keyed by the ordered mesh edge
lengths and the adjacency information.

(a) Due to “short” mesh edge

(b) Due to “short” mesh edge and
large dihedral angles

(c) Due to 2 large dihedral angles

(d) Due to 3 large dihedral angles

Figure 11. Poor element shape due to “short”
edge(s) and/or large dihedral angle(s)

Handling mesh regions containing “short” mesh edge(s)

The options to eliminate a “short” mesh edge include
collapsing it by removing either its bounding mesh vertex,
an appropriate swap operation, or repositioning its
bounding mesh vertices. The topological restrictions on
edge collapsing are discussed in detail by Cougny and

Shephard [19]. The geometric restrictions on edge collapse
require that all updated mesh regions have positive
volumes.

When elimination of the “short” mesh edge(s) is not
allowed geometrically, alternative consideration is to
remove either its bounding mesh vertex by collapsing a
mesh edge that connects to it within the local mesh such
that the edge is eliminated by merging with a longer edge.
An example to overcome the geometric restrictions in 2D is
illustrated in Figure 12, where a “short” mesh edge 1

1M

bounds two poorly-shaped elements (mesh faces), 2
1M and

2
2M (Figure 12a). The first attempt is naturally to collapse
1
1M with the mesh vertex 0

1M deleted as shown in Figure
12b. However this leads to definition of an invalid mesh
face 2

3M which are bounded by mesh vertices 0
2M , 0

4M

and 0
6M , and therefore is not allowed geometrically. As an

alternative, one of the mesh edges connected to 1
1M at

0
1M can be collapsed with 0

1M deleted. In Figure 12c,

mesh edge 1
2M is collapsed and in Figure 12d, mesh edge

1
5M is collapsed. Both these operations are allowed

geometrically. The modification by collapsing 1
5M (Figure

12d) leads to the better local mesh quality and thus is
selected to be applied.

(a) 2 poorly-shaped mesh faces,
2
1M and 2

2M , due to a “short”

mesh edge 1
1M

(b) Collapsing 1
1M would cause

an invalid mesh face,
],,[0

6
0
4

0
2

2
3 MMMM

(c) 1
1M can be eliminated by

collapsing a neighboring mesh
edge 1

2M with 0
1M removed

(d) 1
1M can be eliminated by

collapsing a neighboring mesh
edge 1

5M with 0
1M removed

Figure 12. Eliminate a “short” mesh edge by
overcoming geometric restrictions

Handling mesh regions containing large dihedral
angle(s)

A poorly-shaped mesh region containing no “short” mesh
edges must contain one to three large dihedral angles.
Considering the possible effects on the local mesh, a simple
deletion is preferred. Some of the cases when these
elements arise happen when a flat mesh region has one or
more mesh faces classified on a model face that is used by
only one model region with the remaining mesh faces
classified in that model region. In these cases, the mesh
region can simply be deleted with the remaining mesh faces
and model region classified mesh edges and vertices
reclassified on the model face on which the deleted face(s)
were classified.

When a mesh region containing large dihedral angle(s) can
not be removed by a simple deletion, the situation needs to
be analyzed based on the adjacency information to
determine the most desired mesh modification to eliminate
as many large dihedral angles as possible. Consider the
case shown in Figure 11d, where mesh edges, 1

0j
M , 1

1j
M

and 1
2j

M , bounded by mesh vertex 0
3i

M , are the three

shortest mesh edges within element 3
iM . It is possible to

eliminate all potential large dihedral angle(s) by collapsing
one of these three mesh edges as shown in Figure 13a. If
none of these mesh edges, 1

0j
M , 1

1j
M and 1

2j
M , can be

collapsed, an additional effort is to look at the shapes of the
mesh faces bounded by them within the element, and to
swap the longest mesh edge bounding a sliver mesh face if
there exists one. The situation is illustrated in Figure 13b,
where mesh face 2

0kM bounded by mesh edges 1
0j

M ,
1
1j

M and 1
3j

M is sliver, and the mesh edge 1
3j

M is

considered to be appropriately swapped.

(a) Collapse mesh edge 1
2j

M with

mesh vertex 0
3i

M to be deleted

(b) Swap mesh edge 1
3j

M which

bounds a sliver mesh face 2
0kM

Figure 13. Part of efforts to remove a poorly-
shaped element with 3 large dihedral angles

5.3 Geometry Shape Updates

During the mesh enrichment process, the contact and free
surfaces of the workpiece are carefully maintained through
geometry shape updates to reduce geometric approximation
errors.

Treatment on new contact mesh vertices

A situation that requires specific consideration is when
boundary mesh edges are split. In these cases, the new
contact mesh vertices geometrically not on specific die
surfaces and other new mesh vertices inside die surfaces
need to be placed on the die surfaces as illustrated in Figure
14. Repositioning of the new mesh vertices is conducted
through a vertex snapping procedure [20].

(a) New refinement mesh vertex in
contact to be snapped

(b) New refinement mesh vertex
in contact snapped

Figure 14. Snapping of new contact refinement
mesh vertices

Free surface smoothing

It has been observed that in cases where the mesh used is
not a good approximation to the smooth geometry of the
workpiece free surfaces, the simulation accuracy can
degrade [3]. Subdivision surface procedures can be adopted
during refinement of the free surfaces to approximate the
actual surface curvature. In the developed procedure, the
position of the subdivision points along the boundary mesh
edges are calculated in the form of interpolation functions
through employing a modified butterfly scheme [22,23].
The interpolation templates to be applied are selected based
on the mesh entity classification and the adjacency around
the mesh edges in the local boundary mesh.

5.4 Local Transfer of History Dependent
Solution Information

Operations like remeshing or local mesh modifications
require the history-dependent solution fields be accurately
transferred from the original mesh to the modified mesh so
that the computation can be resumed and continued from
the updated reference state. When the deformed mesh is
updated through a local mesh modification operation, the
solution fields for only the involved local mesh need to be
transferred.

There are two methods used to transfer solution parameters.
They involve using a) the existing interpolants or b) new
interpolants defined to satisfy certain desired properties.
Since only the solution information over the modified local
mesh is transferred depending on individual local mesh
modifications, the required calculations are local and
efficient.

6. INDUSTRIAL APPLICATIONS

A back extrusion problem and a steering link problem are
investigated to demonstrate the capabilities developed in
this study. To show the improvements achieved, both of the
problems are solved by using DEFORM only and the
automated mesh modification procedure (which uses
DEFORM as FEM engine) and the solutions are compared.
Results obtained are presented and discussed below.

6.1 A Back Extrusion Problem

A back extrusion problem shown in Figure 16 is
considered. The plastic behavior of the material is specified
with a material flow stress function. A total stroke of 7.2
inches is defined, which corresponds to 180 steps with a
stroke of 0.04 inch per step. The allowed geometric
interference is 0.07 inch. The initial mesh of workpiece
consists of 906 mesh vertices and 5433 mesh regions.

The problem is solved by 1) using DEFORM’s remeshing
procedure and 2) using the automated mesh modification
procedure. The simulation requires 13 DEFORM’s
remeshings and 9 mesh enrichment steps, respectively (see
Table 1).

Figure 16. A Back Extrusion Problem

Table 1: Remeshings and Mesh Enrichments used

Remeshings At
Step

Number of
Elements

 Mesh
Enrichments

At
Step

Number of
Elements

1 5 10049 1 5 7041
2 12 10834
3 22 10763 2 19 10575
4 26 14171
5 41 21158
6 52 21605 3 50 10890
7 65 21754 4 72 13077
8 81 21727
9 92 23242 5 99 14246
10 112 24698 6 120 17952
11 134 24599 7 133 25219
12 154 25272 8 155 30325
13 166 24771 9 172 38136

In Figure 17 the maximum dihedral angles of the
workpiece mesh are compared before and after the
remeshings and the mesh enrichments, respectively. It can

be seen the mesh quality is stably and largely improved
through the mesh enrichments, particularly during the later
stages of the simulation.

(a) By remeshings

(b) By mesh enrichments

Fig 17. Changes of the maximum dihedral angles
before and after remeshings/mesh enrichments

A temperature field updated by the local mesh modification
dependent solution transfer operators is shown in Figure
18. As can be seen, solution transfer does not lose any
significant information. As expected, the global transfer
demonstrated a greater diffusion of peak values.

Four steps of the simulation process are given in Figure 19.
From the figure, it can be seen that the contact surface
between the moving die and the workpiece is well captured
by controlling the workpiece-die geometric interference.
Furthermore, it can be observed that high mesh density is
obtained around high strain gradient regions, which are in
the vicinity of moving die surface.

(a) Original mesh with

temperature field

(b) Updated mesh with
temperature field

Figure 18. Updated temperature field by local
transfer operators

(a) Step 0 (Initial)

(b) Step 25

(c) Step 125

(d) Step 180 (completion)

Figure 19. Interior workpiece mesh produced by
automated mesh modification procedure

6.2 A Steering Link Problem

A steering link problem shown in Figure 20 is considered.
The plastic behavior of the material is specified with a
material flow stress function. A total stroke of 41.7mm is
defined, which corresponds to 278 steps with a stroke of
0.15mm per step. The allowed geometric interference is
1.0mm. The initial workpiece mesh consists of 6765 mesh
vertices and 28885 mesh regions.

The problem is solved respectively by 1) DEFORM’s
remeshing procedure and 2) the mesh modification
procedure. The first remeshing/mesh enrichment is needed
at STEP 112. It takes 35 DEFORM’s remeshings and 18
mesh modification steps.

Bottom die (top view)

Initial state of the simulation
Initial workpiece mesh

Figure 20. Setup of a steering link problem

Improvements of element quality

The quality of the workpiece mesh is improved stably by
the mesh enrichments through the entire simulation
process. Figure 21 shows the improvements to the
maximum dihedral angles before and after the mesh
enrichments.

Figure 21. Element quality improved through
mesh enrichments

Mesh size control

The workpiece mesh is adapted to control solution error
and the geometric approximation. The maximum edge
length increases from 11.98mm in the initial mesh to
24.49mm in the final mesh while the minimum edge length
decreases from 0.92mm to 0.30mm. The effects of mesh
adaptivity are shown in Figure 22.

The interior mesh density and effective strain of the final
workpiece mesh are compared between the adaptive
enrichment based and the remeshing based simulations as
shown in Figure 23.

The simulation ends with a final mesh containing 24729
mesh vertices and 115483 mesh regions. The estimated
relative error in effective strain decreases from 11.69% at
STEP 112 to 6.53% at the end. The final mesh is compared
with the one obtained by DEFORM’s remeshings in Figure
24.

7. CLOSING REMARKS

This paper has considered an automated adaptive mesh
control procedure for metal forming simulations. The
adaptive mesh control is executed through the controlled
applications of mesh modification operators, which are
based on an adaptively defined mesh size field. To properly
maintain the workpiece boundary conditions, the model
topology of the workpiece mesh is updated consistently
with the solution information. The mesh size field is
obtained by accounting for discretization errors through an
h-adaptive procedure guided by error indicators and
procedures to control the geometric approximations.

The adaptive mesh modifications are applied to two 3-D
forming problems and compared with a procedure that
employs complete remeshings. The results demonstrate the
ability of adaptive mesh modification procedures to

properly deal with any of the complications that can arise
during the simulation. Mesh modification based adaptive
procedures have also been applied to transient flow
simulations including ones with bodies in relative motion.

Step 120

Step 160

Step 180

Step 200

Step 220

Step 240

Step 260

Completion

Figure 22. Mesh adapted consistently with the
effective strain profile

By mesh enrichments

By remeshings

(a) Interior mesh density profile

By mesh enrichments

By remeshings

(b) Interior effective strain profile

Figure 23. The final interior mesh density and
effective strain profiles

(a) By mesh enrichments

(b) By remeshings

(12046 mesh vertices and 51987 mesh regions)

Figure 24. Final meshes of the workpiece

REFERENCES

[1] J. H. Cheng and N. Kikuchi, “A Mesh Rezoning
Technique for Finite Element Simulation of Metal
Forming Processes”, International Journal for
Numerical Methods in Engineering, Vol. 23, pp. 219-
228 (1986)

[2] A. Habraken and S. Cescotto, “An Automatic
Remeshing Technique for Finite Element Simulation
of Forming Processes”, International Journal of
Numerical methods for Engineering, Vol. 30, pp.
1503-1525 (1990)

[3] N. V. Hattangady, M. S. Shephard and A. B.
Chaudhary, “Towards Realistic Automated 3D
Modelling of Metal Forming Problems”, Engineering
with Computers, Vol. 15, pp. 356-374 (1999)

[4] M. N. Ravindranath and R. K. Kumar, “Simulation
of Cold Forging using Contact and Practical
Adaptive Meshing Algorithms”, Journal of Material
Process Technology, vol. 104, pp. 110-126 (2000)

[5] Ch. P. Chand and R. K. Kumar, “Remeshing issues
in the finite element analysis of metal forming
problems”, Journal of Material Processing
Technology, vol. 75, pp. 63-74 (1998)

[6] Y. Y. Zhu, T. Zacharia and S. Cescotto, “Application
of Fully Automatic Remeshing to Complex Metal-
forming Analyses”, Computers and Structures, vol.
62, No. 3, pp. 417-427 (1997)

[7] K. M. Mathisen, O. S. Hopperstad, K. M. Okstad and
T. Berstad, “Error Estimation and Adaptivity in
Explicit Nonlinear Finite Element Simulation of
Quasi-static Problems”, Computers and Structures,
Vol. 72, pp. 627-644 (1999)

[8] D. Y. Kwak, J. S. Cheon and Y. T. Im, “Remeshing
for Metal Forming Simulations. Part I: Two-
dimensional Quadrilateral Remeshing”, International
Journal for Numerical Methods in Engineering, Vol.
53, pp. 2463-2500 (2002)

[9] T. Coupez, “Automatic Remeshing in Three-
dimensional Moving Mesh Finite Element Analysis
of Industrial Forming”, in S. F. Shen and P. R.
Dawson (editors), Simulation of Material
Processing: Theory, Practice, Methods and
Applications, Balkema, Rotterdam, pp. 407-412
(1995)

[10] DEFORM 3DTM User Manual, SFTC, Colubus, OH.

[11] S. Kobayashi, S-I OH and T. Altan, “Metal Forming
and the Finite Element Method”, Oxford University
Press, New York (1989)

[12] P. L. George, “Automatic Mesh Generation.
Reading”, MA, Addison-Wisley (1991)

[13] M. S. Shephard, P. L. Baehmann, R. R. Collar, N. V.
Hattangady and Q. Niu, “Automated Remodeling
Techniques in Finite Element Analysis”, Advances in
CAD/CAE, Academic Press (1993)

[14] M. W. Beall and M. S. Shephard, “A General
Topology-based Mesh Data Structure”, International
Journal for Numerical Methods in Engineering, Vol.
40, 1573 (1997)

[15] O. C. Zienkiewicz and J. Z. Zhu, “The
Superconvergent Patch Recovery and A Posteriori
Error Estimates. Part 1: The Recovery Technique”,
International Journal for Numerical Methods in
Engineering, v. 33, p. 1331-1364 (1992)

[16] M. Braack, R. Becker and R. Rannacher, “An
Adaptive Finite Element Method for Combustion
Problems”, Proceedings of the Third Summer
Conference, Numerical Modelling in Continuum
Mechanics, Charles Universirt, Prague, (1997)

[17] N. V. Hattangady, “Automatic Remeshing in 3-D
Analysis of Forming Process”, International Journal
of Numerical methods for Engineering, Vol. 45, pp.
553-568 (1999)

[18] M. S. Shephard and M. K. Georges, “Automatic
three-dimensional mesh generation by the finite
octree technique”, International Journal for
Numerical Methods in Engineering, v 32, n 4, pp.
709-749 (1991)

[19] H.L. de Cougny and M.S. Shephard, “Parallel
Refinement and Coarsening of Tetrahedral Meshes”,
International Journal for Numerical Methods in
Engineering, Vol. 46, pp. 1101-1125 (1999)

[20] X. Li, M. S. Shephard and M. W. Beall, “Accounting
for Curved Domains in Mesh Adaptation”,
International Journal for Numerical Methods in
Engineering, in press.

[21] A. Liu and B. Joe, “Relationship between tetrahedron
shape measures”, BIT, Vol. 34, pp. 268-287 (1994)

[22] D. Zorin, P. Schroder and W. Sweldens,
“Interpolating Subdivision with Arbitrary Topology”,
Proceedings of Computer Graphic, ACM
SIGGRAPH, pp. 189-192 (1996)

[23] C. K. Lee, “Automatic Metric 3D Surface Mesh
Generation using Subdivision Surface Geometrical
Model. Part I: Construction of Underlying Geometric
Model”, International Journal for Numerical
Methods in Engineering, Vol. 56, pp. 1593-1614
(2003)

ANISOTROPIC MESH ADAPTATION FOR TRANSIENT

FLOWS SIMULATIONS

Pascal J. FREY†‡ and Frédéric ALAUZET†

† INRIA, Projet Gamma, Domaine de Voluceau, BP 105, 78153 Le Chesnay cedex, France
‡ Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 75013 Paris, France

ABSTRACT

Unstructured mesh adaptation has already revealed very efficient for computing an accurate solution in a
reasonnable amount of time on current PC architectures. Two features are still missing in the adaptation
scheme: (i) the creation of arbitrary anisotropic meshes and (ii) the capture of transient phenomena. There-
fore, in this paper, we propose a global scheme suitable to compute steady-state as well as transient problems,
based on anisotropic mesh adaptation. Several examples of numerical simulations in CFD are provided to
emphasize the efficiency of the proposed approach.

Keywords: Mesh adaptation, anisotropy, metric, error estimate, CFD, transient problem

INTRODUCTION

Nowadays, in the context of numerical simu-
lations, unstructured mesh adaptation is unan-
imously recognized as an efficient and clever
method for improving the accuracy of the solution
as well as for capturing the behavior of physical
phenomena, even if it is not known a priori. More-
over, reducing the number of nodes (the number of
degrees of freedom) allows to substantially reduce
the CPU time. Hence, three-dimensional complex
simulations are now commonly used in many en-
gineering fields ! It becomes even possible to com-
pute large unsteady simulations on current work-
stations (no parallel architecture required) almost
on a daily basis. A missing piece on the simulation
checkboard remained the anisotropic adaptation
for unsteady phenomena. This paper attempts to
bridge this gap.

Problem statement

As pointed out, mesh adaptation is now widely
used in complex three-dimensional numerical sim-

ulations, especially in CFD. The aim of mesh
adaptation is to control the generation of a new
mesh in a computational scheme, such that the
computational error (the approximation error) es-
timated on this mesh is bounded by a given thresh-
old value. If we consider that the approximation
error is bounded by the interpolation error, the
problems turns to generate a new mesh on which
the interpolation error is equidistributed.

Here, we attempt to glue various software pieces
together, in order to build a fully automatic
anisotropic mesh adaptation scheme suitable for
unsteady problems. This challenging application
is based on the definition of a geometric error es-
timate of the interpolation error, on the construc-
tion of a proper discrete metric tensor and on gov-
erned anisotropic surface and volume meshing al-
gorithms. All these pieces have one feature in
common: they all involve an anisotropic metric.
Anisotropic mesh generators require a metric to
be defined at the mesh vertices in order to create
adapted meshes. The discrete metric is defined at
the mesh vertices in order to account for the varia-
tions of (possibly all) the variables of the problem.

So, the error estimate has to relate the interpola-
tion (or approximation) error to element sizes and
directions, using a . . .metric. It turns out that
defining a suitable metric is the key to success in
mesh adaptation.

Related work

Over the last few years, a rather large number
of papers have been published on mesh adapta-
tion for numerical simulations (see [14] for a sur-
vey). However, only a few number of papers
have addressed the problem of constructing three-
dimensional anisotropic meshes. Actually, most of
these papers mainly suggested to modify the point
insertion procedure, common to all meshing algo-
rithms, to account for boundary layers (i.e., close
to the boundaries). Although some of these al-
gorithms may be useful in such circumstances, all
of them usually lack the kind of generality (or au-
tomation) required to capture, for instance, shocks
waves in the regions away from the domain bound-
aries. Indeed, fully automatic tools are still cru-
cially required in the context of mesh generation
and error estimation. Once available, such tools
would greatly facilitate the design and implemen-
tation of an automatic adaptation scheme, for any
type of numerical simulation (the solver would be
the only application dependent software piece).

Paper outline

In this paper, we briefly introduce an a posteri-
ori geometric error estimate based on a discrete
approximation of the second derivates of the vari-
ables of the problem that will be used to define a
suitable metric for mesh adaptation, Section 1. In
Section 2, we recall the main stages of the mesh
adaptation scheme, i.e., surface and volume gov-
erned mesh generation. In Section 3, we present a
new adaptation scheme based on a transient fixed
point algorithm suitable for transient problems.
Finally, in Section 4, three application examples of
mesh adaptation are provided to illustrate the pro-
posed approach, in the isotropic and anisotropic
case.

1. METRIC RELATED ISSUES

In many engineering applications, it is often desir-
able to create adapted meshes presenting highly
anisotropic features (stretched elements in arbi-
trary directions). This challenging problem can
be (easily) resumed to that of constructing appro-
priate metric tensors in order to govern the mesh-

ing algorithms. The key idea is thus to define a
convenient metric tensor (via a suitable error es-
timate) based on the discrete variables (solutions)
of the problem. Such a discrete metric can be used
to create unit meshes as will be seen in the next
Section.

In this Section, we will first introduce the main
principle of a geometric error estimate of the in-
terpolation error. Then, we will explain how to
construct a metric tensor for mesh adaptation.

1.1 A geometric error estimate

As the finite element solution ui is not interpolant
and as it is not possible to guarantee that ui coin-
cide with the exact solution u in at least one point
of each element, it seems rather difficult to quan-
tify the gap ei = u−ui. However, it is possible to
use an indirect approach to measure this gap [1].
For elliptic problems, it has been proved (Céa’s
lemma, [12]) that the FE error is bounded by the
interpolation error ei: ‖ei‖ ≤ C ‖u−Πhui‖, where
Πhui is the interpolation of u on the mesh Hi, ‖ . ‖
is a norm of IR3 and C a constant independent of
the current meshHi. We assume that this relation
still holds in the class of problems described here.
Actually, studies based on the interpolation error
show (practically) that the link between the inter-
polation error and the approximation error is even
stronger than the bound given by Céa’s lemma.
Hence, the interpolation error leads to a ”good”
error estimate [14]. The problem is to charac-
terize the mesh on which the interpolation error
is bounded by a given tolerance value or equidis-
tributed.

It has been proved that the analysis of a “mea-
sure” of the interpolation error leads to define an
anisotropic metric map which prescribes element
sizes and directions [7]. To measure the interpo-
lation error, we consider the discrete L∞ norm of
the error defined in tetrahedron K as:

‖u−Πhu‖∞,K ≤ cmax
x∈K

max
~e∈EK

〈~e, |Hu(x)|~e〉 , (1)

where c is a constant dependent of the dimension,
EK is the set of element edges of K and |Hu| is
the absolute value of the Hessian of the variable u
(symmetric definite positive tensor). As the Hes-
sian matrix is symmetric, it can be decomposed
as: Hu = RΛR−1 where R is the eigenvector ma-
trix and Λ = diag(λi) is the eigenvalue matrix,
the absolute value of the Hessian matrix is then

defined as follows:

|Hu| = R |Λ|R−1 with |Λ| = diag(|λi|) .

Notice that this error is related to the Hessian of
the variable u and to the mesh edges, hence it
provides directional thus anisotropic information.
Controlling the mesh edges allows to control the
interpolation error on the mesh elements.

From a practical point of view, the right-hand side
term of Equation (1) is not useful as it involves the
maximum of the metric field |Hu| that is usually
not known. Nevertheless, it is possible to define a
suitable metric tensor M̃(K) such that the inter-
polation error on a mesh element is given by:

εK = c max
~e∈EK

〈~e,M̃(K)~e〉 .

In the mesh adaptation context, the error toler-
ance ε that must be equidistributed over the mesh
is fixed and the mesh element have to be char-
acterized via this constraint. For a given mesh
element K, we define the metric tensor M(K) =
cε−1M̃(K), and all mesh edges must comply with
the following equality:

〈~e,M(K)~e〉 = 1 . (2)

A mesh for which all edges comply with this rela-
tionship is a so-called unit mesh.

In other words, to equidistribute the interpolation
error over the mesh, we have modified the scalar
product that lies under the notion of distance used
in mesh generation algorithms, based on the local
metricM that replace the usual Euclidean metric.
This tensorMmust still be defined more precisely.

The specificity of this error estimate is related to
the following features:

• the analysis is not asympotical, (h does not
tend towards zero),

• it is based on the hessian of the solution,

• it is intrinsically anisotropic

• it does not depend of the nature of the oper-
ator (therefore it can be used for any type of
equation).

Remark 1.1. This error estimate is called ”geo-
metric” as the solution on a mesh can be seen as a
Cartesian surface and we attempt to define a ge-
ometric metric in order to control the gap to the
surface.

1.2 Metric construction

Let us denote by hmin (resp. hmax) the minimal
(resp. maximal) mesh element size. According to
the previous section, we define the metric tensor
as: M = RΛ̃R−1, with:

λ̃i = min
(

max
(

c|λi|
ε

,
1

h2
max

)
,

1
h2

min

)
.

Introducing a minimal (resp. maximal) element
size is a way of avoiding irrealistic (unpracticable)
metrics. It also allows in a computational (ex-
plicit) scheme to control the time step.

The Equation (1) leads to a global upper bound
of the interpolation error. However, in order to
combine various variables, each of them having a
different meaning or a different nature, it becomes
necessary to introduce a relative bound on the in-
terpolation error, to have dimensionless variables,
as follows:

‖u−Πhu‖∞,K

‖u‖∞,Ω
≤ cmax

x∈K
max
~e∈EK

〈~e, |Hu(x)|~e〉
‖u‖∞,Ω

.

Then, all metrics can be combined together into
a single metric tensor using a metric intersection
scheme.

Moreover, in numerical simulations, solutions vary
from several orders of magnitude (multi-scale phe-
nomena, recirculations, shocks, etc.). It is thus dif-
ficult to capture the weakest phenomena via mesh
adaptation, and even harder to do it when, for in-
stance in CFD, shocks are located in the flow. A
local error estimation can overcome this problem.
Following the previous idea, the error estimate is
also normalized using the local value of the gradi-
ent norm of the variable u, weak phenomena can
be captured even in presence of strong shocks. To
this end, we introduce the following estimate:

∥∥∥∥ u−Πhu

|u|+ h̄‖∇u‖2

∥∥∥∥
∞,K

≤

c max
x∈K

max
~e∈EK

〈~e, |Hu(x)|
|u|+ h̄‖∇u‖2

~e〉 ,

where h̄ is the diameter of the element (its largest
edge) in the background mesh (at the previous it-
eration).

1.3 Metric intersection

When several metrics are specified at the same ver-
tex, a unique metric tensor must be defined taking
into account all given metrics. To this end, a met-
ric intersection procedure is used. Let M1 and
M2 be two metric tensors given at a vertex P .
The metric tensor M1∩2 corresponding to the in-
tersection of M1 and M2 must be such that the
interpolation error for each variable is bounded by
the given tolerance value. To this end, we use the
simultaneous reduction of the quadratic forms as-
sociated with the two metrics [1] (cf. Figure 1).

The two metric tensors are represented by the as-
sociated ellipsoids EMi . The ellipsoid EM of max-
imal volume included in the (geometric) intersec-
tion of these two ellipsoids defines the desired met-
ric tensor. Formally speaking, let us consider

Md = {M |M metric tensor}

be the set of all metric tensors in IRd and let us
define the ellipsoid associated with the metric M
by:

EM = {M |
√

t
−−→
PM M

−−→
PM = 1} .

Hence, the metric M1∩2 is defined by the ellipsoid
EM1∩2 = sup

Mi∈Md

EMi
⊂ EM1 ∩ EM2 or:

sup
Mi∈Md

M |

q
t
−−→
PMMi

−−→
PM = 1

ff
⊂ EM1 ∩ EM2 ,

where the sup over the set of metrics represents
the metric with the largest volume of its associated
ellipsoid.

2. MESH ADAPTATION

As mentioned in the Introduction, the generation
of an adapted mesh is based on the specification of
a discrete anisotropic metric tensor at each mesh
vertex of the current mesh. The aim is then to
compute the edge lengths with respect to this met-
ric. For the sake of simplicity, it is possible to de-
fine the metric tensor so as to prescribe a unit edge
length. The standard Euclidean scalar product is

Figure 1. Metric intersection in three dimensions.

then modified using a proper metric tensor field.
At each vertex, a different expression of the met-
ric M leads to a different expression of the scalar
product. Let P be a vertex and let M(P) be the
metric at P . The desired edge PX must have a
length close to one w/r M(P):

lM(P)(
−−→
PX) =

√
t
−−→
PXM(P)

−−→
PX = 1 .

As the metric varies in the domain (is not constant
in an element), we need to consider the metrics
at the edge endpoints as well as all intermediate
metrics along the edge. To this end, we introduce
the average length of PX as:

lM(
−−→
PX) =

1∫
0

√
t
−−→
PXM(P + t

−−→
PX)

−−→
PX = 1 . (3)

The desired adapted mesh is then a unit mesh, i.e.,
a mesh such that for each edge ~e ∈ EK , lM(~e) ≈ 1.

In our approach, the generation of adapted meshes
is a two-steps process. At first the surface mesh
is adapted using local modifications [16], then
the volume mesh is adapted using a constrained
Delaunay algorithm extended to the anisotropic
case [19]. Notice that most of the vertices of the
previous meshes are kept in order to reduce er-
rors (as much as possible) when interpolating the
solutions from one mesh to the other.

2.1 Surface mesh adaptation

Given a discrete surface (a piecewise linear approx-
imation of the domain boundaries) and a discrete

metric field, the aim is to generate an adapted
mesh with respect to this metric. To this end, the
approach we use consists in modifying iteratively
the initial surface mesh so as to complete a unit
mesh. Obviously, as the mesh is intended for FE
computations, the mesh gradation is also a ma-
jor concern. The ingredients to achieve this goal
typically include mesh enrichment, mesh coarsen-
ing ans local mesh optimization procedures. The
local mesh modifications operators involved are:
edge flipping, edge collapsing, edge splitting and
node removal, node repositioning and degree re-
laxation.

As no CAD information is provided, an internal
(at least) C1 continuous geometric support is first
constructed, using local quadrics (defined at the
mesh vertices). Then, a geometric metric tensor
G is defined at the mesh vertices using this sup-
port, the local principal curvatures and directions
are computed. This geometric metric G has to be
intersected with the computational metric M so
as to cope at best with these two requirements. In
turn, this metric G ∩M must be modified to ac-
count for the desired mesh gradation [10]. The re-
sulting metric M̃ is used to govern all mesh mod-
ifications.

The surface mesh modification algorithm is pretty
straightforward, edge lengths are computed with
respect to the metric M̃ and edge too small are
collapsed while edge too long are splitted into unit
length segments. Edge flips and node reposition-
ing operations are performed to improve the over-
all mesh quality (in terms of shape and size) [17].

2.2 Volume mesh adaptation

Once the surface mesh has been adapted, a unit
volume mesh is generated with respect to the mod-
ified metric M̃. In our approach a constrained De-
launay procedure is used to build first an empty
mesh (with no internal vertices). Then, based
on an edge length analysis, internal nodes are
added into the current mesh (most of them coming
from the background mesh, at the previous itera-
tion) using the Delaunay kernel, extended to the
anisotropic case [19].

As pointed out, the classical distance evaluation
is replaced using an evaluation related to the lo-
cal anisotropic metric. Hence, let A and B be two
points, the distance between A and B, d(A,B)
is now replaced by lM(A,B) as defined by Equa-
tion (3). Then, OK (the circumcenter of a tetra-

hedron) is computed as the solution of the system:

lM(OK , Pi) = lM(OK , Pj) ∀i, j = 1, 4, i 6= j ,

and rK , the circumradius of K, is computed as:

rK = lM(OK , Pj) .

Finally, the Delaunay measure:

αM(P,K) =
lM(OK , P)
lM(OK , Pj)

< 1 ,

where αM(P,K) is used to define the cavity of K.

However, as we face a nonlinear system to com-
pute OK and as the metric is discrete, it is then
not so easy to compute the desired length. There-
fore, approximations are needed to return to the
Euclidean context. To this end, we fix the metric
and various approximations can be used.

2.3 Unsteady adaptation scheme

The classical adaptation algorithm is usually com-
posed of four successive steps: (i) solution compu-
tation, (ii) error estimation and metric construc-
tion, (iii) governed mesh adaptation and (iv) in-
terpolation of the solutions. However, this ap-
proach has been proved to be inadapted when
dealing with transient (time-dependent) prob-
lems [2], mainly because of the impossibility to
predict the behavior or the evolution of such phe-
nomena. For stationnary problems, mesh adap-
tation aims to find a fixed point for the couple
mesh-solution. The objective is to converge to-
wards both the stationnary solution of the prob-
lem and the adapted mesh (that equidistribute the
interpolation error). In such context, the mesh is
always ”late” with respect to the phenomenon and
thus, if the number of adaptations is too small,
the solution is diffused. Moreover, the adaptation
introduce a quite large error due to the interpo-
lation of the solution from one mesh (the back-
ground mesh) to the other, that impacts the time
derivatives and thus introduce an error in phase.
To overcome these problems, we have proposed
an extension of the classical adaptation scheme,
specifically intended for transient problems [2].

The transient fixed point algorithm is composed of
two steps, the main adaptation loop and an inter-
nal loop in which the transient fixed point problem

is solved (Fig. 5). At each iteration of the main
loop, we consider a time period [t, t+∆t] in which
the solution evolves. From the solution at time t,
we compute the solution to time t + ∆t, and the
computation is iterated until the desired accuracy
is obtained for the solution at t + ∆t. Hence, the
solution behavior is predicted in all regions of the
domain where it evolves. A metric intersection
procedure in time is introduced to adapt the mesh
in these regions.

To generate an adapted mesh in the region where
the solution advances in time, the metric must re-
flect this evolution. To this end, the metric must
take into account the information given by the ini-
tial solution, the final solution and all intermediate
solutions. Therefore, all metrics are intersected
and the metric tensor at iteration i and the inter-
nal loop j is defined as:

Mi,j =
m⋂

k=1

Mk
i,j ,

where Mk
i,j is the kth intermediate metric given

by the solution.

3. APPLICATION EXAMPLES

In this section, we present three examples of un-
structured mesh adaptation intended to illustrate
the various problems described previously. The
first example aims at showing anisotropic surface
and volume mesh adaptation for an analytical
metric specification. The second example will fo-
cuss on the error estimate for a steady-state Euler
computation in two dimensions. Finally, the third
example deals with a transient CFD problem on a
complex geometry in three dimensions.

3.1 A "not-so-simple" analytical example

In this example, we will show the behavior of the
anisotropic adaptation meshing procedure on an
analytical function and, more precisely, the metric
intersection algorithm. Let us consider the surface
in IR3 defined on [−1, 1]3 :

f1(x, y, z) = tanh
(
(x + 1.3)20 (y − 0.3)9 z

)
,

the computational domain is a supertorus defined
by the set of equations:

{
x = cosn1(θ) (r0 + r1 cosn2(φ)) ,
y = sinn1(θ) (r0 + r1 cosn2(φ)) ,
z = (r0 + r1) sinn2(φ) ,

where θ and φ vary in [0, 2 π] and r0 + r1 (resp.
r0 − r1) represents the external (resp. internal)
radius of the torus (here n1 = n2 = 0.2).

The specificity of this case is that it combines two
different metric fields, the first one defined by the
function f1, the second one related to the geom-
etry of the domain (the intrinsic surface proper-
ties). Here, the surface meshing algorithm pro-
ceeds by first analysing the surface given an ini-
tial (crude) surface triangulation (Fig. 2) in order
to construct the geometric metric tensor1. The
number of adaptations has been set a priori to
8, the desired error bound is ε = 0.0084. The
Hessian of the variable (the surface curvature or
the function) is computed a least-squares approx-
imation [16]. Table 1 reports statistics about the
initial triangulation and the sequence of adapted
meshes, np, ne, nf representing the number of
vertices, tetrahedra and triangles, respectively, ε̃
and εmax represent the average and maximal er-
ror measured on the elements.

The distance to the hypersurface is computed on
each tetrahedron K by considering the maximal
value of the distances between the edge midpoints,
the face midpoints and the barycenter of K. The
average (resp. maximal) value of the error should
be close to the desired error ε on the final adapted
mesh, thus validating the proposed error estimate.

It np ne nf ε̃ εmax

0 3, 850 15, 460 4, 884 0.0438 1.0000

2 72, 090 416, 124 14, 548 0.0064 0.5673

4 29, 651 154, 763 17, 076 0.0047 0.0555

5 22, 782 114, 637 16, 190 0.0051 0.0454

8 21 063 105 268 15 474 0.0051 0.0345

Table 1. Statistics about the adapted meshes at itera-
tions 0 (initial), 2, 4, 5 and 8 (final) for the analytical
example.

1Needless to say that the analytical function is not used

to get the first and second derivatives of the surface at

the mesh vertices, discrete approximations are computed

instead [16].

Remark. In this example, in the final adapta-
tion, 99.6 % of the elements have an error be-
low the given tolerance ε and the average error
ε̃ = 0.0051 is lesser than ε. Moreover, the max-
imal error εmax is constantly decreasing over the
iterations.

3.2 A 2D steady-state problem

This example related to a Euler computation at
Mach 3 in a scramjet configuration is typical of nu-
merical simulations in compressible fluids, involv-
ing highly anisotropic phenomena (shocks). The
aim is to capture the behavior of the physical phe-
nomenon and to emphasize the reduction of the
number of degrees of freedom obtained thanks to
the anisotropy [9]. The geometry of the computa-
tional domain is shown in Fig. 6.

Two series of mesh adaptation have been carried
out on this example, isotropic and anisotropic, to
be compared. However, the parameters were the
same for both computations : 9 adaptations have
been performed, each 400 time steps of the Euler
solver. The density variable has been chosen to
adapt the meshes with the following parameters:
ε = 0.02, hmin = 0.01 m and hmax = 2 m.

The cartesian surface associated to the density
presents a series of steps (shocks) in the domain.
The error estimate analyses this surface in IR3

and provide a 2D anisotropic metric, the desired
unit mesh is thus a mesh adapted to this underly-
ing surface. Table 2 reports statistics about the
anisotropic and isotropic adapted meshes. Fig-
ure 6 compares the initial and adapted meshes (at
iterations 2 and 9) with the corresponding isoden-
sity distributions. The anisotropic final mesh con-
tains more than 5 times less vertices than the final
isotropic mesh. Accordingly, the anisotropic ap-
proach required 14mn (on a PC workstation) vs.
2h13mn for the isotropic approach, thus reducing
the time by a impressive factor of 9. Moreover, by
stretching the elements along the discontinuities,
the numerical diffusion due to the Riemann solver
has been significantly reduced (Fig. 8).
Remark 3.1. The same test case was already pro-
posed a few years ago. However, the anisotropic
mesh adaptation was giving nearly isotropic ele-
ments along the shock waves [9]. The result is
now improved using the geometric error estimate
described in Section 1.

3.3 A 3D transient CFD problem

Finally, the last example will demonstrate the effi-
ciency of the transient adaptation procedure, on a

It npa nea npi nei

0 8, 012 15, 275 8, 012 15, 275

2 5, 783 11, 055 76, 565 151, 558

5 9, 292 17, 983 75, 997 150, 532

9 15, 110 29, 569 78, 702 155, 951

Table 2. Statistics about the initial and adapted
meshes for the anisotropic and isotropic cases on the
scramjet configuration.

isotropic example2. The problem concerns a non
linear wave propagation in a complex 3D geom-
etry. This simulation can be seen as a general-
isation of the Riemann problem (a shock tube)
in higher dimension. More precisely, a Heavyside
perturbation is introduced into a uniform field so
as to simulate an explosion (a region of high pres-
sure is introduced into the ambient atmosphere).
The flow is approached using Euler equations in
the conservative forms. A finite volume (for the
flow computation) solver is used. Euler equations
are solved using an explicit scheme, a four order
Runge-Kutta is used for time integration.

In this example, the objective is to compute the
solution at physical time t = 0.1 sec.The sim-
ulation is decomposed into 30 periods (adapta-
tions). At each main iteration, 4 internal itera-
tions are performed to solve the transient fixed
point problem. The metric is defined based on
the density variations. The adaptation parame-
ters have been set to: ε = 0.01, hmin = 0.3m.,
hmax = 10m., for a computational domain size of
85m×85m×70m. Table 3 reports statistics about
the adapted (isotropic) meshes. Adapted meshes
are presented in Figures 9 to 13.

It. t np ne nf

8 0.027 280, 525 1, 630, 619 40, 736

15 0.05 603, 644 3, 541, 268 63, 526

23 0.077 739, 854 4, 326, 861 78, 816

30 0.1 743, 735 4, 328, 741 87, 322

Table 3. Statistics about the adapted meshes for the
transient problem.

2Anisotropy is expected soon in 3D.

4. CONCLUSIONS

In this paper, we have presented a global scheme
for mesh adaptation in the context of numerical
simulations. The proposed approach involves an
anisotropic geometric error estimate, surface and
volume mesh adaptation algorithms based on dis-
crete metric tensors. It differs from the classical
adaptation scheme by integrating a inner loop cor-
responding to a transient fixed point algorithm.

REFERENCES

[1] F. Alauzet et P.J. Frey (2003), Esti-
mateur d’erreur géométrique et métriques
anisotropes pour l’adaptation de maillage.
Partie I : aspects théoriques, RR-4759, IN-
RIA Rocquencourt.

[2] F.Alauzet, P.J. Frey et B. Moham-
madi (2002), Adaptation de maillages pour
des problèmes instationnaires, C.R. Acad.
Sci., Paris, t 336, Série I.

[3] E.F. D’Azevedo and B. Simpson (1991),
On optimal triangular meshes for minimiz-
ing the gradient error, Numerische Mathe-
matik, 59(4), 321-348.

[4] I. Babuška and W.C. Rheinboldt
(1978), A posteriori error estimates for the
finite element method, Int. j. numer. meth-
ods eng., 12, 1597-1615.

[5] T.J. Baker (1997), Mesh adaptation
strategies for problems in fluid dynamics, Fi-
nite Elements in Analysis and Design, 25(3-
4), 243-273.

[6] R.E. Bank (1997), Mesh smoothing using a
posteriori estimates, Siam J. numer. anal.,
34(3), 979-997.

[7] M. Berzins (1999), Mesh Quality : A Func-
tion of Geometry, Error Estimates or Both ?,
Engineering with Computers, 15, 236-247.

[8] H. Borouchaki, F. Hecht, E. Saltel
and P.L. George (1995), Reasonably
efficient Delaunay based mesh generator
in 3 dimensions, Proc. 4th Int. Meshing
Roundtable, Albuquerque, New Mexico, 3-14.

[9] H. Borouchaki, P.L. George, F.
Hecht, P. Laug, B. Mohammadi et
É. Saltel, Mailleur bidimensionnel de De-
launa y gouverné par une carte de métriques.
Partie II : applications, RR INRIA 27 60,
déc.

[10] H. Borouchaki, F. Hecht and
P.J. Frey (1998), Mesh gradation con-
trol, Int. j. numer. methods eng., 43(6),
1143-1165.

[11] H. Borouchaki, D. Chapelle, P.L.
George, P. Laug et P.J. Frey (2001),
Estimateurs d’erreur géométriques et adap-
tation de maillage, in Maillage et adap-
tation, P.L. George ed., Série Mécanique
et Ingénierie des Matériaux, Méthodes
Numériques, Hermès Science, Paris.

[12] P.G. Ciarlet (1991), Basic Error Esti-
mates for Elliptic Problems, in Handbook of
Numerical Analysis, vol II, Finite Element
methods (Part 1), P.G. Ciarlet and J.L. Li-
ons Eds, North Holland, 17-352.

[13] H.L. deCougny and M.S. Shephard
(1996), Surface Meshing Using Vertex Inser-
tion, Proc. 5th Int. Meshing Roundtable, Oc-
tober 10-11, Pittsburgh, PA, 243-256.

[14] M. Fortin(2000), Estimation d’erreur a
posteriori et adaptation de maillages, Revue
européenne des éléments finis, 9(4).

[15] P.J. Frey and P.L. George (2000), Mesh
generation. application to finite elements,
Hermès Science Publ., Paris, Oxford.

[16] P.J. Frey(2000), About surface remeshing,
In Proc.of 9th Int. Meshing Roundtable, New
Orleans, LO, USA, 123-136.

[17] P.J. Frey (2001), Yams : A fully Automatic
Adaptive Isotropic Surface Remeshing Pro-
cedure, RT-0252, INRIA Rocquencourt.

[18] P.L. George (1997), Improvement on De-
launay based 3D automatic mesh genera-
tor, Finite Elements in Analysis and Design,
25(3-4), 297-317.

[19] P.L. George (2002), Gamanic3d, Adap-
tive anisotropic tetrahedral mesh generator,
Technical Report, INRIA.

[20] R. Löhner (1989), Adaptive remeshing for
transient problems, Comput. Methods Appl.
Mech. Engrg., 75, 195-214.

[21] R. Löhner (1996), Regridding Surface Tri-
angulations, Jour. of Comput. Phys., 126,
1-10.

[22] B. Mohammadi (1994), Fluid dynamics
computation with NSC2KE - an User-
Guide, Release 1.0, RT INRIA 164.

Figure 2. Initial and final adapted surface meshes for
the analytical metric. Cut through the volume to show
anisotropic tetrahedra within this domain.

Figure 3. Impact of the metric intersection scheme
(initial and final solution during a period).

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

0.145

0.15

0.155

0 0.5 1 1.5 2

D
en

si
ty

Figure 4. Comparaison of the adapted solution with
a reference solution (uniform mesh) in red. Green: 6
metric intersection, blue: 2 metric intersection, ma-
genta: only the initial solution, cyan: only the final
solution.

S(i,j)

(H(i,j),S0
(i,j))

Internal loop

S0
(i,j+1)

H(i,j+1)

(H(i,j),S(i,j))
M(i,j) =

m⋂
k=1

Mk
(i,j)

(H(i,j),M(i,j))

(H(i,j+1),S0
i ,Hi)

(Hi,Mi)

(Hi,Si)

S0
i+1

Hi+1

Mi

(Hi+1,Si,Hi)

Mesh Generation

Metric computation

Sol. interpolation

(H0,S0
0)

Mesh Generation

Metric computation

Sol. interpolation

Solution
Computation

Figure 5. Global overview of the modified mesh adaptation scheme for transient simulations.

Figure 6. Initial and adapted meshes at the iterations 2 and 9 and corresponding isodensity distributions for the
scramjet configuration.

Figure 7. Final anisotropic mesh for the scramjet configuration.

Figure 8. Anisotropic vs. isotropic mesh comparison for the final meshes (local zoom).

Figure 9. Geometric surface mesh (left-hand side) and initial computational surface mesh (right-hand side).

Figure 10. Isodensity surfaces at times t = 0.027 sec, t = 0.05 sec, t = 0.077 sec and t = 0.1 sec.

Figure 11. Isotropic adapted surface meshes and isodensity distributions at times t = 0.027 sec, t = 0.05 sec,
t = 0.077 sec and t = 0.1 sec.

Figure 12. Isotropic adapted volume meshes and cutting plane through the domain showing the isodensity distribu-
tions at times t = 0.027 sec, t = 0.05 sec, t = 0.077 sec and t = 0.1 sec.

Figure 13. Two cutting planes through the adapted volume mesh at time t = 0.077 sec and corresponding isodensity
distributions.

Session 4
Smoothing

���������	��
��
���������
���
�������
�� �����������! "�����!��# $%���
���&��'���
��)(*��# +��,��� +�
�#-
��������.��#

/&021432576�8:9214;=<?>A@ /CBD32EF0?BDGIHJEF076KEL3�M2N2O

@	P2QSRUT%VXW7YZQKR\[]WF^`_aQFb7W7VcPFW7deQgfhWF^`Qifkj�lmP2QKRUT%VXW7YZQKRnlo[Up�lrq:satus TvsId?w	f`b=xL^zyJVXW7bFVDs {|Qe}
O PFQKRUT%V W=YZQKR\[rWF^~_aQ=b=W7VcPFW7deQgfhWF^`Qgf�j�lmP2QSR�T�VXW7Y\QSRnl:[Up�l]q:satus T�sLRA�=W	RA�F�SQe}gy�VXW7b2VDs {LQ?}

�����u�Z�:�%�]�

���K�m�	�i�����a���U�A�F�	�K�U������ ��n�g¡`�a�¢�K�£�.�`���n�K¡¤�A�F¥K���	 ¦��¡`¡���¡I�`�i�.�I�n���m����§K������§%¨A��¥i���h�`�£���7§K�a©=�������A�`�£���7�����i�.�`���n�K¡I¡��`���n�Kªn�a�U§K��¥g���K§K¡
�n�"�`�K�Z���i�����a�«���n�o�`�K�Z�U��¡`���`�i�.����¡��K¡`�¦§¬�D�A���`�K���a��§K��¡` ¦���¦�`��z�.�`���n�F®¯���K��¡����i�����a�«����¡���©=�¦ ¦�`��§F°J�D�n�%�¦±K���U¥K���n°�¨A�"�U��¡`�
¡`�U�	���`�K�K��¡�¡z°n�n�|§K��¡` ¦���¦�`��z�.�`���n���¦�����A��®?�?�²�a��¥K���!³A�c�`�K���U��¡`�F°A�o�D�K�K ¦�`���n�i���S�`�i�.�¤�a¡��a�Uªn���K�¦�`�n�K�K�n�K�����K�z���|�¢�K¡��|¨7�u�����K�a����¦��§
´ �D�n���¦±K���U¥K���n°A�`�K��µI¶u��¥K¥K���!±S�a�%�.�`���n���������n�¤�n���`�K������¡��g·4®?���K��¡����a�K�����az�.�`���n����¡� ��n�K¡��`�`�����K��§U¨��¢�`�K�u³�������§K�a�����n�g�`�K���U��¡`�F°
¡`�a�K ��c�K�m�U��¡`�²�D�A�a§K���Kªm��¡L�������z¸u�¦§F®L¹I�£��¡`¡��� z���n�`�� 4�K�K�a�	�K��¡�°�¡`�K ~�¢��¡?�K�n�K�����K�z���|¹�º¢°!�n�|º:���K¡`¡h»«¼	���a§K���	¡h�`����¥g��¡��L§K�¦¡` ����A�z°�¥g�����D�A���
³A���h�½¥7���A���X�¾�n�½�`�K��¡] ����n¡�¡r�A�u�U���K���U��z�.�`���n�\¥K���n¨K�����U¡z®�¿¾�%���A�`���	§K�K ��%���K�¦¸À�U���K���U��z�.�`���n�Z�`�� ~�K�K���	�K���`�i�.�]�S�`��������¦¡r�`�K�
�K�K§K�����a�	���Kª�ªn���n�U�¦�`�h�Z�n�c�`�K�U¥K���n¨K�����®%Á¤�\ ��A����¡`���K�a�Kª�`�K�U�U��¡`�\¡`�K � ¦��¡`¡��a³A���a�A°e���¾�v�¢�K�a�`�a���¦³A���a»Â����Ãn������¡`�K���n�F°e�U���K���U������Kª
��¥K¥K���n¥K���£�.�`�r ��A����¡`�²ªA���a§����i�����a�«�����z��¡��K����¡z°g���K§����A�`����¥g�A�����`�a�KªUÄi�K���J�U��¡`�K��¡������n�Å ��A����¡`�¦�J�n�K��¡z°g�U�U�n���²�`�n¥K�a§����z³��¦�����A�
�n�eÄi�K�²�U��¡`�v¥7�n���A�`¡�����¡��K�a�`¡z°i���K§v�`�K�:�!³A���`�����2 ¦�A�A³A����ªn���K ��²�n�e�`�K�²�U���K���U��z�.�`���n��¥K���	 ¦��§K�K���r��¡��� � ������¦�`���`�¦§F®
ÆÇAÈ2É]ÊgË�ÌeÍnÎ�Ï½ÇSÍ!Ð�ÑgÇKÒFÇ	Ë.ÓSÔ�Õ£Ê=Ò�Ö|Êg×2Ô�Õ�ÏØÕ£Ù�ÓSÔ�Õ£Ê=Ò�Ö�ÏZÚ?Û£Ô.Õ�ÛDÇ�ÜgÇKÛIÏ\Ç�Ô.Ð2Ê2Ì?Í

ÝLÞàß�á �Z�]âØã½ä��¢� ß â á

ºo���a§Øªn���K�¦�`���`�a�A�¾�n�£�`���¾�����	�K�a����¡]�`�K���U���K���U��z�.�`���n�\�n���
�D�K�K ¦�`���n�i���7�`�i�.�I§K��¡` ¦����¨7�¦¡u����¡��%¡`�U�	���`�K�K��¡`¡c�n�u��¥K¥K���!±�»
�����.�`���n���	�i�����X�«�å�n�o�\¡`¥g�� ��XÄi ��D�K�K ¦�`�a�A�F®"æm¥S�`���U��z�.�`���n�
�U�¦�`�K�	§K¡:�`�i���r������ ¦�A�U�U�A�K�X�Z�K¡���§¾���\�`�K�a¡r ��n���`�4±	�]�����
�n�²�`�K�Z¡��`�¦��¥7�¦¡��§K��¡� ��������«�	¥7��çXèn°�é!êë®ì���K��¡��\���4�`�K�	§K¡
¥g�����D�A���í³A���h�v¥g�	�n���a�A°i���2³��¦�h�`�� ���¡�°i�A�u ����K¡h�`����¡J�n�e³A���h�`�� ��¦¡
�i�z³A�v�`�½�U�!³A�v�£����ªn�§K��¡h�~���K ���¡U�����n�î�n�����K�a�`�£���uªn����§��`�
���z�� ~���]Äi�i�n�F�n¥S�`�����n�= ��n�SÄiªn�K�`�.�`���n�F®
æm�K�m�¢�K�a�`�����¦³A���e��¥K¥K���A�� 4���4©=�� ¦�`�a³A���a���� ~�K���¦³A��¡o���Z�� � ����X»
���`�.�`��§�³��¦�h�`�¦±����!³A���U���A�%¨A�� ¦������¡����K���Kª¾�`�K��ªn����§¬���K§
�`�K���\¡��n�a³S���Kª��n�\��¥K¥K���n¥K���£�.�`�¢�n¥S�`�����az�.�`���n��¥K���A¨K�a�����n�
�`�K�� ��A����¡`�¦�K��§åªn����§F®Z���K�� ¦������¡���ªn����§Ø��¡]�`�K���å�a���`����¥g��»
�£�.�`��§��`�U�`�K�]Äi�K�]ªn����§F®oæo�Z�� ��A����¡`���mªn����§F°g³A���h�`�� ��¦¡o z���
�U�!³A�]�£����ªn���o§K��¡h�~���K ���¡m�`�i���Z�n��Äi�K�¢ªA���a§K¡z°7¸J�X�`�K�A�S�m�`�K�
�U��¡`��¨7�� ¦�A�U���Kª]����³�������§F®|Á¤�������`�¦��¥7�n�£�.�`���Kª¢�����a��¥K���!³A��§
 ��A����¡`�:ªn����§��`�U�¢Äi�K�¦�Jªn����§�¸I�:�¦©=�� ¦�`�X³��¦�a���U�!³A�o ����K¡��`�¦��¡
�n�²Äi�K�\ªn����§¬³A���h�`�a ���¡v¨��"�U�!³	���Kªå�n�K�a�¬�å¡����Kªn���Z ��A�n��¡��
ªn����§�³A���h�`�¦±7®�¿¾����¥K¥K�a�å�`�K���§K���\�A�m ��A����¡`���K���Kª¾�ZÄi�K�
ªn����§F°���¥K¥K���!±	�������`�¦�a�]¡��A�X³S���Kª:���U�n¥K¥K���n¥K���£�.�`�u ��A����¡`�Iªn����§

�n¥S�`���U��z�.�`���n�v¥K���n¨K�����°g�n�K§���A�`����¥g�A�����`�a�A�v�`�K�²����¡`�K�a�`�a�Kª
ªn����§\¨i�� ~Ã��`�%�`�K�¢Äi�K�����¦³A���L���� ��K��¡��a³A���a�A®r���K��¡:§K�¦¡` �����¨g��¡
�n�K���¢�K�a�`�a���¦³A���F�� � ������¦�`���`�¦§��n¥S�`�����az�.�`���n��¥K���	 ��¦§K�K���n®
ï��¬�`�K��¡v¥i��¥g����°m¸I�ZÄi��¡h�ªn�a³A�\���&�!³A���h³S�a�¦¸��n�] ¦�£��¡`¡`�a z���
�¢�K�a�`��ªn����§ì���4�`�K�	§K¡¾�`�C�����`�a³��.�`���`�K�¬��¥K¥K���a z��¨K�����a���ì�n�
�¢�K�a�`���a�¦³A���a»Â���S¥g�½�a§K�z��¡����&�`�K�½ ��n���`�¦±����A�]�n¥S�`���U��z�.�`���n�
¥K���n¨K�����U¡J�`�i�.�o������¡`�r�����`�K�r ��n���`�4±	�o�n�|ªn����§�ªn���K���`�.�`���n�F®
¿¾���`�K���¬�����`����§K�K ��\�n�K�%�~����ªn�¦�v�n¥S�`���U��z�.�`���n�"¥K���A¨K�a���
���K§& ¦�A�K¡h�`���K ¦���`�K�Z�¢�K�a�`���a�¦³A���m ¦�A�U¥g�A�K�¦���`¡� ��A�n��¡����K���Kª
���K§v�����`�¦��¥7�n�£�.�`���n�F®Lðm�D�`�¦�u§K�¦Äi�K���Kª¢�`�K�: ��A����¡`�oªn����§��A¥S�`�X»
�U��z�.�`���n�Z¥K���n¨K�����U¡o¸I��§K�4Äi�K���`�K���¢�K�a�`�a���¦³A���?�A¥S�`�a�������»
�`���n�¾¥K���� ���§K�K���n°?ªA�X³���� ��n�U¥K���¦±	�a�«�\���i���a�S¡���¡]���K§¾��	�S»
�U������ z���r�¦±K���U¥K���½�`�"�K�K§K�����a���K�Ø�`�K�Ø¥g�����D�A�������K ��ØªA�����
�`�i�.�� z���¬¨7�Z�� 4�K���4³��¦§"¸J�a�`���`�K��¡%���S¥g�Z�n�r��¥K¥K���A�� 4���`�
�n¥S�`���U��z�.�`���n�F®

ñcÞ â%ò½óo�oò ß ó¤ô âåõÀöíä�÷A� ß ÷¤ó¤ò½óo÷
öíóI�Zø�âØã�

ù��K�X�`�����¦³A�������¦�`�K��§K¡��������`�K�"���n¡h�å�4ú� ������A�����4�`�K�	§K¡
�D�n�U¡`�n�a³	���Kª½�����K�z���U¡h�S¡h�`����¡¢�`�i�����«�S¥K�a z�����a��������¡�������`�K�

§K��¡� ����¦�`��z�.�`���n�å�n���������a¥S�`�� v¥i���h�`�£���c§K�a©=�����¦���`�£���I�����i�.�`���n�K¡
´������ ¡4·4®�ð ªn�	��§¯�����`����§K�K ¦�`���n�C�`���`�K�¦¡`�Ø���¦�`�K��§K¡���¡
ªn�a³A���\���\�`�K�Uù��K�a�`��ªn����§\�?�S�`�n���£���Jç ��êÂ®��i�n�r�v�U�n���U ¦�A��»
¥K�����K���K¡��a³A�Z�!³A���h³S���4¸r°J¡`����ç 	.êë®�
m�����n°J¸I��ªA�X³��Z�Ø¡`�K�n�h�
���A�`���	§K�K ¦�`���n�\�n���¢�K�a�`�����4³��¦�?���4�`�K�	§K¡z°=�`�������`�a³��.�`�r�`�K�����
��¥K¥K���� z��¨K���a�a�«���`�U�n�?¡`�n�U�:ªn����§vªn���K���`�.�`���n�¥K���A¨K�a����¡�®
æm�K�� ����n¡�¡½�n�%�U�¦�`�K�	§K¡½�D�n�½¡`�n�a³	���Kª&�����K�z���½¡h�S¡��`�¦��¡\��¡
 z�������¦§½�����£�.±K�.�`���n�\���¦�`�K��§K¡z®Uðm¡]���½�¦±S����¥K����°2¸I�U���A�`����»
§K�K ���A�� ��n¨K�2��������±S�.�`���n�F®�ð,ªn�a³A���v�����K�z���u¡��S¡h�`���

������� ´ è.·
 z���%¨7�m���¦»Â¸����a���`���F°	�K¡`���Kªr�`�K�m§K�£��ªn�A�i������°��`�K�m���!¸I���¤�`���X»
���Kªn�K�£����¥i���h�JµJ°i���K§��`�K�²�K¥K¥7���u�`���£���Kªn�K�£����¥i���h���,�n� �
�����`�K�²���n���a�!¸J���Kª]¸u�z�A°

� ������� µ ��� � ��� ´ éA·
� �	�i�.�`���n� ´ én·?ªA�X³��¦¡�����¡`�I�`�:�`�K���a�`�¦�`���`�X³��u¥K���� ���§K�K���J ¦�A��»
�U�A�K�X�������D��������§v�`����¡��A�n ¦�A¨K�F�����£�.±S���`�a�A�F°

���! #"$� �&% " ´ ��� µ ����� � ��� · � ´ ��·
�i�n���`�K�� ��£��¡�¡U�n�J�a���K�z����¡h�S¡��`�¦��¡]�`�i�.��������¡��v�a�å�`�K�v§K��¡h»
 ����¦�`�az�.�`���n�å�A�����a����¥S�`�� ����� ¡z°|�a���a¡��z��¡`�a�a�¾¡`���¦�å�`�i�.���X��»
���`�.�`���n� ´ �A·� ¦�A�A³A����ªn��¡U�`�½�`�K��¡`�n���S�`���n� �(' �n�o���	�i�.�`���n�
´ è!·4®
���K�:�n¨�³	���n�K¡J��§S³��n�A�~��ªA�:�n�e¡`�K ~������a�`�¦�`���`�a�A����¡u�a�`¡�¡����U»
¥K���� ¦�a�«�U�n�K§U�`�K�������D�n���m�a�`¡c���n¡��m�n�F�a��¥K���¦�����A�~�.�`���n�F®)
m�!¸u»
�¦³A����°u�`�K�� ��n��³A����ªn���K ��Z�n�²¡��K 4�"�����£�.±K�.�`���n�"�U�¦�`�K��§K¡���¡
�«�	¥K�� z�����a��¥K���A�K�a¨K�a�`�a³A���a��¡����!¸²®r�?�������a�K¡��`�`�.�`�]�`�K�¢ ��n��³A���h»
ªn���K ��²¨g���i�z³	���n��°K¸I�²§K��¡� ����¦�`����

*,+ + �.-0/ �n� ´ -0/ è!· / ´ 		·
¸J�X�`� �K�n���nªn���K���n�K¡ � ������ ~�K���¦��¨g�A�K�K§i���h� ��n�K§K�a�`���n�K¡
* ´ - · � * ´ è!· �1- °c�K¡`���Kª\Äi�K�a�`�§K�a©=�������K ¦��¡��n�"�\����ªn�S»
�£���mªn����§F®�2m���`�]�`�i�.�o�����`�K��¡o�4±K����¥K�a�n°F�����a�`���`�.�`�]�����i�n�a¡
�`�K�²�������n��®
�L��ªn�K����è%¡`�K�!¸�¡¢���Ø�n¡` ��a���£�.�`�n�h�½�a�K�a�`�£���¤ªn�K��¡`¡ ´ �`�n¥g·4°?�`�K�
¡`�n���S�`�a�A�v���£�`�����n�K�3���� ��n¨K�F��������±S�.�`���n� ´ ����§K§K�a�!·4°K�n�K§��`�K�
�������n�J���D�`�¦�uÄK³A��A�� ��n¨K�2���¦�£�.±K�.�`���n�K¡ ´ ¨g�����`�A�%·4®
���K�½ÄiªA�K���¾�������K¡h�`�`���`�¦¡��`�i�.�Z�n�a���z��§S�¯���£�`�����n�K�4�A�� ��n¨K�
�����£�.±S���`�a�A�F°��`�K��K��ªn���D�����	�K�¦�K ¦���������n�U ��n��¥g�n�K�����`¡������
ªn�n�K� ´ �U��§K§K���!·4°|���K§å���D�`�¦�rÄK³A�����¦�£�.±K�.�`���n�K¡]�n�K�a�¾�³��¦�h�
���!¸ �D�����	�K���K 4��������n�������������K¡ ´ ¨g�����`�A�%·4®
ðm�¬����¥g�n�h�~�������n¨K¡����h³����`�a�A�"��¡��`�i�.�%�`�K�Z�K���`���n�¬�n�²�D���¦»
�	�K�¦�K ¦�"��¡%�����KÃn��§��`�¾�`�K�Z�U��¡`��¡`�����®,�u�K�����K�K 4�`���n�¬���
�`�K�]¨g�����`�A� ªA�`��¥K�����5�L�aªA�K���%è] ��n��¨7�¢��§K���	�i�.�`���X������¥S»
����¡������`��§��n���Z�U��¡`�å ��n�K¡`��¡h�`���KªZ�A�uÄK³��v�¦�	�i�����a�Ø¡`¥i�� ��¦§
ªn����§\¥7�n���A�`¡z®%æm�½¡`�K ~�¾�vªn����§F°2�`�K�a¡²�D�K�K ¦�`���n�½ z���½¨g���a�S»
�`����¥K���¦�`�¦§��n¡?¨g�����Kªo�n�K�K��ªn�¢�D�������K���K ¦�A®6���� ��n¨K�	�����£�.±S���`�a�A�
¸I�n�K��§%§i���U¥7�����a�I�a���r ��n�K¥K���J�n�F�a�`���`�.�`���n�K¡�®L���K��¡c�n¨K¡`�¦�h»
³��.�`���n��U�n�`�X³n�.�`��¡u�¢�K�X�`�����¦³A���=�U�¦�`�K�	§K¡�®
¿¾�]Äi��¡��:�K���`�]�`�i�.�z°=��� � ��¡:�����³A�� ¦�`�n�:���K§87 �9�$�:���
�`�K�²����¡���§K�i���Â°S�`�K���¡`�n�a³	���Kª��D�A�I�`�K�² ��n������ ¦�`���n�<;�

� ;��� 7 ´>= ·

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

?(@ A�B0C>D5EGF�H�I�IKJLIMIONQP(RTSQUWV J0X�V X�Y[ZTS\J0]^V_IKNa` Z\b^ZcUWV J0Xedgfih[N3UjJ0k
l IOZLk!h�mnh[JToMm6ZLXpJ^mqS[V ` ` ZcUjJLIsrtV X^V UWV ZL` l RTN\mumQv^Uwh[N3x�V P!PG` N l IOZLk!h
mnh[JToMmMZ!XtV XcUjNaI>x�N\P0V ZcUjN�muJ0` RTUWV JGXZcyOUjNaI_J0XTN�Y[ZTS\J0]!V^mQxpJLJaUwhTz
V X l mqUjNakLv�Z!X[P�UwhTN�]^JaU{UjJGx l IOZ!kLhtmQhTJToMm$UwhTN3muJ0` RTUWV JGX�ZcyOUjNaI
|e} NY[ZTS\J0]^V0mQx�JeJaUwh^V X l mqUjNakTm\d

���i��¨K����¡u�K¡c�`�]¸J���X�`�o§K�!¸����`�K�o¡`�n���S�`�a�A� � ' �~�3� ;� ®6�m¡h»
���Kªo�m�����£�.±S���`�a�A�r���¦�`�K��§¢�n�r�`�K�cÄi�K��¡h�|ªn����§F°.�`�`���K¡`�D���������Kª
�`�K������¡`��§K�i���c�`�\�� ��A����¡`���¢ªn����§F°�¡��A�X³S���Kª��`�K�� ��n������ ¦�`���n�
�����i���`�a�A�å�`�K�����n°I���K§� ��n������ ¦�`�a�Kª½�`�K�vÄi�K�vªn����§�¡`�n���S�`�a�A�
¸J�X�`���������A�`����¥7�n�£�.�`���n���n�g�`�K�u ¦�A�����¦ ¦�`���n�U�D���n���`�K�u ��A�n��¡��
ªn����§F°2¡��K�������������¡²�%��¸I�vªA���a§\���4�`�K�	§F®Uæo�¤ ��n�K��¡`�n°F�`�K��¡
�«¸I��ªA���a§����¦�`�K��§� ��n��¨7�]�K¡`�¦§��`��¡��n�a³A�r�`�K�r ��A�n��¡��]ªn����§
�����K���n��¡��S¡h�`��� ´ �a�?�`�K�r ��A����¡`�²ªA���a§� z����¨g�r�D�K�h�`�K���m ¦������¡h»
���K��§g·4®I�u�K��¡m ¦�A�K¡h�`�a�`�S�`��¡��`�K�²���� ��K��¡��a³A�r§K�¦Äi�K�a�`�a�A���n�?�`�K�
�¢�K�a�`��ªn����§��U�¦�`�K�	§F®
�L��ªn�K���Cé¯���a���K¡��`�`�.�`��¡å�n�K�¬�a�`���`�.�`���n�À�n��`�K�¬�¢�K�a�`�����4³��¦�
�U�¦�`�K�	§F®3�����£�.±K�.�`���n�Z�a¡:���¦¥K����¡`���A�`��§\¨A�� ����� ��a��¡z°=����¡��`���� 4»
�`���n�����K§����A�`����¥g�A�����`�a�A�������r���¦¥K����¡`���A�`��§�¨����������!¸J¡u�`�i�.�
�����¢¥g�n�����`�a�Kª�§K�z¸J�Z�n�m�K¥F°=����¡`¥g�� ¦�`�a³A���X�A°F���K§��`�K�] ��A�n��¡��
ªn����§\¡��A�X³��¢�a¡²����¥K���¦¡`���A�`��§½¨A�\��¡��	�i�����n®¢Ác�� z���K¡`���n���`�K�
 ~�i�n�`�� ¦�`�¦����¡��`�� v¡��i��¥7�v�A���`�K��¡U§K���nªn�`���°��`�K�v�a�`���`�.�`���n����¡

?(@ A�B0C>D��,F���z>Snr[Sa` NMy JLI0Uwh!IKN\N�` N } N[` m���S[V IKSa` N\m�� ION[` Z\b^ZcUWV J0Xev!ZaIsz
IKJToMm#P!JTo�X�� IKN\mjUwI�V SQUWV J0XLvLZaI>IKJToMm6RLk��tV XTUjNaI�k^J0` ZTUWV JGXLv!m	�GR[ZaION� S\J!ZaIKmqN l I V P mqJG` } N�

 z�������¦§�m»ë 4�S �����®
���K�¤���n¡h�e����¥g�n�h�~�����?¥K���n¥g���h�«�²�n�S�`�K�¤�¢�K�a�`�����4³��¦�A���4�`�K�	§
��¡r�`�i�.�¢�a�¢��¡r�«�	¥K�� z�����a�½�n�u ��n��¥K�a�¦±S�a����� ´�� ·:���n�r�`�K���m»
 ¦�	 ����n°=¸J�K�¦��� � ��¡o�`�K�¢�	�K�¢¨g���o�A���K�KÃ	�K�z¸J�K¡z®rï��\���`�K���
¸I�n��§K¡z°	�a�I��¡I¡� z���£��¨K���n°�¸��K�����z��¡u�U�n¡��c�n�`�K�¦�IÃ��K�!¸J�%�����K�z���
¡`�n�a³A����¡������²�K���z®

�cÞ â��²� ß ö ß�� �m� ß â á�ß�á�� � ß ã� ó á óo�²�o� ß â á
ùZ���A�"¥K���n¨K�����U¡����"ªA���a§¬ªn���K���`�.�`���n�¬ z���¬¨g�Z¡��~�.�`��§&��¡
�%§K��¡` ����4�`���K�n�K�����K�z���:�n¥S�`���U��z�.�`���n��¥K���n¨K�����°=¸��K�����¢�`�K�
�n¨��h�� 4�`�a³A�²�D�K�K ¦�`���n�v�i�n¡u�`�K�²�D�n���

� ´�� · � �
 "!$#$%�&(')!$*

�,+.- ' ´�� · � ´0/ ·

m�����n° � ��¡m�`�K�]ªn����§F®:ðm�Z�¦±S�n�U¥K���]�D�A�J�`�K��¡o�a¡o�`�K�]�����D���h»
���K ������� ��n¨K�L�n¨1���¦ ¦�`�a³A�¢�D�K�K ¦�`�a�A�i���?�`�i�.�:�a¡:�K¡`��§Z���Z�U��¡`�
¡`�U�	���`�K���Kª ´ ¡`����°i�D�n���¦±S����¥K����°?çXè4ê�·4®
ù��4�`�K�	§K¡c�`�i���u�n���o ��n�U���n�K�a�U�K¡���§��`�¢¡��n�a³A�J�`�K��¡`�m�«�	¥7�¦¡
�n���n¥S�`���U��z�.�`���n��¥K���n¨K�����U¡o���K ¦���K§K�¢�K�n�K�����K�z���o ¦�A�2�h�KªA�.�`�
ªn�`��§K�������J���¦�`�K��§K¡z°=º:���K¡`¡h»«¼	����§K�¦�#2m�¦¸u�`�A�F°7���K§&2m�¦¸��`�n�
º:���K¡�¡�»«¼	�¦��§K���Â®?���K�¦¡`�u�U�¦�`�K�	§K¡L�i�z³A�I�«¸I�o ��n���U�n�43g�z¸�¡z®
���K�¦���r ��n��³A����ªn���K ��%��¡²�«�	¥K�� z�����a�\¡����!¸r°L���K§½�`�K�¦�½§K���K���
¡` ��n�a�:¸I�����7¸J�a�`���`�K�²¡`����:�n�e�`�K�:����¡��F®
�?�C�4±S���U¥K�����£�,�`�K��¥K���n¨K�����U¡¾�`�i�.�Ø�n�a�U�`�K��¡������4�`�K�	§K¡
�¦±	�K��¨K�a�z°%¸I�¬¨K���a�"3K��§K��¡� �����¨g�"�`�K�Cºo�n�K¡�¡�»�¼	����§K��� 2m�¦¸�»
�`�n�¯�U�¦�`�K��§F® � ���K���`�Ø¨��65 �87 9;:&=< &(> "@? A A A ? � �`�K�¾³A���h�`�� ¦��¡z°���K§�¨��CB �`�K����§Kªn��¡��a�-�`�K�����K�a�`���n�¾ªA���a§ � 7.9@: �
´ 5 � 7.9;:&=< &(> "D? A A A ? E3/ B]·4®|���K�4FA»Â�`��X�`���`�.�`���n���¡��n¡��D�n�����!¸�¡z®
èn®HGe���A¥�!³A���I�`�K�:³A���h�`�� ���¡JI � è /\�\�\�\/ � ���K§¡`�n�a³A�²�D�n�
�z�� 4�KI|�`�K�²�a�	 z���F�����K�a��������`�a�A�%¥K���A¨K�a���
� 7(L":& � ����ª����a�M � ´ � 7(L":" /c�Q�\�\/u� 7NL":& % " /u�#/q� 7NLT%

" :& #" /\�\�\�\/u� 7(Lc% " :E ·

¨���2m�¦¸u�`�A��O ¡J�U�¦�`�K��§F®
é	®²¼	�¦� � L � ´ 5 �P7(L":&Q< &(> "D? A A A ? E3/ B]·4®

æm�¤ ��n�K��¡��n°=���Z���n ~� 2m�¦¸��`�n�Z¡��`�¦¥F°7�`�K�¢�K�¦¸��A¥S�`�a�%���e¥7��»
¡`�X�`���n���D�n�c³��¦�h�`�¦±RI| z�����n�K�a�%¨7�o ~�K�n¡`�������K¡`�a§K�²�]¡��¦�I�`�i�.�
¥K����¡����h³A��¡%�U��¡`��³�������§K�a���A®�¿¾�������D���U�`�\�`�K��¡�¡`�¦���.�U�`�K�
�D�z��¡`��¨K�a�m¡��¦�z®L���K�m¥K���n¨K���¦��¸��a�`���`�K��¡c��¥K¥K������ ~�%��¡¤�`�i�.�c���
�`�K�]�n¥S�`�������eªn����§���¡m�k���m�z¸u�z��D���n� �`�K�¢�a�K�a�`�£���eªn����§F°g�`�K�
 ��n��³A����ªn���K ¦�²¸J�a���F¨g�:³��¦�h�v¡����!¸²®
¿¾�¤¥K���n¥7�n¡��c���r�n¥S�`�����az�.�`���n�r����ªn�n���a�`�K� �`�i�.�?�a¡e¨i��¡`��§r�n�
��§K�z��¡²�D���n���¢�K�a�`�����¦³A���L�U�¦�`�K��§K¡z®¢���K��¡��U�U�¦�`�K��§K¡²¨K�K����§
�n�¢�`�K�S3g�z¸�¡L�`�i���L�`�K�������n�����U���A�`���n�K��§��U�¦�`�K�	§K¡|�i�z³A�n°n���
�¢�K ~���`�K�:¡`�����m¸u�z�A°	�`�i�.���¢�K�X�`�����¦³A���7���¦�`�K��§K¡u¨K�K����§v�n�
�`�K�T3g�z¸�¡��n�?¡`�a��¥K���o�����£�.±K�.�`���n�v�U�¦�`�K�	§K¡�®
U Þ �Uâv�Z�r�oó á½ß�áV� � á ä á �I�Z�Uä��¢�Zä��Uóoã

��� ß � áV� ä�÷e��� � � ß ãXW��Zø\ó
�Uóu�u�Z� ß �]� ß â á â���ó:�:�o�âØ�

���K�J ��A����¡`���K�a�Kª]¥K���� ���§K�K���J�`�i�.��¸u��¥K����¡`���A�I��¡�³A���h�U¡����U»
���£���²�`� � �¦�£���K�i�z�	»�¹I�A����¡`���K���Kª ´ � ¹u·4°e�����`����§K�K ���§Ø���&ç = êë®
ï��U���¢���K�a�`�£���S¡h�`��¥¢��� � ¹m°��`�K�I����¡h�|�n�i³A���h�`�� ¦��¡|��¡L�����n��§K������§
���U¡`�K ~�%�o¸u�z�¢�`�i�.�c�����K¨7�n�K�K§i���h��³A���h�`�a ���¡¤ ��n�U�uÄi��¡��z®?ï��
�����	�n¥��!³A���J�`�K�r³A���h�`�� ¦��¡o�����`�K�a¡m����¡��J�`�K�] ��K�����¦���o³A���h�`�4±
��¡c��§K§K��§U�`�r�`�K������¡����A�= ��A����¡`�u³��¦�h�`�� ���¡c�n�K§��X�`¡¤�K����ªn�	¨g�n��¡
�����%§K���a�¦�`��§å�D���n�-�`�K�%����¡h�]�n�I³A���h�`�� ���¡�®&
m���K ��n°|���K�a�`�£�����a�
�`�K��¨g�n�K�K§i���h����¡| ��A����¡`�¦�K��§F°	���K§��`�K���¢�`�K���a���`�������n��®?ðm¡¤�
¡`�a��ªn���c�U�	§K�aÄi z�.�`���n���n�7�`�K��¡I����ªn�A���X�`�K��°n¸I�m ¦�A�K¡���§K���c¡`�K ~�
¨g�A�K�K§i���h�v³��¦�h�`�� ���¡�Äi��¡����`�i�.�o�����r�K�� ���¡�¡~���h�v�`��¥K���n¥g�����a�
����¡��A�X³��J�`�K�m¡`�i��¥g�o�n�F�`�K�o§K�n���n�a�F®Lðm���¦±S�n�U¥K���m�D�n�I¡`�K ~�
³A���h�`�� ��¦¡m�����o�`�K�²�D�A�K�u ��n���K���u³A���h�`�� ���¡��n�L��¡��	�i�����n®
ðm�U���a�`�����i�.�`�a³A�I ��A����¡`���K�a�Kª²����ªn�A���X�`�K�,�`�i�.�| ��n�K��§�¨7�I����»
¥K���!�A��§���v�`�K�² ��n���`�¦±��m�n�?�n�K�m����ªn�n���a�`�K�í��¡J¥K����¡������`�¦§����
ç / êë®��u�K��¡²�n�aªA�n���a�`�K� ��¡:¨i�n¡���§½�n�½�¦§KªA�� ��n�A�`�`�n 4�`���n�¾���K§
�a�¤¸I�n��Ã	¡¤������¸u�]��¡¤¸I���a�7��¡c���U�`�K�����m§K���U���K¡`���n�K¡�® �i�n�¤�`�K�
¥K�K��¥g�A¡���¡²�n�¤�`�K��¡:¥i��¥7�¦��°e�a�o¸���¡:¡`���U¥K�����m�`�v�K¡�����¡��`�`�.��»
��ª��¾�`�i�.�¢¨K�K����§K¡¢�n�å���z��§K���a�Ø�z³������£��¨K���%¡��n�D��¸u�n���%�D�n�]��¸I�
§K���U���K¡`�a�A�i��� � �¦�£���K�i�z��`���£���Kªn�K�£�.�`���n�F®�¿¾�r�K�!¸��D�n���%���a»
����:�n�K�� ��A�n��¡����K���KªU¥K���� ���§K�K���n®
¿¾��¸J���a�c�K����§¾�`�K�%�K���`���n�å�n�u§K��¡h�~�n�K ¦���D�n�r³A���h�`�� ¦��¡¢���å�
ªn����§F®?�e���`�i�.�L�¦�K§F°.¸I��Äi��¡h�L§K�4Äi�K�I��¥i�.�`�ZY & ? [��n�K�K�� 4�`���Kª³A���h�`�� ��¦¡ � & ���K§ � [�`�K���n�Kªn�¢��ªn����§]��¡?��¡����	�K���K ¦�c�n�K�¦§KªA�¦¡5]\ &_^ < [> "@? A A A ? ` °!¸J�K�����S\ &_^ ���K§a\ &_^)bdc �����c��§2�`�� ��¦���z°����K§e\ & c��¡r�n§2���� ����A�r�`� � & °?���K§�\ &gf ��¡]��§2���� ������²�`� � [®�¿¾���K¡���`�K���K���~�.�`���n�ih Y & ? [h �kj �`��§K���K���`���`�K���a���Kª��`�å�A�lY & ? [®
2m�!¸²°i§K���K���`�r¨��Km�n ´ � & /u� [·c�`�K�r§K��¡h�~�n�K ¦�²���K�K 4�`���n���D�A�J�¥i���h�`�� ��K�£���uªA���a§F®�ïë�J�a¡J§K�4Äi�K��§���¡

m n ´ � & /W�o[· � ���a�p5oh Y�hrqsYKtVu & ? [< / ´�v ·
¸J�K�¦���wu & ? [��¡u�`�K�:¡`�¦���n�?�����F¥i�.�`�K¡u�`�i�.�� ��n�K�K�� 4��³A���h�`�� ��¦¡
� & ���K§ �o[®
ðm¡%�\Äi��¡h�%¡��`��¥������n�K�� ��A�n��¡����K���Kª½¥K���	 ���§K�K����°u¸I����§K§
������Äi�K��³A���h�`�� ��¦¡%�`�½�`�K�Z¡`�4���n�²�z³������£��¨K����³A���h�`�� ¦��¡%µ �5 �yx&�< &(> "@? A A A ? E °c���K§��a�K�a�`�£��������%�`�K�¡��¦�U�n�J ��A����¡`��³A���h�`�� ��¦¡��¡:�`�K�����U¥S�«��¡`�4�zq�{ �}| ®]ï��\�`�K���K�¦±��r¡h�`��¥F°F¸I���%����Ã
�����u¨g�A�K�K§i���h�å³��¦�h�`�� ���¡��`�i�.�%�����v�K�� ���¡�¡~���h�å�`�½¥K���n¥g�����a�
����¡��A�X³��:�`�K�rªA�¦�A�U�¦�`�h�v�n�?�`�K�]§K�n����������¡m ¦������¡��²³A���h�`�� ��¦¡

���K§Z�����U�!³A�²�`�K�����D���n��µZquï�� � x& t\µ&��¡m¡��K 4�Z�U³A���h�`�¦±7°���¦��µ�� µ�� 5 �yx&�< °��n�K§å���¦��{�� {���5 �yx&�< ®½���K���F°¤������n�L�`�K���a�m�K���aªA��¨7�n��¡�°g�`�i�.�o��¡�°7�n�a�eÄi�K�²³��¦�h�`�� ���¡ �yx[tZµ&�D�n�
¸J�K�a 4� m n ´ ��x[/q� & · � èn°I�D�n������� � & t={�°c���������¦���!³A��§
�D���n�ÅµJ®
ï��½�v¡`�¦ ��n�K§½¡h�`��¥F°F¸I�����	�n¥\�!³A���o�`�K���������n�a�K���Kªv¨g�n�K�K§S»
���h��³A���h�`�a ���¡:���\µJ®]�u�K�� ��K���������:³A���h�`�¦± �yx& ���Z�`�K��¡o���	�n¥��¡U�����U�!³A��§������n�îµZqvµ�� µ�� 5 � x& < °I���K§"��§K§K��§��`��{eq{�� {	�5 �yx&1< ®|�u�K��������=�K�¦��ªn�	¨g�A��¡u�n� �yx& ���vµ��n���:����¡�������U�!³A��§�D���n�íµJ®
ðm���I���`�K���� ��A�n��¡���³A���h�`�a ���¡�������§K�¦�`�����U���K��§������Zªn������§S�
����ªn�n���a�`�K���`�½Äi�K§&�Ø���.±S�����������K§K��¥g���K§K�����¡��¦�z® � �� ~Ã
�����½³A���h�`�¦± � x t"µJ°|�%����Ã\�X�U��¡¢�� ��A����¡`�U³��¦�h�`�¦±�{��{
�K5 � x < °i���K§�����U�!³A�o�a���D���n�íµZq|µ
��µ�� 5 � x < ®|���K���F°�����U�!³A�]�����2�a�`¡m�K�¦��ªn�	¨g�A��¡m�D���A� µZqM�g�n�m�����p;� x tZµJ°g¡`�K ~�
�`�i�.�m n ´ � x / ;� x · � èn°�µ�� µ�� 5,;� x < ®¯���K�Z����ªn�n���a�`�K��`�����U���i�.�`��¡z°	¸��K���µ"��¡����U¥S�«�A®
¿¾���K�!¸��i��³��%�¡`�4�e{í�n�I³A���h�`�� ¦��¡r�`�i�.�¢���������n��Ãn��§Ø��¡
 ��A����¡`�n®��?� ����z�.�`�%� ��A����¡`�Uªn����§¾�����n���`�K��¡`��°?¸I���K¡��%�
�`�K�J ����n¡�¡`�� u¡�¸I����¥U�����K�J����ªn�n���a�`�K� ¨A�%¼7®!�i�n�h�`�K�K� ´ ¡`���]ç v ê�·
�`�%ªn���K���`�.�`��� � �¦�£���K�i�z��`���£���KªA�K�����`�a�A�F®��g�n�J�`�K�]¡`���U¥K���
§K�n�%�����K¡¢¸I��i��³��v ¦�A�K¡���§K������§�¡`�\������°¤�`�K������i�z³A�v¨g�����
�K��¥K���n¨K�����U¡u¸J�a�`�¨g�A�K�K§i���h�¥K����¡����h³��.�`���n�F®cðm¡m��ÄK±�¸I�
¥K�£���v�`���K¡`�: ��n�K¡��`�`�����K��§ � ���£���K�i�z�
�L��ªn�K���&�Z�����a�K¡��`�`�.�`��¡¢�`�K�v ¦������¡����K���Kª\¥K���	 ���¡�¡z®�ºo�a³A�����
Äi�K��ªn����§ ´ �`�n¥g·4°�������±	�����n�����K§K��¥g���K§K���A�U¡��¦���n�u ��A�n��¡��
¥g�A�a���`¡¤��¡¤§K�¦�`�¦�������K�¦§ ´ ����§K§K�a�!·4°��D���n� ¸��K�� ~�%� � �����n�K�i���
�`���£���Kªn�K�£�.�`���n�v��¡�ªn���K�¦�`���`�¦§ ´ ¨7�����`�n�%·4®

U Þ«Ý ������������������������ ��!���"#�����$�%��!��&�'�)(��*���
+ �,��-

���K��§K��¡� �����¨g��§½¥K���	 ¦��§K�K���U�	������§K¡r�� ¦������¡��Uªn����§F°2�n¡o¸I�����
��¡%�Z�����£�.�`���n�K¡��K��¥�¨g�¦�«¸I�������`�K��¡U ¦������¡������K§��`�K�v���K�a�`�£���
Äi�K��ªn����§F®�¿¾��K¡��v�`�K��¡U�����£�.�`���n�K¡`�K�a¥��`�½§K�¦Äi�K��`�K����¦»
¡��`���a ¦�`���n�½�n¥g���`�.�`�n��®�¿¾�UÃn���¦¥½�`�K�U ��n�K�K�� ¦�`�a³	�a�«�Z�A�c¨7���`�
�`�K�:Äi�K�]���K§v�`�K�² ��A����¡`�:ªn����§vÄK±S��§F®�¿¬�K���v�`�K�²Äi�K�²ªn����§
�U�!³A��¡z°=�`�K�U ��A����¡`��ªA���a§½�U�!³A��¡²�����n�Kªv¸��a�`�\�a�r¨A�Z³	���h�`�K�
�n�c�z�� ~�½ ¦������¡���³A���h�`�4±\�i�z³	���Kªv�`�K��¡~���U������ z�.�`���n�¾��¡:�a�`¡
 ��n������¡�¥7�n�K§K���Kª�Äi�K�]³A���h�`�¦±7®:¿¾�¢ z�����e�`�K�¢¥K���	 ��¦¡`¡:�n���K¥S»
§i�.�`���KªZ�`�K� ����A��§K�a�i���`�¦¡��n���`�K� ��A����¡`�vªA���a§�³A���h�`�a ���¡��`�
�`�K�m³������K��¡I�n�F�`�K�����I ¦�A�����¦¡`¥g�A�K§K�a�Kª¢Äi�K�oªn����§�³��¦�h�`�� ���¡c�`�K�
����¡h�`���� ¦�`���n�v�n�e�`�K�:Äi�K�:�`���`�K�: ��A����¡`�:ªA���a§F®

. Þàß�á �Zóo� �]âØ÷e�o� ß�áV� � õ ß�á ó � � ß ã
õ��]âØö � �Uâv���r�:ó � � ß ã

ï��r�`�K�¤¥K���¦³S���n�K¡?¡`�� 4�`���n�F°.¸I�¤�i�z³A�¤�����`����§K�K ���§r�`�K�¤����¡��`���� 4»
�`���n���n¥g���`�.�`�n��®Lðm�£�`�����m ��A����¡`�Iªn����§���¡| ��������`�¦§F°n¸I�u���¦ ��n��§
�D�n���z�� 4��Äi�K��³A���h�`�¦±]¸J�i�.�¤�a�`¡����������`�a�A�¢�`�:�`�K�J ¦������¡���ªn����§
��¡�®|���K�����r�����:�«¸I��¥g�A¡�¡`��¨K�a�² z��¡���¡z®

/ �L����¡��z°���Äi�K��³A���h�`�¦± � x ¸���¡¢������ÃA�¦§��n¡¢ ¦������¡�������`�K�² ��A����¡`���K���Kª�¥K���	 ���§K�K��� ´ � x t {²·4°i���K§

010010212212

313313414414 5566

778
8

919919:1::1: ;1;;1;
;1;<<
<

=1==1=>
>

??
?
@@
@

AAB
B

C1CC1CD1DD1D

E1EE1EF1FF1F G1GG1GH1HH1H

I1II1IJ1JJ1J

K1KK1KL1LL1L M1MM1MN
N

O1OO1OP1PP1P

QQR
R

S1SS1ST
T

?G@ A(BGC�DVU�FXW_J!ZaIKmuNaX^V X l ZLX R!X[mjUwI�R[SnUwRLIKN\P UwI V Z!X l R!` ZaI l I V P�d

/ ¡`�� ¦�A�K§F°=�UÄi�K�r³A���h�`�¦±v¸���¡m§K��¡� z����§K��§������`�K�] ¦������¡h»���K���KªU¥K���	 ��¦§K�K��� ´ � xZYt {r·4®

ï����`�K��Äi��¡��� z��¡`��°u¸I�����A�`����¥7�n�£�.�`��¨����a�2���¦ ¦�`���n�F®¯ù��n���
¡`¥g�� ��XÄi z�����a�A°	¸I�o����¥K�£�� ��m�`�K�o ��	�n��§K���i�.�`��¡I�n�F�`�K�oÄi�K�m³��¦�h»
�`�¦±�¸J�a�`���`�K�U ¦�	�n��§K���i�.�`��¡:�A���`�K�¢ ��A����¡`�¢³A���h�`�4±=®¢ï��Z�`�K�
¡`�¦ ��n�K§� z��¡`�n°I¸I����K�a�`���n�a�a�åÄi�K§��`�K�� ¦������¡���`�����n�Kªn���\[' °
¡`�K ~�v�`�i�.�u�`�K�: ¦�	�n��§K���i�.�`��¡��n�e�`�K�mÄi�K�:³��¦�h�`�¦± � x �����²�a�S»
¡`�a§K�o�n�][' ®|�u�K���F°	¸I�o¡��`�n���J�`�K�o¨i���h�S ��¦���`���� o ����A��§K�a�i���`�¦¡
´_^ 7 " :M$` ? a$b / ^ 7 ¶ :M$` ? a$b / ^ 7dc@:M$` ? a$b ·c�n�2³A���h�`�¦± � x ���K¡`��§K�o�n�e[' ®|�e�U�a�S»�`����¥g�n�£�.�`���`�K�v ����n��§K���i�.�`��¡��A� � x �D���n���`�K�v ��A����¡`��ªn����§
���£�`�����`�K�� ��A�n��¡���ªn����§"�i�n¡% ~�i���KªA�¦§F°�¸I�� ��n��¥K�S�`���K�¦¸
¥K���	¡`�� ��n�e���n�J³A���h�`�¦± � x �K¡`���Kª��`�K��¡��¢¨i���h�S ¦�����`����] ����A��§K�X»
�i�.�`��¡z®

. Þ«Ý ö ��� ! �*����- �_� + ��� -��)� �]-���� ���e� �e�	� ���d(��� ���
ïë�:��¡o¥g�n¡`¡���¨K���r�`�i���:���D�`�¦�o���A�`����¥7�n�£�.�`���Kª���Äi�K�¢ªn����§Z�D���n�
�Z ��A����¡`�¦�¢ªA���a§F°��`�K�%Äi�K�vªn����§��a¡��D�n��§K��§ ´ �k® �n®½¡`�n���% ��¦���
³A�n���K���¦¡c�����J�K��ªA�.�`�a³A�!·L���U¡`�n���u¥K�£�� ���¡�®6
m�����u¸u��ªA�X³��J���
�¦±S�n�U¥K���o�`���������K¡h�`�`���`�m�`�K��¡�¥7�n¡`¡���¨K�����X�«�A®

?(@ A�B0C>D�
 F�gX�Nnb^ZLx3kL` N�y J!I x�N\mQh�y J0` P0V X l V XTP(RTS\N\P�]QrtV XcUjNaIsz
k^J0` ZcUWV J0Xed6fihTNpPLZTmQhTN\P ` V X[NQm$ZaIKN�UwhTN | XTN l I V P�Z!X[PtUwhTNpmuJ0` V P
` V X[NQmMUwh[NpS\J!ZaIKmuN l I V P,d fih[N3V X!V UWV Z!` l I V P V m$mnhTJTo�X3J0X�UjJ0k0d�� X
UwhTN]^JaU{UjJGx l I V P(v0UwhTN]^JaU{UjJGx9I V l hcUMS\JLI�X[N[I�haZTm�x�J } N\P�RLkLv
Z!X[P UwhTN | XTN l I V P5h[Z[mx�J } NQP oiV Uwh V Unv,SQJGXTmqNs�(RTNaXcUw` r]^N[V X l
y J0` P!N\P�ZTUMS\NaXcUjNaI)S\J!ZaIKmuN l I V P } NaIsUjNnb0d

�L��ªn�K���t	��������K¡h�`�`���`�¦¡��`�K��¡m z��¡`��®����K�²�`�n¥�ªn����§�¡`�K�!¸�¡J�`�K�
���K�a�`���n�r ��n�SÄiªn�K�`�.�`���n�F°²¸J�a�`�¯§i��¡��K��§,���a�K��¡Z����¥K���¦¡`���A�`���Kª
�`�K��Äi�K�ZªA���a§&���K§&¡��A�a��§¬�����K�¦¡�����¥K����¡������`���KªØ�`�K�Z ��A�n��¡��
ªn����§F®�ï��Ø�`�K�%¨g�n���`�n�-ªA���a§Ø�`�K�%¨g�n���`�n������ªn���] ��n���K���¢�n�
�`�K�����K�a�`�£���cªn����§å�i��¡¢���!³A��§Ø�K¥F®\¿&�a�`�å�a�]�`�K��Äi�K��ªn����§
�i��¡o���!³A��§F°7�n�K§� ��n�K¡`�����K�����`�X���n�K�]Äi�K�¢ªn����§��`���£���KªA�a�]��¡
�D�n��§K��§���v�`�K�²�����z���A�2�`�K�² ��¦���`���� ��A����¡`�:ªn����§v³A���h�`�¦±7®
���K�a¡²ªn����§\�D�n��§K���Kªv ��n�\¨g��ÄK±	��§\�K¡`���Kª��`�K���U��¡`�\�K�A�~���S»
ªn�����Kª]¥K���� ���§K�K���m�����`����§K�K ���§����Zç �.êë®Lï��%�`�K�a¡I¥K���� ���§K�K���n°K�
�`�K�����U¡��~��ªn�U�n¥K¥K���A�� ~�½��¡:�~��ÃA�¦�F®�ï��\�`�K�¢Äi��¡��r¡��~��ªn�n°F�`�K�
ªn����§½��¡:�K���~���Kªn����§½�K¡����Kªv�`�K�U�D�z��¡`��¨K����¡��¦�r�U�¦�`�K��§F®U���K�
�D�z��¡`��¨K�a��¡`�4�¤�D�A���o³A���h�`�¦±��a¡�§K�¦Äi�K��§%��¡|�`�K��¡`�4�¤�n�=�n�a�K¥7�n¡`�X»
�`���n�K¡|�n�i�`�K�I³A���h�`�4±¢�D�A�?¸J�K�� ~�����n ~�� ��n�K�K�� ¦�`��§��������U�����|��¡
³�������§��.���`�K�u ��n���K����¡c�.©=�� ¦�`��§U¨A�¢�`�K��¥g�n¡`�a�`���n���n�g�`�K�u³��¦�h»
�`�¦± ´ ¡`����ç �	°g ~�i��¥S�`���:é!ê�·4®I�u�K�r�D�z��¡`��¨K�a�r¡`�4�m z����¨g�r�����`�¦�h»
¥K���¦�`��§Z��¡m��¡��¦�m�n�|���K�¦�	�i�����a��� ��n�K¡h�`�`�n�a���`¡z°iªn�a³A����¨A�v�`�K�
�`�K���D�z��¡���¨K�����i�����¤¥K���n�K�¦¡z®�¼	�¦���L�aªA�K��� = �D�n�:�n�\�¦±S�n�U¥K���

�n�e�`�K�²�D�z��¡`��¨K�a�r�����z���n�L�¢³A���h�`�¦±7®�
m�����:�`�K�²�D�z��¡`��¨K�a�r�����z�

��

��

?(@ A�B0C>D�� F fih[N�y NcZ[mwV]!` N3mqNQU�y J!I�UwhTN kL` Z[S\NaxpN[XTUgJay#UwhTN3S\N[XTz
UwIOZL` } N[IKUjNwb V m$Uwh[N3mnhaZTP!N\P�ZaIKNcZed

��¡c�`�K�o¡��i�n§K�¦§�����z�S®|ï���¥K�`�n 4�`�� ��n°	�`�K�o�D�z��¡`��¨K���m¡`�¦�I z����¨7�
 ��n�U¥K�S�`��§�¨A�Ø�K¡`�a�KªZ�`�K��¡`�a��¥K���4±¾���¦�`�K��§Ø�`�Z�����K�a����¦�
¡`�a��¥K���:�����K���n�����K�K 4�`���n�K¡ ´ �n® ªK®�� ´ ��/�� · � è /\� è /���/c��� ·c�`�
Äi�K§��`�K�����r§K��¡h�`���K ¦�m ��n���K����¡m�n�?�`�K�]�D�z��¡���¨K���r¡��¦�m¥g�n�a�Sªn�n�F®
���K��³A���h�`�¦±���¡¤�`�K����¥K�£�� ���§%�����`�K�J ������`�¦�c�n�7�`�K��¡¤�`���£���Kªn���
�`�i�.�J��¡u�D�A���U��§v¨��%�`�K��¡`�:�`�K���¦�² ��n���K����¡z®
���K���D�z��¡`��¨K�a��¡��¦�%�D�n�%�\³A���h�`�¦±� z����¨g�����U¥S�«�n®&ï����`�K��¡
 z��¡`�o�`�K�²�D�z��¡`��¨K�a�²¡��¦�J�U�¦�`�K�	§v���n�a��¡z®|ï�����¡`�� ��n�K§¡��~��ªn�²�
�D�K�K ¦�`���n�i���¤��¡r���a�K�����a���§F® � ���K���`��¨���� ´ [g·m�`�K�%�����z���n�
�����¦�����A� [F°e���K§\���¦����� - ¨g�U�v¡`�������?¥i�n�`���U�¦�`����®]���K�
�D�K�K ¦�`���n�i���

� ´ � · � �a � n ´ h � ´ [g· � � h � ´ � ´ [g· � �L·�· ¶ ´ ��·

��¡\���a�K�����a���§,�K¡`���Kª&¡h�~���K§i�n��§,�����K�a��������`�a�A�¯���4�`�K�	§K¡
¡`�K ~���n¡U�`�K� ��n�2���KªA�.�`�ªn�`�n§K�a���������4�`�K�	§¯ç é	°"!!êë® 2m���`�
�`�i�.�|�D�K�K ¦�`�a�A�i���#�U�i��¡L�n�K�a�r ��n�A�`����¨K�S�`���n�K¡L�D���A�,���a�����¦���`¡
�`�i�.���i�z³A���K��ªA�.�`�a³A�������z�S®Lðm���K���`�K�������a�����¦���`¡� ��n�A�`����¨K�S�`�
������K®¤ïë�J��¡�����¡`�U�a��¥g�n�h�~�n�A�u�`�U�n¨K¡`���h³A�:�`�i�.�$����¡�¡`�U�	���`�
���K§v ¦�A�A³A�¦±=®|ï���r�`�K����§v¡h�`��¥F°K���K�n�`�K�¦�u¡�¸I����¥��n�F�`�K�:�D�z�.»
¡`�a¨K���²¡��¦�m��¥K¥K���A�� 4�v��¡J��¥K¥K������§F®
���K���K���~���Kªn�����Kªå�U�¦�`�K�	§"�n�S�`�����K�¦§&��¨7�!³A����¡��K���vªn�i���h»
�����`���¦§��`�]¸I�n��Ã7®6
m�!¸I�¦³A����°	�`�K�o z��¡`�¦¡u�n�F�~���Kªn����§�����¡��K��¡
�`�i�.�|������¡`�c���r�`�K�c�¢�K�a�`�����4³��¦��¥K���	 ���§K�K���I�n���¤¸u�¦���	¡��K�a�`��§r�`�
�`�K��¡2�K�A�~�n�Kªn���a�Kª�¥K���	 ¦��§K�K���n®L�¤�S¥K�a z�����a�A°z�n�K�a�:�D�¦¸¾ �������¡2¨g�¦»
 ��n�U�:�~�n�Kªn���¦§�����`�K�²�����`����¥g�n�£�.�`���n�¥K���	 ���§K�K����®uï����U�A¡h�
 z��¡`�¦¡u�n�K�o¡�¸I����¥��n�F�`�K�o�����n¡���¨K���m¡`�¦����¥K¥K���A�� 4����¡I���K�n�Kªn�
�`�U�K�A�~�n�Kªn���o�`�K�²ªn����§F®

%cÞ ã\ó:õ ß�á½ß�áV� � �Uâv�Z�²�:ó � � ß ã
â��²� ß ö ß�� �m� ß â á �U�]âØ��÷¤óoö

ï����`�K�¢¥K���4³S���n�K¡o¡`�� 4�`���n�K¡m¸I�¢�i��³��r§K�¦Äi�K��§½�%���¦¡��`���� ¦�`�a�A�
���K§F°7§K�����a³A��§��D���n���X�z°7�����a���`����¥g�n�£�.�`���n���n¥7���`�.�`�n��®�ÁI���`�
�n¥7�¦�`���`�]�n���`���£���Kªn�K�£���JªA���a§K¡z®:æm�K�oªn�A���?��¡m�`�%�� � ������¦�`���`�
�`�K�u�n����ªn���i���S�n¥S�`���U��z�.�`���n�¢¥K���n¨K���¦��°n¨A�¢¡��n�a³S���Kª:�o¡`���U���£���
¥K���n¨K�����Å�n���¢ ��A�n��¡������U��¡��F®

¿¾��ªn�a³A�U���½�4±K����¥K�a���D�n�o¸J�K�� ~�\�a�²��¡:�z��¡����`�v§K�����X³��U���
��¥K¥K���n¥K���£�.�`�m ��A����¡`���A¥S�`�a��������`�a�A��¥K���A¨K�a����®?¿¾��Äi��¡��c§K�¦»
Äi�K�:�`�K�²µ ¶ ¥K���]�h�� 4�`���n��� az? ���

� az? ��� ´ �=· � ����ªU�U���� �����	� � ��
 ���� 7 a : ´ !�·

�D�n��¾�`���£���Kªn��� [&���K§ �å�D�K�K ¦�`�a�A�¬¡`¥i�� ���� a �A� [F®ìðm¡
�¦±S�n�U¥K����¡�°	¸I�: z���%�`�K���KÃ%�n��� a ��¡c�`�K�:¡`¥i�� ��o�A�2 ��n�K¡��~�����
�D�K�K ¦�`���n�K¡��n�\[

� ' - � *�%a � 5
 ´ ��/�� · ��� q � t�� < ´ è - ·
�n�u�`�K�²¡�¥i�n ¦�²�n�?���a�K�z�����D�K�K ¦�`���n�K¡��n� [

� + & �a � 5
 ´ �#/�� · ���L� �<� ����� q ��/w�T/�� t�� < � ´ ènè.·
2m���`�v�`�i����� az? � b���� ��!� ´ �7· � �e°¤�`�K����³��¦�`�nªn�v�A���"�n� [F®
���K�¦�F°K�`�K�²�n¨1���¦ ¦�`�a³A�²�D�K�K ¦�`�a�A�i���F��¡

� ´�� · �6�a � n � � � � az? ��� ´ �7· � � � 7 a : � ´ è!éA·

���K��ªA���a§ �#" & � �`�i�.�²��¡:�`�K���U���K���U����¦�:�n�c�n¥S�`���U��z�.�`���n�¥K���n¨K����� �#" & � � ����ª����a�n � ´�� · ´ èc��·
�S�a����§K¡c�`�K�m¨7��¡h�u¥g�A¡�¡`��¨K�a�mµ ¶ ��¥K¥K���!±S�a�%�.�`���n�%�n�=�`�K�o�D�K�K ¦»
�`���n���]¸J�X�`�r¥K���� ¦�¦¸J��¡��c ��n�K¡h�~�n�A�?�n�e¥K���� ��4¸J��¡��c�����K���n�e�D�K�K ¦»
�`���n�K¡z°S�n�vªn����§K¡I�`�i�.���i��³��m�`�K�:¡~���U�o ��n�K�K�� ¦�`�X³S�a���v��¡I�`�K�
¡��~���h�`���Kª�ªn����§F®
ÁI�n¡���§��n� ´ è!én·L�a�c�a¡¤¡��`�`����ªn���`�D�n�h¸u�n��§¢�`�r§K�¦Äi�K�o�����n¥K¥K����»
¥K���£�.�`�U ��A����¡`��ªn����§\���a�K�����az�.�`���n�\¥K���n¨K���¦��®�ï��½�k�� ¦�z°F¸I�
 z���Z�K¡`�r�`�K�¢¡~���U�]�n¨��h�� ¦�`�X³��]�D�K�K ¦�`���n�i���|��¡o��� ´ è.én·4°F���K§
��¥K¥K�a���a���`�U�� ��A����¡`���uªA���a§F®
� ´�� ' -%$ #@*)! · � �a � n b&�('*)���+ �

� � � az? � � ´ �=· ��,� 7 a : � ´ è\		·

- Þ �Zø½ó�ö ß�á\ß ö ß�� �o� ß â á �U�]â\��óoã½ä��Uó
�L����¡h�r�%�K�����`���� ~�����n�¤ªA���a§K¡:��¡: ��������`�¦§F°2�K¡����Kª��`�K��¥K���� ��¦»
§K�K����§K��¡` ����a¨7��§����å¡��� ¦�`���n�4	K®½ðÅ�i�.�`�K�`���I¡��`�n¥K¥K���KªZ ����X»
�`�������n�����n�J�`�K�¢¡`�K � ��¦¡`¡`�X³��r ��A�n��¡����K���Kª���¡m¸��K�¦�`�K���o�n�o�K���
�`�K�¢¨g�A�K�K§i���h�A°F�A��°=�D�A�o�¦±S����¥K����°=�����`�����a�A�o�D�z�.�`�K����¡�°F¡`�K ~�
��¡v���.�`�����£���m���A�`�������n ¦��¡z°J z���¬¨7�Z����¡��A�X³��¦§&�n�&�Ø ��A�n��¡����
ªn����§F®
æm���z�� ~���a�¦³A���Â°¤¸I����U¥K���!���\�D�¦¸Å�a�`���`�.�`���n�K¡U�n�o�½¡����U»
¥K�����n¥S�`���U��z�.�`���n�¾����ªn�n���a�`�K��°e¡��K 4�Ø��¡²�`�K�vº:���K¡`¡h»«¼	���a§K���
2m�¦¸u�`�A�"�U�¦�`�K�	§"§K��¡� �����¨g��§¬���"¡`�� ¦�`�a�A�~�S®¯ðm�£�`���%�`�i�.�z°
�`�K������¡�����¡%���¦¡��`���� ¦�`�¦§��`�½�`�K���K�¦±	�% ��A����¡`�������4³��¦� ´ ¡����
¡`�¦ ¦�`���n�:	K®�è!·4®½���K��¡¢��¡�����¥g�z�.�`��§��K���`�a�I¸I�v�n�����X³������¢�`�K�
 ��A����¡`��¡h�r�a�¦³A���Â®�
m�����U���n�����¦©=�n�h�r�a¡r¡`¥g���A�r�A�\�`�K���A¥S�`�X»
�U��z�.�`���n�¢¡h�`��¥F°n�`�mÄi�K§¢�`�K�u�n¥S�`�����n�	 ��A����¡`�¦¡��|ªn����§F®?���K���F°
�`�K�²�U��¡`���¡����A�`����¥7�n�£�.�`��§v�`���`�K�²�K�¦±	��Äi�K���J���¦³A���k°g�n�K§��
�D�¦¸ ¡�¸I����¥K¡��n�:�`�K�¾º:���K¡�¡�»«¼	�¦��§K���p2m�¦¸u�`�A�"���¦�`�K��§&�����
��¥K¥K������§å�n�Ø�`�K�%Äi�K�����a�¦³A���Â®Z¿¾������¥g�z�.���`�K��¡¢�a���`����¥g�n�£�.»
�`���n�����K§U�n¥S�`���U��z�.�`���n��¡h�`��¥U�K���`���S¸I�J�������a³A�����|�`�K��Äi�K�¦¡��
���¦³A���k®

¿¾�r���¦���¦���`���`�K��¡J¥K���� ���§K�K���]��¡m�a�m»ë ¦�	 ����n®c�u�K��¡J�m»ë 4�S ����
 z���Ø¨7���D�n���¢�K�£�.�`��§¾���� ��K��¡��a³A���a�A®�¿¾�% z�����¤�`�K�%�D�n�����!¸����Kª
¥K���	 ¦��§K�K���.� ´ F /%/L"c/0/ ¶ ·c�`�K�²�a�`�¦�`���`�a�A�v�n����¦³A���8Fg®
èn® / " �a�`�¦�`���`�a�A�K¡u�n��º:���K¡`¡h»«¼	���a§K����2m�4¸��`�n��n����¦³A���8F7®
é	®²¹I�A����¡`�����`�K�²ªn����§�n��a�¦³A����F��`�����¦³A���8F � èn®
�S®oï��lF �&é	°g z������� ´ F � è /*/L"c/*/ ¶ ·4°g�¦��¡`�²¡��A�X³��:�`�K�r�U���S»���U��z�.�`���n��¥K���n¨K���¦� �n�����¦³A���rè�`�Ø�¾�K�aªA�����¦³A���J�n�
�� � ��K�`�� ¦�A®

	K®oï����`����¥g�n�£�.�`�:�`�K�²ªn����§v�D���A�í���¦³A���8F � è:�`�U���4³��¦��Fg®
= ® / ¶ �a�`�¦�`���`�a�A�K¡u�n��º:���K¡`¡h»«¼	���a§K����2m�4¸��`�n��n����¦³A���8F7®
1cÞ �UâØö �U÷¤ó32 ß �54 � á ��÷64�� ß � âØõì�Zø\ó

ò87��94��%÷¤ó ö ß�á\ß ö ß�� �o� ß â á
¿¾�uÄi��¡��¤ ��n�K¡`��§K�¦���`�K�J ¦������¡����K���Kªr¥K���� ���§K�K���n®|���K�J¡������� 4»
�`���n�v�n�? ��A����¡`�o³A���h�`�� ���¡��n��a�¦³A���8F%¸��a�`� � L Äi�K�:³A���h�`�� ��¦¡�~��Ãn��¡ � ´�� L ·?¡��`�¦¥K¡z®?���K�u���K�¢¨7���|�n�g¡������� ¦�`�¦§U ¦������¡��I³��¦�h»�`�� ��¦¡J§K�¦¥7���K§K¡J�n�v�`�K�² ��n�K�K�� 4�`�a³S�a�����A�2�`�K�:Äi�K�²ªA���a§F®cæm�
�å����ªn�K�£���vªn����§F°m�`�K�Z�	�K�¢¨g����n�r ¦������¡��\¥7�n���A�`¡v¸������o¨7�� LT% ";: � L=< 	K°?���¤�`�K�UÄi�K�U³��¦�h�`�� ���¡]���������K�¢¨7�¦����§¾���Ø����¦±	�� ��nªn�`��¥K�K�� I����¡`�K���n�F®|¼	���cÄiªA�K��� / �D�A�|���¢�¦±S����¥K����® �i�n�

?(@ A�B0C>D?>�F W JLZaIKmqNaX^V X l Jay3Z4IKN l RL` ZaI l I V P�vgS[V IKSa` N\m�P!NaXTJ^UjN
S\J!ZaIKmuN } N[IKUWV S\N\m\d�fihTN XLRLx3]^NaI$Jay | X[N } NaIsUWV S\NQm�V mA@,B^v Z!X[P
X!Rex3]^NaI)Jay SQJLZaIKmqN } NaIsUWV S\NQm�V mDC=E(d

���%�K�K¡h�`���K ¦�`�K����§�ªn����§F°	�a�c��¡c§K�aú� ��K�X�c�`�]ªn�a³A�m�rªn�	�	§%��¡h�`�a»
�����`���n�7�`�K���`���`�a�r�n�7�`�K�J���K�¢¨7�¦�¤�A�gÄi�K�o���K§� ��A����¡`�u³��¦�h»
�`�� ��¦¡m���£�`���u ��A�n��¡����K���KªK®�
m�!¸I�¦³A����°S�`�K�²�	�K�¢¨g�����A�e ��A�n��¡��
³A���h�`�� ��¦¡L§K��¥7�¦�K§K¡��n�]�`�K�I�z³A���`��ªn�c§K��ªn�����u�n�i�JÄi�K�c³A���h�`�¦±7®
ï��r�n�K�e ��A����¡`���K�a�Kªm����ªn�A���X�`�K��°z ��A����¡`��ªA���a§K¡?�����¤ªn���K�¦�`���`�¦§
�K¡`�a�Kª�� � ���£���K�i�z�Z�`���£���Kªn�K�£�.�`���n�F®U�u�K���4±S¥g�� ¦�`��§¾����±	�a»
�¢�K��§K��ªn�����m�n�2�:³A���h�`�¦±U���%� � ���£���K�i�z���`���£���Kªn�K�£�.�`���n����¡
F ´ ���nªHG < ���nª����nªHG2·4°2¸��K�����5G���¡:�`�K���	�K�¢¨g���²�n�¤³A���h�`�� ��¦¡
çXè - êÂ®�ï��¥K�`�� ¦�`�� ��n°S�`�K�² ��A����¡`���K�a�KªU�`�.�`������¡� ����n¡`�o�`�vè < 	K®
���K�%¸I�n��ÃØ¥g���a�m»ë 4�S ����v�a¡������£�.�`�a³A�%�`� � % - % $"+ë°|�`�K�%�`�n�~����	�K�¢¨g���:�n�¤³A���h�`�� ��¦¡²�A�½�����|���¦³A����¡: ��n�¢¨K���K��§F®�ðm¡�¡`�K�U���Kª

�� ��A����¡`�¦�K���KªU���� ¦�`�n���n� -������ èn°K¸I�:ªn�¦�
� % - % $"+ : � `:� � ` % " �~�\�\�T� � " ´ è = ·

� � `
`
�
&g> "

�
` % & ´ è / ·

�
� `
è ���

´ è v ·

m�����n° � ` �a¡J�`�K�¢���K�¢¨7���m�n�L³A���h�`�� ��¦¡o�����`�K�rÄi�K��¡��o�a�¦³A���
ªn����§F® �i�n�]� ��A����¡`�¦�K���Kª����� ¦�`�n�r�n� � � è < 	i°2�`�K��¡r�U�z���K¡� % - % $"+ : 	 � ` < �S®
ïë����¡|§K�Xú� ��K�a�|�`�:��¡h�`�������`�¤�`�K�u ��n�U¥K���¦±	�a�«�r�A�K�`�K�g2m�¦¸��`�n�
¡��`�¦¥��`�i�.�¤��¡�¥g�����D�n������§U���K¡���§K�u�`�K�oº:���K¡�¡�»«¼	�¦��§K���i�a�	�n¥F®Lïë�
��¡m�K�!¸I�¦³A���J���z��¡`�n�i��¨K���r�`�%��¡`¡`�K�U�²�`�i�.�m�`�K��¡J ��n�U¥K���¦±S�X�«�
��¡u¡`���U���£���I�A������2�a�¦³A����¡z®
���K�: ��n�U¥K���¦±S�X�«�%�n�2�`�K�²���A�`����¥g�A�����`�a�A����¡Z� ´�� L ·c�A�v�a�¦³A���Fg°7���L�K�%�U��¡����D�n��§K���Kª��� � ��K��¡z®m¼	�K°7�a���`�K��¡J z��¡`��°7�z³��¦�o�����
���¦³A���a¡z°2�a�r�a¡4� ´�� % - % $"+�·4®Uï��½¥K�`�� ¦�`�� ��n°e�U��¡��½�D�n��§K���Kªv�A�K�X��	 ¦ ��K��¡U�����D�¦¸Å���� z�.�`���n�K¡��n�å�`�K��Äi�K�ªn����§F°c���K§� z����¨7�
³A���h���¦úU ������A�`�a���������¦§K����§�¸J�a�`���`�K���K���~���Kªn�����KªØ¥K���� ��¦»
§K�K���U�n�S�`�����K�¦§¾��¨g�!³A�n®��u�K�� ��n��¥K�S�~�.�`���n�i���L�¦©=�n�h�r¡�¥7�¦���
�����`�K�²�K���~���Kªn�����Kª�¥K���	 ��¦§K�K���]�a¡��K��ªn����ªn��¨K�a�n®
���K�² ��A����¡`���K���KªU¥K���	 ¦��§K�K���n°7���D�`�¦���`�K�² ¦������¡��²ªA���a§K¡J�i�z³A�
¨g������ ¦���z�.�`��§-���-�n�����K�a�`���n�½¡h�`��¥F°���¡¯�n�å ��n�U¥K���¦±S�X�«�� ´�� % - % $"+D·4® �u�K�Ø ¦���z�.�`���n�¯�n�¢ ��A����¡`�½ªA���a§K¡� ��n�K¡���¡��`¡��n�
�`�K�%¡`���a�� ¦�`���n�Ø�A�u ��A����¡`��³A���h�`�� ���¡�°L¸��K�� ~�å��¡¢�n�u ��n�U¥K���¦±�»
�a��� � ´�� L ·4°e�n�¾�a�¦³A��� F7°?���K§Ø� � ���£���K�i�z�Z�`���£���Kªn�K�£�.�`���n�F°¸J�K�a 4�v��¡��A�e ��n��¥K���4±S�a���K� ´�� L ���nª � L ·c�A�v���¦³A���8F7®
ï��� ��n�K ����K¡����n�U�`�K�����K�X�`�£���i ��A����¡`��ªn����§U ����z�.�`���n���a¡¤�n�= ¦�A��»
¥K���¦±	�a�«� � ´�� ` �a�Aª � ` ·4®]ðm�£�`���o�`�i�.�z°F�z�� 4� �m»ë ¦�	 �������¡:�n�
 ��n�U¥K���¦±S�X�«� � ´�� ` ·4®9
m���K ���°m�`�K�\ ¦�A�U¥K���¦±	�a�«���n�]� �m»
 ¦�	 ����]��¡J�`�K�r¡~�����]��¡J�`�K�] ��n�U¥K���¦±	�a�«�v�n�¤��º:���K¡`¡h»«¼	���a§K���
2m�¦¸u�`�A�v�a�`���`�.�`���n�F®

�cÞ � á ä�öíóo� ß �]�Z÷ ó	2%�Zö �U÷¤ó
¿¾��¥K���¦¡`���A�I�:���K�������a z���K�¦±K���U¥K���u�`�i�.�¤��¡|����¥K����¡`�¦���~�.�`�a³A�
�n�7�`�K��¥g�����D�A�������K ���ªA�n�a�U�`�i�.�¤ z���U¨7�J�n ~�K���¦³A��§�¸J�X�`���n�K�
�¢�K�a�`���a�¦³A���n�n¥S�`���U��z�.�`���n�:¥K���� ���§K�K���n®L�u�K�¤ ¦�	§K�¤��¡F¸����a���`���
�����`�K�]¹&¥K���nªn�`�����U���Kª¢�£���KªA�i��ªn�n®
¿¾�J¡��~���h�¤¸��a�`�%�r����ªn�K�£�����`���£���Kªn�K�£���¤ªn����§ � �n�7¸J�X�`��é -	�
é - ³A���h�`�� ���¡��n���`�K��§K�n������� ´ -G/ è.· � ´ -0/ è!·4®L�u�K���n¨1���¦ ¦�`�a³A�
��¡I�`��Äi�K§v�`�K�²ªA���a§v�`�i�.�J�U���K���U�����¡I�D�K�K ¦�`���n�i���

� ´�� · �=�a � n � � � � az? � b&���=��!� ´ �=· � � � 7 a : / ´ è ��·

¸J�X�`�
� ´ ��/�� · � é - �~���K� ´ � � � · � ´ è !�·

���K�a¡J�D�K�K ¦�`�a�A�v�i��¡m�]³��¦�h�v¡��`���¦¥ªn�`��§K�������J�����n�Kª��`�K�²�a���K�
� � � °����K§å��¡¢�¦¡`¡`�¦���`�£�����a� 3g���¢����¡��¦¸J�K�¦���n®\ðm�å�n¥S�`�������
ªn����§"¸������o�i��³������n¡h�vªn����§"¥7�n���A�`¡v ��a�K¡��`������§&�����n�KªØ�`�K��¡
�����K��®

?(@ A�B0C>D�
,F�0V XTN l I V P5ZTyOUjNaI E���� V UjNaIOZcUWV J0X[m�Jay��)Z!R[mqmjz��eN[V PLNa`
mjUjN\Nak^N\mjU P!N\mqS\NaXcU � UjJ0k]
nv�ZLXTP�����z>Snr[Sa` N4V UjNaIOZcUWV J0X[m �q]^JaU{z
UjJGxH
Qd

�L����¡h�z°7¸I�]�K¡`��§\�ºo�n�K¡�¡�»�¼	����§K���?¡��`���¦¥7��¡h�:§K��¡� ����A�²¥K���� ��¦»
§K�K���%�`�\�U���K���U����U�`�K�v�n¨1�h�� ¦�`�a³A���D�K�K ¦�`���n�i���Â®\���K��ªn����§
�`�i�.�o����¡`�K�X�`��§\���£�`��� = -^- �X�`���`�.�`���n�K¡m��¡m§K��¥K�� ¦�`�¦§\�a��ÄiªA�K���vv´ �`�n¥�a�%��ªn�!·4®
¼	�� ��n�K§F°S¸I�²�K¡���§��4�m»ë 4�S ����:�a�`���`�.�`���n�%¸J�a�`� / " � / ¶ � �S°
�Â® ��®u�`�K�����r¡�¸I����¥K¡m�n�?�`�K�Uºo�n�K¡�¡�»�¼	����§K���2¡��`����¥g��¡h�o§K��¡� ����A�
�U�¦�`�K�	§�¸I�����m���U¥K���!�A��§�¨7���D�n���o���¦¡��`���� ¦�`�a�A�����K§����D�`�¦�I�a�S»
�`����¥g�n�£�.�`���n�F®e���K�¤ ��A����¡`��ªn����§r�n¥S�`���U��z�.�`���n�:¥K���n¨K�����C¸u��¡
¡`�n�a³A��§%�K¡����Kª / '�� � 7���\ � è - �a�`���`�.�`���n�K¡I�n�e��º:���K¡`¡h»«¼	���a§K���¡��`�¦��¥7�¦¡��u§K��¡� ����A�u¥K���	 ��¦§K�K���n®����K�oªn����§��`�i�.�I����¡`�K�X�`��§v���£»
�`���?�`�K�������m»ë 4�S ����c�a�`���`�.�`���n�K¡L��¡L§K��¥K�� 4�`��§����]Äiªn�K��� v]´ ¨g����»
�`�n� ������ªn�!·4®I�L��¨K����èr¡`�K�!¸�¡J�`�K�²³������K�r�A�?�`�K�r�n¨1���¦ ¦�`�a³A�

º:���K¡`¡h»«¼	���a§K��� �m»ë ¦�	 ����� ´�� · � / ® 	^	 ´ » = · 	i® v 	 ´ » = ·
� �a�`���`�.�`���n�K¡ = -^- �
�`�a��� ´ ¡��� !· è - é v é = ® !

����� � D EGF W_JGx3k[ZaI�V muJ0X�Jay$V UjNaIOZcUWV J0X S\J0RLXcUjm�Z!X[P�o�ZL` `(S[` JeS"!
UWV x�N\m)y JLIGUwhTN	�)ZLRTmqmqz#�eN[V P!Na`[mjUjN\Nak^N\mjU P!N\mqS\NaXcU�V UjNaIOZcUWV J0Xa�q` NQyOU
S\J0` RLx3X
nv�Z!XTP UwhTNT��z>SQrTSa` N V UjNaIOZTUWV J0X�qI V l hTU$S\J0` RLxX]
Qd

�D�K�K ¦�`���n�i���c���K§½�`�K�U�`���U�U�������K������§¾�`�������n ~�½�`�K��¡²³��n�a�K�n®
2m���`���`�i���]�`�K�%¡~���U�% ��n�U¥K�S�`���] ���§K�%¸u�n¡]�K¡`�¦§å���n�r�`�K�
º:���K¡�¡�»«¼	�¦��§K���e¡h�`����¥g��¡��m§K��¡� ������o���K§��`�K�²�����£�.±K�.�`���n��¡h�`��¥
���K¡���§K�:�`�K�T�m»Â ¦�S ¦���²�a�`���`�.�`���n�F®
���K���m»ë ¦�	 ����]�a�`�¦�`���`�a�A� ��n��³A����ªn��¡o�¢�K ~������¡��`�����`�i�����`�K�
Äi�K�rªn����§½ºo���K¡`¡�»�¼	����§K���2¡��`���¦¥7��¡h�o§K�¦¡` ����A�o�X�`���`�.�`���n�F®I���K�
�	�K�¢¨g���v�n�r�a�`���`�.�`���n�K¡z°m�n¡�¸I���a�²��¡��`�K�Z�`���U�½�����\�¢�K 4�
¡`�����������=���n�=�`�K�¤�¢�K�X�`�����¦³A�����U�¦�`�K�	§F®eðm§K§K�X�`���n�i�n�a�a�A°z�`�K�,�m»
 ¦�	 ����:�a�`�¦�`���`�a�A�����z�� ~�K��¡J�¢�U���K���¢�K�À���£�`���u�n�K�a���`�K�����H�m»
 ¦�	 ����o�X�`���`�.�`���n�K¡z®L�u�K�rº:���K¡�¡�»«¼	�¦��§K���7¡��`�¦��¥7�¦¡��I§K��¡` ¦�����u�X��»
���`�.�`���n��¸u�n¡¤�`�����U���i�.�`��§%���u�r�%�.±	���¢�K���a�`���`�.�`���n�� ��n�K���
�n� = -^- °S���n�I�`�K�²�£�� 4Ã��A�?��ªn�	�	§¡h�`�A¥K¥K�a�KªU ����a�`�����a�A�F®
�i�n���å�k�����v ��n��¥i������¡��n�&¨7�¦��¸I����� �`�K�\��¸u����¥K¥K���A�� 4�K��¡�°
�a�U��¡U�K�����K¡����D�K�u�`�½ ��n�U¥i�����v�	�K�¢¨g����¡��n�:º:���K¡`¡h»«¼	���a§K���
�a�`���`�.�`���n�K¡�®)2m���`�I�`�i�.�cº:���K¡`¡h»«¼	����§K�¦�S�a�`���`�.�`���n�K¡|�n�¢ ��A�n��¡��
���¦³A���a¡u�����m����¡`¡c�¦±	¥7�¦�K¡`�a³A�m�`�i�����n��Äi�K�o���¦³A����¡�®|ðm¡�¡`�K�U���Kª
�� ��A����¡`���K���KªZ���� ¦�`�n�¢�n�²è < 	i°L¸I�� z���å��¡��`�a�%�.�`���`�K�� ��n¡���n�e�A�K�A� ´ F /*/!"T/*/ ¶ ·I�a�`���`�.�`���n�������£�.�`�a³A�o�`�¢�`�K�: ��n¡����n�?�n�K�º:���K¡�¡�»«¼	�¦��§K���F¡��`����¥g��¡h�J§K��¡� ������J�a�`�¦�`���`�a�A��.�

LT% "�
&(> "

/!" ��/ ¶
	 & % " � / ' -�$ #D*$!

	 Lc% " � ´ é - ·

�����K¡z°g�����n�K�J�¦±K���U¥K���n°i¸I�r��¡h�`�������`�:�`�K�r ��n¡h�m�n�|�n�K���m»
 ¦�	 ������a�`�¦�`���`�a�A�Ø�����K�a³��n�a�����¢�`� / � / < 	 � è - < è / � � � v^=
º:���K¡�¡�»«¼	�¦��§K���I¡��`����¥g��¡h�U§K��¡� ������U�a�`�¦�`���`�a�A�K¡�®å¼	�K°¤�D�A�]�`�K�
�`���~���u ��n¡��U�n��� � � � v^= � é / � é = º:���K¡`¡h»«¼	����§K�¦��¡��`�¦��¥7�¦¡��
§K��¡� ������J�a�`�¦�`���`�a�A�K¡I�`�K�²¥K���n¨K���¦�Å��¡� ��n�A³��¦��ªA�¦§F®
ï���`�K�T�m»Â ¦�S ��a�r�a�`���`�.�`���n�F°K¡`�a±�ºo�n�K¡�¡�»�¼	����§K���2¡h�`����¥g��¡��J§K�¦»
¡` ¦�����U�a�`���`�.�`���n�K¡U�����¥g�����D�n������§��n���z�� ~�����¦³A���k®��?�\��¡h»
�`�����.�`�¢�`�K�U�!³A�����K���n§\�`�i�.�²��¡²���K§K�K ��¦§Ø¨A�Z ��A����¡`�U���4³��¦��¡z°
¸I��§K�a³	��§K���`�K��`���U�¥7�����m»Â ¦�S ��a���a�`�¦�`���`�a�A��� � % '��s' + ! �� � / ���2\ � ¨����`�K�\�	�K�¢¨g���v�n��ºo�n�K¡�¡�»�¼	����§K���o¡��`�¦��¥7�¦¡��§K�¦»
¡` ¦�������a�`���`�.�`���n�v¥7�¦�J�m»ë ¦�	 ���� q

� � % '��z' + !
	

� é � è = ��\ �[� ´ é	è.·
���K�m�z³A���`��ªn�J�`�a�����D�n�c�n�K�m�X�`���`�.�`���n���A�7�`�K�:º:���K¡`¡h»«¼	���a§K���
¡��`�¦��¥7�¦¡��J§K�¦¡` ����A�J¥K���	 ���§K�K���²��¡

�	n $�� *)* %�� !)&	�@! + � é � - = ��\ �T� ´ énéA·
¹I�n�U¥i�������KªØ�`�K���«¸I�K°�¸I�Z�n¨K¡`�¦�h³����`�i�.���`�K�½��§K§K�a�`�a�A�i���
¸I�n��Ã&��¡�¡`�	 ¦�£�.�`��§&¸��a�`� ��A����¡`�¦���a�¦³A����¡���C���m»ë 4�S ����½�X��»
���`�.�`���n����¡½�K���\³A���h�,¡`��ªn�K�aÄi ��n�A�z® ¿¾������¡��&�K�n�`�å�`�i�.�
�`�K��º:���K¡`¡h»«¼	����§K�¦�I¡��`���¦¥7��¡h�U§K��¡� ����A�U�a�`���`�.�`���n�K¡]�`�i�.�U�����
¥g�����D�A���U��§ ��¡�¥i�n�h��n�r���m»ë 4�S ������`���K§¬�`���������K�����\���¦¡`¡
 ��n¡��`�X�Z�����K��¡`�z���� ~�K��¡²�`�i���\�D�A�:�`�K�¢Äi�K�U���¦³A���� ��n¡��n®U�u�K��¡
����¡`�Å�K����¥K¡C�`��Ãn���¦¥-�`�K���z³A���`��ªn� �`���U� ¥7�¦� �m»ë 4�S ����
¥g���¢Äi�K����¦³A���Jº:���K¡�¡�»«¼	�¦��§K���I¡��`����¥g��¡h�U§K��¡� ������U�a�`�¦�`���`�a�A�
� � % '
�s' + ! < 	U¡`�������Â®

Ý��cÞ ó32��Zó á � ß â á �vâ � ã
���K�����ªn�n���a�`�K� ¥K���¦¡`���A�`��§����å�`�K��¡¢¥i��¥7������¡U�½é � ����ªn��»
���a�`�K�®:���K�� ¦������¡����K���Kª�¥K���� ���§K�K���U z���Z¨g���¦±��`���K§K��§Z�`�

� � �K¡����Kª � �¦�£���K�i�z���`��¡�¡`���������`�a�A�K¡��a�.� � ®M
m�!¸I�¦³A����°J��¡
�U�����`���n�K��§Z��¨g�!³A�n°F�% ��A����¡`�¦�K���Kª%¥K���	 ���§K�K���¢¡`�K ~�\��¡m�`�K�
�n�K�]§K��¡� �����¨g��§Z����ç / êL�U��ªn���J¨g�¢¨g�¦���`���m¡��K�a�`��§F°7¡����K �� � �¦»
�£���K�i�z�\�`��¡`¡������£�.�`���n�K¡]�a�Ø�`�K�����%§K���U���K¡����n�K¡] z���å¥K����§K�K ��
¡`�a�a³A����¡z®L�u�K�o�K�A�~�n�Kªn���a�Kª]¥K���	 ��¦§K�K���:�a¡u����¡��r�¦±	�`���K¡���¨K���J�`�
� ��´ ¡`����ç �.êD·4®����K��¡²�a�K§K�� z�.�`��¡²�`�i�.�]���½�¦±��`���K¡`���n�½�A�c�n�K�
����ªn�n���a�`�K�C�`��� � ��¡?¥g�A¡�¡`��¨K�a�n®e¿¾�c�n���¤¥K�£���K�K���Kªm�`�J¥K�K��¡`�K�
�`�K��¡�§K������ 4�`���n����v�A�K�u�D�S�`�K���²����¡`�z���� ~�F®

ÝLÝLÞ �Uâ á �%÷¤ä�� ß â á �
¿¾���i�z³A�v���A�`���	§K�K ��¦§����K�¦¸í�¢�K�a�`�����¦³A���X»Â�«�	¥7�%�A¥S�`�a�������»
�`���n��¥K���	 ¦��§K�K�����`�i�.�%��¡�¸I������¡`�K�a�`��§��`�½³A���h���¦ú� ¦�������`�X�
¡`�n�a³A�U�n¥S�`���U��z�.�`���n�\¥K���n¨K���¦��¡:�`�i���r ¦�A�U�U�A�K�X�Z�� � ��K�r���
ªn����§vªn���K���`�.�`���n���¥K¥K���� z�.�`���n�K¡�®¤æo�K�u ��n��¥K���4±S�a�����n�i���a�	¡`��¡
���K§K�� ����`�¦¡��`�i�.�U�n�K�U�n�aªA�n���a�`�K� ¡` ��n�a��¡������K�z�����a�Ø¸��a�`�å�`�K�
�	�K�¢¨g���m�A�|�K�KÃ	�K�!¸��K¡z®ræo�K�o����¡��z���� 4���i��¡:¨g�����Z���� ��K¡`�¦§
�n�%�`�K�m��¸I�¢§K���U���K¡����n�i�n�7 ��n¡��n°S�K�z¸u�4³��¦��°K�����= ¦�A�U¥g�A�K�¦���`¡
�n�L�`�K������ªn�n���a�`�K�������¢�z³������£��¨K���]�����`�K���¦�¢§K���U���K¡����n�K¡z°=��¡
¸I�����Â®e¿¾��¸J���a�g�a��³A��¡��`�aª��.�`�I�`�K���`�K�����J§K�����¦�K¡`���n�i���i z��¡��J���
��D�S�`�K���%¥i��¥g����®vïë�r��¡r��¡`¡������`�£�����D�n�²�`�K��¡]��¥K¥K���A�� 4�½�`�i�.�
�� ��A����¡`�¢ªn����§\���¦¥K����¡`���A�~�.�`���n�\�n���`�K���n¨��h�� 4�`�a³A���D�K�K ¦�`���n�
�`�i�.�?��¡F�`�J¨g�¤�����K�a����¦��§² ��n�r¨g�¤§K�����a³A��§F®?ï��r���`�K���2¸I�n��§K¡z°
�`�K�� 4�i���Kªn���a�U�`�K�u���K�a�`�£���Kªn����§��`�i�.�¤��¡|�����	�K�����¦§U�`�²�n¨S�~�����
�`�K�:�n¥S�`�������7ªA���a§v�¢�K¡h�u¨7�o�¦±S¥K����¡�¡`��¨K�a�²��¡u¡��%�����7 ~�i���KªA�¦¡
�n�K³��¦�h�`�¦±]¥7�n¡`�X�`���n�K¡L�����£�.�`�a³A�c�`�m�`�K�I¥g�A¡��a�`���n�K¡L�n�i�K����ªn�	¨g�n�
³A���h�`�� ��¦¡z°F¥K���K¡:�£����ªA�¦�: 4�i���Kªn��¡:�n�¤¥7�n¡`�X�`���n�K¡:�n�¤ªn���n�K¥K¡²�n�
³A���h�`�� ��¦¡z®����K��¡U��¡U¥7�n¡�¡`��¨K���v�D�A�U�n¥K¥K�a�� z�.�`���n�K¡�¸J�K�¦����`�K�
�n¨��h�� 4�`�a³A�U�a¡:�`�vÄi�K§¾�vªn����§\�`�i�.�²��¡:�A¥S�`�a�%���|�D�n�o�`�K����¥S»
¥K���!±	���%�.�`���n�"�n�]�å�D�K�K ¦�`���n�F® ¿¾�Z¥K�£���¬�`�å�¦±	�`���K§¬�`�K��¡
¸I�n��ÃU�`�¢���K ����K§K�m�`�K�o z��¡`�m¸J�K�¦���²�����������n�u��¡��`�a�%�.�`�n°S���K§
�K�����`�K�r�� ¦�`�i���F�������n��°i��¡I�`�U�U�:���a�K�����a���§F®

� ��� �e�,�e�)� ���
çXè¦ê�²���K¥K¥ � ®�°gùZ����ªn�n�����G�®�°7¼	�i��¡`�KÃn�!³ù¾®��q�J�¦���¦�����K ��

���� ��n¨K�£���¬æm¥S�`���U��z�.�`���n�S»�ÁI��¡`��§<������n�K�\¼��`�`�.�`��ªn����¡
�D�A�mðm��¨K�a�`�`���h�VG?��ªn�`�n�Kªn�£��� � �K���¦���£���\ù��4�`�K�	§K¡z® �����
����������� �� "!$#&%('*)+%`°K³A�n�Â®Fè v]/ ° !^�&,gè!é �S°gé -!- é

ç é!ê�²���K¥K¥ � ® ùØ®�°e¼��`���a�	¨g����ª�¼7®.-/!�021 �43�576�� 0 38�
6&9 % �;:
<>= ' 5?< 0 3 0 =@6�� ' �&3 ®¤¹$��¹ � ����¡`¡�°Fè ! !!�

ç �.êUÁI���aªAªn¡�¿,® G¤®�°M
m���K¡`�n� �¢® � ®�°Iù� !¹I�n���U�� 4Ãå¼7® �I®BA
C ��9D� 'FE = ' 5 - ���
�&= ' 6&9 GIH 0J) ��3�5K>5 ' � ' ��3 ®c¼	ï�ðoù¾°7é -^- è

ç 	�ê��?�������`���	¨g����ª��]®�°næo¡h�`���������c¹o® ¿�®�°n¼	 ~�ML�K�����¦�?ð]®4C ��9 � '	N
E = ' 5 ®|ðm z��§K���U�� � ����¡`¡�°gé -^- è

ç = ê%ºo�K���a�£����§�
]®��q2m�	§K��2m��¡��`�¦§vù��K�a�`�aªA���a§%¸J�a�`� � ���£���S»
�i�z�Z¹I�A����¡`���K�a�Kªi® �¬�?�� ~�F®=���¦¥F®�°=ï{2p�Jï�ð9�J��¥g�n�h��2m�K®
è � ! �S°Fè ! !^�

ç / ê�æo�a���a³S�a���h»hºm�	�	 ~�î¹o® �`¹I�A����¡`���K���Kª �K�K¡��`���K ¦�`�K���¦§
���¦¡`�K��¡½¨A����§Kªn�� ��n���`�`�� ¦�`���n�F® �PO 38� �Q���2R ��� 0 = �
CS0 � !�� K"3 E 3 E$��°S³A�n�Â® = v °�� !Sè�,e	Kè\	K°ié -^- �

ç v ê��i�A�h�`�K�K�m¼7® �K®"�hð ¼�¸I����¥K�����K�uðm��ªn�n���a�`�K� �D�n� �¤�n���n�K�n�
� �£��ªA�`���U¡z® �SA 9 E ��= ' � ! � '*) 6 °K¥K¥F®2è = �&,gè v 	K°Fè ! � v

ç �.êa�¤�n ~�i��� � ®�°eº:�������U�����£� �²® �¢®�°e¼	�i��¡`�KÃn�!³Zù¾® �i®?�q�m�S»
�~���KªA�a���Kª¢�n�|é � ù���¡��K��¡�����ð G � ¼	���¢�K�£�.�`���n�K¡�® � ��3 N
5 0 = = 0 � '�0�� ' 3 �4� ����������� �/ I!$#&%+�

ç !.ê�2m�	 ��¦§i�n�_�K®�°	¿¾����ªn���J¼7® �i®�R �4� 0 = '*) 6�9��M��� ' � '�� 6&� ' ��3 ®
¼	¥K�����Kªn����°2è ! ! !

çXè - êUÁI�¦���CùØ®a° � ¥K¥K¡h�`����� � ®�°	�c���<�I® ���u�K�½�4±S¥g�� ¦�`��§
�¦±	�`���¦����¡%���"� � �����n�K�i�����`���£���Kªn�K�£�.�`���n�F® � O 38� � ���
����������� � < 0 �&� ��
SA �7��9 �a°.³A�n�Â®�èA°!�K�K®Aèn° v ! , !�é	°�è ! !Sè

COMBINED LAPLACIAN AND OPTIMIZATION-BASED SMOOTHING
FOR QUADRATIC MIXED SURFACE MESHES

Zhijian Chen, Joseph R. Tristano, Wa Kwok 1
1Ansys, inc., 275 Technology Drive, Canonsburg, PA 15317, U.S.A.

{james.chen,joe.tristano,wa.kwok}@ansys.com

ABSTRACT

Quadratic elements place stringent requirements on a surface mesh smoother. One of the biggest challenges is that a good linear
element may become invalid when mid-side nodes are introduced. To help alleviate this problem, a new objective function for
optimization-based smoothing is proposed for triangular and quadrilateral elements, linear or quadratic. Unlike the current
popular approaches, this objective function makes it possible for a smoothing algorithm to untangle and smooth in a single
process. This objective function has higher order continuous derivatives and only one minimum, if any, that make it suitable for
optimization techniques. Even though optimization-based smoothing obtains much higher quality results compared to other
algorithms, such as constrained Laplacian smoothing, it is also slower than these algorithms. That said, we also present an
effective way to limit the number of calls to optimization-based smoothing such that the highest quality mesh is obtained in the
least amount of time.

Keywords: optimization-based smoothing, constrained-Laplacian smoothing, smoothing objective function, surface mesh

1. INTRODUCTION

Mesh quality is a key factor in FEM analysis. There are
numerous ways to achieve a high quality mesh [1], such as
controlling the discretization size, controlling the edge
valence of mesh nodes and controlling the distortion of the
individual element shapes. Mesh smoothing (relaxation) [2],
improves quality by adjusting node locations to reduce the
distortion of the element shapes without changing the
topology of the mesh. In general, mesh smoothing can be
classified into two major groups [3]: local and global. In
local smoothing, nodes are moved one by one, while global
smoothing changes all the nodal locations in a mesh
simultaneously.

The most commonly used smoothing technique is Laplacian
smoothing [4], which moves a given node to the geometric
center of its incident nodes. Various weighted Laplacian
smoothing algorithms have been developed to improve the
performance of the original smoothing technique. Laplacian
smoothing is computationally inexpensive but does not
guarantee improvement in mesh quality. In fact, it is possible
to create inverted or invalid elements with this technique. A
valid mesh is one whose elements have acceptable quality
metrics [2]. Constrained Laplacian smoothing [5] overcomes
this problem by placing a node at a new location only when
the mesh quality is improved. This method successfully
prevents the degradation of mesh quality but does not always
improve the quality of the mesh or place nodes at their best
locations.

In recent years, optimization-based smoothing algorithms
have been drawing the attention of the mesh generation
community. Several optimization-based smoothing
algorithms have been developed [2,3,4]. These algorithms
integrate some mesh quality measures into objective
functions. Optimization techniques should, in general yield a

better mesh, if the objective function is properly formulated.
Optimization-based smoothing varies based on: the type of
mesh being smoothed, the optimization method used, and the
distortion metric selected to construct the objective function.

One of the keys to the success of an optimization-based
smoothing algorithm is to define an appropriate objective
function. An inappropriate objective function can waste time
in the optimization algorithm along with causing the
algorithm to fail to improve the mesh quality. Most efficient
optimization algorithms [6] require the objective function be
C1 continuous.

Various measures for element [7] quality have been used in
the objective function, such as distortion metrics, aspect ratio,
minimum angle, etc…. Recently, the inspiring work of P.
Knupp derived an objective function from the condition
number of element Jacobian matrix [8]. His work along with
the work of L Freitag [3,10], has lead to mesh quality
improvement algorithms for 2D and 3D linear elements. S.
Paoletti [9] stated that using Interpolation Tensor could be
applied to various polyhedral meshes in 2D and 3D. Even
though the published works show enormous potential, there
are two general limitations in these algorithms:

1. They only apply to linear elements.

2. They require that the initial mesh is valid.

Quite often, the mesh to be smoothed is not valid. Most of
the existing objective functions have been designed in such a
way that the optimization smoothing schemes mentioned
above cannot guarantee a converged solution for an invalid
mesh. For this reason, untangling techniques[10] have been
proposed to remove invalid elements from the mesh before
executing optimization-based smoothing.

1. Efficiency: Since optimization-based smoothing is
computationally expensive, the metric used must be
efficient to compute.

Canann [2] combined the use of Laplacian and optimization-
based smoothing to speed up the smoothing process along
with benefit of better mesh quality from optimization
smoothing. For optimization-based smoothing, α for a
triangle, as defined by S.H. Lo [11], and β for a
quadrilateral[2], are used in the objective function. Based on
our experience, reasonably good meshes have been achieved
in most cases. However, there are some cases, especially
when smoothing nodes near curved boundaries, or smoothing
nodes attached to higher order elements, in which the
resultant mesh quality around these elements are not always
satisfactory (Figure 1). As a modification to Canann’s work,
we recently improved our smoother to make it suitable for
working with quadratic elements by developing a new
objective function to be used for optimization-based
smoothing [12]

2. Continuity: Since derivatives are used during the
optimization process, the objective function is
expected to be continuous. In general, to have
higher rate of convergence, higher order derivatives
are used.

3. Monotonically Decreasing: If an objective function
has multiple local optimum locations, it will be
difficult for the optimization algorithm to find the
best solution. If the metric is not monotonically
decreasing, the optimized location may vary based
on the initial location of the node to be smoothed.

4. Shape Independence: It is favorable for the metric
to be defined and normalized in such a way that the
metrics for all element shapes can work together

Historically, we at Ansys have used two shape metrics: α for
triangular elements and β For quadrilateral elements. Let us
now discuss their properties.

2.1 α for triangular elements
The triangular metric, α, [11] is defined as ,

222

32

CABCAB lll ++

×
±=

ACBC
α , (1)

where, , , and are the edge lengths of the

triangle ∆ABC, and

ABl BCl CAl

BC and AC are the edge vectors of the
triangle, as shown in Figure 2. The metric is signed to
account for a positive valid metric and a negative invalid or
inverted element. For a linear triangular element, the
numerator of equation (1) is directly related to the area of the
triangle, while the denominator is the sum of the squared
edge lengths of the triangle. The shape metric α is bounded
by []1,1−∈α . A value 1 corresponds to the best triangle,
an equilateral triangle, while –1 indicates an inverted
equilateral triangle. When all the three points of the triangle
are co-linear, the triangle has a zero area which yields a value
of α=0.

Figure 1. A simple mesh with poor smoothing

In our recent work, we improved our smoother by employing
the following:

• introduced a new objective function

• modified Fletcher-Reeves [6] optimization to
enhance its performance for our domain

• Judicious use of optimization-based smoothing

• A priority based smoothing order is introduced.

 In what follows, section 2 will address our new objective

function for optimization-based smoothing, section 3 will
discuss our improvement on optimization algorithm, section
4 presents the decision making process for calling
optimization-based smoothing. In the last section, we will
conclude our discussion and present future work in the area.

2. OBJECTIVE FUNCTION FOR SMOOTHING

A distortion metric is a measure of a mesh’s quality.
Therefore, an objective function for smoothing is usually
constructed based on some distortion metric or combination
thereof. A metric is suitable for use in an objective function,
if the following criteria are met:

Figure 3. β for a quad. (a) A quadrilateral with point
C set to be free , (b) The change of β when point C
is perturbed in the x-y plane.

2.3 Problems with higher order elements Figure 2. α for a triangle. (a) A triangle with point C
perturbed over the x-y plane. (b) The change of α on
y=0 and y=2. (c) The 3D plots of α; (d) the contour
of α on the x-y plane

It is quite often observed that a linear element is of acceptable
quality but becomes unacceptable when it is converted to a
higher order element. As demonstrated in Figure 4: The
elements in (a) and (c) are of acceptable quality when the
elements are linear. However, with the introduction of a mid-
side node, the quadratic elements in (b) and (d) show interior
angles close to 0 and 180 degrees.

It is obvious that if α alone is used in the objective function
for optimization-based smoothing, the smoother will have
trouble untangling inverted triangles. For example, if an
initial point is placed at the location as shown by the arrow in
Figure 2 (b), the shape metric α would tell us move the point
in the negative x-direction to improve mesh quality.

2.2 β For quadrilateral elements
Similarly, we have used a quality metric β [2] (Figure 3) for
quadrilaterals, which is comprised of a combination of the
α’s of the triangular elements that compose the given
quadrilateral. The basic idea is to split a quadrilateral into
four different triangles, ∆abc, ∆dac, ∆abd, and ∆dbc, Figure 8
(a) . Each of these triangles has a quality metric, α1, α2, α3,
and α4.

Figure 4 the difference of element quality for linear
and quadratic elements

90

)4,3,2,1min(

α

αααα
β

negn−
= (2)

A curved element edge usually happens only when the
element edge is on boundary. In the above example, the
element (b) might be improved by moving node C, if node C
is an interior node. However, element (d) has no node to
move to improve its quality. The shape improvement of this
class of element is beyond the scope of smoothing. where, 90α is the α right triangle having unit base and

height lengths, and is the number of negative negn α . 90α

is used as a normalization factor where is a historical

heuristic value that was placed into our code many years ago.
 was used to help the algorithm, published in [2] , un-

invert tangled meshes such that inverted elements would have
a very high weight in the objective function.

negn

negn

Smoothing for linear simplex elements (three node triangle
for two dimensions and four node tetrahedral for three
dimensions) has been studied substantially with fruitful
achievements. However, simple straightforward means to
extend these studies to quadratic triangular and quadrilateral
elements do not seem to exist.

By investigation, the effects of mid-side nodes of higher
order elements can be represented by a new term as a
function of element interior angles. In the case of quadratic
elements, interior angles and vectors at nodes are computed
using the tangent vector of the quadratic edge at the given
node. The proposed objective function is made up of two
parts:

 Since the β for quadrilaterals is derived from α for triangle,
the β has similar problems to α (Figure 3).

)()(θα fff += (3)

where,)(αf is based on the shape metric α computed at

the node of interest and)(θf is a penalty term based on
element angles computed at the other two nodes. The
purpose of the)(θf term is to prevent the element from
inverting and smooth the element when it is quadratic.

A

B

C (x,y)

Figure 6. angle is not a continuous function in (x,y)
plane. (a) Angle distribution over x-y plane. The

angle has a discontinuity along the line (x=0, y>1);
(b) weight function introduced to make adjusted
angle smooth; (c) the adjusted angle. Adjusted

angle is continuous and smooth everywhere except
at point A and B.

As stated previously, discontinuous functions are not suitable
for optimization. To overcome the problem a weight, , is
introduced as a multiplier to the angles to generate an
adjusted angle,

w

ω .

Figure 5. triangle with node C as a moving node

For a node

 (4) ∑
=

=
en

i iff
1

)()(αα
)(21 θπ −−

−= ew (6)

 θω w= (7)
where, is the number of element using the smoothing

node, and
en

)(αif
 is the contribution from the ith element to

the objective function.

The adjusted angle is continuous everywhere but at point A
and point B, Figure 7 (c). Our penalty term is introduced as.

2

2

1 1)(

−= c
ak

kf e
ω

θ (8)
 (5) 2)1()(iif αα −=

Where,
iα is the shape metric α of the ith element. Since the

function)(αi
(

f is derived from α, the properties and

problems of)αif
 are similar to α.

Where a is the edge length opposite the node where θ is
computed and c is the edge length opposite where α
computed. This smooth penalty term increases rapidly when
an element angle approaches “0” and the negative angle
region. When an element is in the valid region, the penalty is
relatively small compared to the near invalid and invalid
regions. The constants, and are used normalize the
metric such that

1k 2k
)(θf will have little to no effect for an

equilateral triangle.

A penalty term,)(θf , was introduced to give our objective
function a monotonically decreasing property with one
minima, which we have observed via empirical data. It is
because of these penalty terms, that the optimization-
smoothing algorithm is able to untangle invalid meshes.
Interior angles, at node A and node B, are convenient means
to determine the validity of a triangle. When smoothing
quadratic elements, the quadratic edge tangent vectors at
nodes A and B are used to compute the angles at A and B.

However, angle A and angle B in Figure 5 are not continuous
functions on X-Y plane, Figure 6(a). There is a discontinuity
on the line, { , where the angle jumps between }0=x

π− and π . When point C is on the positive x side of the
plane, the angle is π . When the point is at the negative x
side of the plane, the angle is π− . Therefore, the angle on
the line of { is undefined }0,1 => xy

The effectiveness of the above formulation can be
demonstrated by the example in Figure 9. As clearly
indicated on (a), when the top edge is pushed toward the
center node, the best location for the center node is below the
intersection of the two dash lines. The other two illustrations
show similar results for quadrilateral elements.

(c)

Figure 7. the penalty term and the objective
function (a) the penalty term when considering only

one side of the triangle, (b) the final shape of the
objective function, (c) the contours of the final

objective function in the feasible region.

For quadrilateral elements, the objective function, , is

formulated as
qf

Figure 9. configuration with one quadratic edge

 (9) 321 ffff q ++=
An example configuration similar to the one presented in [3]
is used to show the result of our current work. Figure 10
illustrates that even though the level sets outside of the valid
region for the center node is non-convex, the near convexity
of the set enables faster convergence of the optimization
algorithm..

where, , , and are the objective functions from

triangles , , and ∆ , as shown in
Figure 8, and the node D is the moving node. Notice that

has been omitted from this function since the
movement of point D has no effect on this triangle. The
triangle is a dead zone to node D.

1f
∆

2f
ADC

3f
∆ADB BDC

ABC∆

The issue of how to combine the nodal metrics from a mixed
mesh arises when triangular and quadrilateral elements are
present. This resolution of this issue is actually quite simple.
As shown in equation (9), the objective function for a
quadrilateral is made up of three functions using the sub-
triangles. Each of these sub-triangles is equivalent to equation
(5). Therefore, for a mixed mesh, the contribution of each
triangular element to the total objective function should be
multiplied by a factor of three in order to evenly weigh
triangles and quadrilaterals.

Figure 10. example with star shaped configuration
with 10c illustrating the level sets in the feasible

region

3 OPTIMIZATION-BASED SMOOTHING

Optimization-based smoothing is an iterative process. Each
node for smoothing is optimized for location in a number of
iterations. Generally, as in popular approaches, the
optimization process is a constrained optimization process.
However, the presented objective function actually combines
angle constraints into part of the objective function, which
enables the optimization-based smoothing process to be
unconstrained.

Figure 8. is the dead zone for the
quadrilateral during smoothing

ABC∆
ABCD

As discussed above, each part of the objective function is
continuous function with at least up to 2nd order derivatives.
This property makes the objective function very suitable for
an optimization process. Derivatives such as these enable us
to use gradient methods such as the method of conjugate
gradients.

Let X be nodal location of a node, the optimization process
is to find the best location in iterations:

q1)(qq sdxx += − (10)

where, q is the iteration number, is the vector of the
search direction and s is the step length to move in this search

qd

direction. Optimization is a classical area of study in
mathematics and it is not our intent to discuss it in depth
here. However, it is valuable to share some of our
experiences with it when related to mesh smoothing.

3.1 Search direction
Since the objective function is smooth, the Fletcher-Reeves
[6] conjugate gradient method is used.

)1()(−+−∇= qqq rf dxd (11)

where,

2)1(

2

)(

)(

−∇

∇
=

q

q

f

fqr
x

x

 (12)

Figure 12. The convergence history for a node
using conjugate gradient direction

3.2 Step length for one-dimensional search In our implementation, the gradient direction is used at the
first iteration and conjugate gradient direction is used in the
consequent iterations. We have found that after a number of
iterations, the convergence speed using the conjugate
gradient direction actually slows down. Figure 11. illustrates,
the iteration using gradient direction is marked with a letter
“g” and the iteration using conjugate gradient directions are
marked with a letter “c”. At the first iteration, when the
gradient direction is used, the proceeding step length is
relatively small, while at the second iteration, the conjugate
gradient direction is used and the step length is much larger
than the first step length. However, two more iterations later,
the progress becomes relatively small. In this case, a new
gradient direction is used and the process restarts
[13].

A one-dimensional search is conducted to find a local
minimum along the search direction. Quadratic interpolation
is used in our one-dimensional search. Progressively, three
points are found in order to compute a “high-low-high”
pattern. For faster speed, an acceleration factor is used. The
choice of the acceleration factor is very tricky. In the
beginning of the search, because the initial step length is
relatively small, a large factor, 8, is used. Other accelerating
factors might also be used in the consequent searches. Once a
failure to find the “high-low-high” pattern is encountered, the
factor is reduced by half. The one-dimensional search fails if
a “high-low-high” pattern cannot be found.

4. OVERALL SMOOTHING ALGORITHM

4.1 The use of optimization-based smoothing
Since optimization-based smoothing is much slower than
Laplacian smoothing, it is critical to make a correct decision
when to use optimization-based smoothing to gain the best
cost effectiveness. Here are our rules:

1. a node is connected to a curved boundary node;
2. a node is connected to an invalid element;
3. a node has failed to move from Laplacian

smoothing;
4. forced to use optimization-based smoothing by

caller.
Figure 11. convergence history According to the rules above, an untangling process, for

example, is mostly smoothed by optimization smoothing
because a tangled mesh contains many nodes that are
connected to invalid elements. Once untangled, most interior
nodes are actually smoothed by constrained-Laplacian
smoothing.

Furthermore, we have found that the first few iterations make
the most significant contribution to finding the best nodal
location, Figure 12. Combining the investigations above, a
constant number of three is used as the limit of iterations for
each optimization-based smoothing call. Constrained-Laplacian smoothing has trouble dealing with

concave regions. If a new location, determined, by Laplacian
smoothing is not acceptable, optimization-based smoothing is
called to resolve the problem.

There are cases when the caller detected that a mesh is not
acceptable after smoothing. In such cases, one pass of
optimization-based smoothing usually gives us satisfactory
results.

4.2 Smoothing by priority order
It is found that node smoothing in order of “worst one first”
is very helpful. As shown in Figure 13, when priority is used,
smoothing takes 4 iterations for the tangled model to be
untangled, while 7 passes are needed if nodes are smoothed
in a order of “first come first serve”. The priority is simply
computed based on the shape metrics of each node. For the
node with the worst quality, the highest priority is assigned.
The other priorities are computed by linearly dividing the
range of shape metric value into 5 bins. The priority is then
computed for each smoothing iteration. An inner priority
loop counter sets the current priority during a smoothing
iteration. If the current node’s priority is less than that of the
current priority, it will not be smoothed in the inner priority
loop

5. EXAMPLES AND RESULTS

5.1 Smoothing improvement statistics
The improved smoothing algorithm has been fully tested
under the ANSYS/Classic and ANSYS/Workbench
regression test sets along with many customer problems to
verify that it is sufficiently robust and efficient as a
commercial product.

Table 1. mesh quality without new smoothing

Table 2. mesh quality with new smoothing

The above two tables are statistical results from meshing 183
complex and planar surfaces randomly picked from
regression test sets. Some of the surfaces are meshed with
just several elements where some are meshed with thousands
of elements.

Table 1 is the result before the new smoothing was
implemented where Table 2 is the result with new smoothing.
A detailed explanation of Table 1 and Table 2 follows:

1. With new smoother, the number of Quadrilateral
elements (NQUAD) generated is increased and
consequently, the number of Tri elements (NTRI)

generated is decreased. The reason the number of
elements varies between the two smoothing
algorithms is because the smoother is integrated
into the mesh generation process. This
phenomenon illustrates how different mesh
generation algorithms are sensitive to node
placement.

2. As indicated in the fourth column (MAX), the best
quality elements generated with new smoothing is
actually not as good as it used to be, however, this
is not statistically significant (sig = .49 > .05).

3. The worst elements have improved substantially,
column 5 (MIN).

4. The average, column 6 (AVG), of the element
shape metrics has also increased.

5. The last column (STDEV) of the tables illustrates
the standard deviation that measures the variance of
the samples. It is clearly indicated that, the standard
deviations of the minimum and average have
decreased in Table 2. However, the max standard
deviation remains the same.

Table 3. t-test for shape metrics

Metric Significance (2-tailed)
Min 0.00
Max 0.00
Avg 0.49
Standard Deviation 0.00

Table 3 condenses the information found in Tables 1 and 2
with a paired samples t-test, a statistical test that compares
means (the details of the test are outside the scope of this
paper. For more information, consult almost any basic
statistics textbook), for minimum, maximum, average, and
standard deviation of shape metrics. The improvement
minimum, average, and standard deviation of the shape
metrics are significant while the decrease in the maximum is
not statistically significant

.

5.2 Examples meshes
In this section, we will present a number of example meshes.
Figure 13 is an example for the untangling of the “plate with
a hole” model. The tangled mesh (Figure 13a) is created by
perturbing the nodal locations of each interior node (a node
not on surface boundaries) randomly. The tangled mesh has
many nodes outside the surface domain. Figure 13b is the
mesh after smoothing. It takes 3 iterations for this model to
be untangled(Figure 14 and Figure 15).

(a)

(b)

Figure 13. untangling example

Figure 16. a node with three edges close to a
curved boundary and two quadratic boundary

edges

Figure 17 illustrates another unit test example. Similar to the
above example, a node is connected to some curved quadratic
boundary elements. The optimization-based smoothing result
(Figure 17a) yields higher quality than the same
configuration smoothed with constrained Laplacian
smoothing, (Figure 17b). Figure 14. untangling, initial mesh and first iteration

mesh

(a) (b)

 Figure 17. quadratic curved boundary quads
Figure 15. untangling, second iteration mesh and

third iteration mesh

Figure 18 shows an example of high quality mesh generated
using the new smoother.

Figure 16 is a unit test case where a node is connected to a
curved boundary sharing two quadratic boundary elements.
This is a difficult case for most smoothing algorithms that
deal only with linear elements. Figure 16a is the result of
smoothing with only constrained Laplacian smoothing where
Figure 16b is the result of smoothing using our presented
optimization-based smoothing.

Figure 18. example surface mesh

Figure 19 illustrates a mesh of a human head using the new
smoothing algorithm.

Figure 19 Head

5.3 Objective function comparisons
Our previous method of constructing the objective function-
based on the maximizing the minimum shape metric posed
serious convergence problems for any optimization method.

Figure 20 illustrates the differences between the old objective
(b) function and the new objective function (c) for a given
configuration of quadrilaterals.

Figure 20 a Test quadrilateral configuration with the
center node being smoothed

Figure 20 b Maximizing Minimum Objective
Function

Figure 20 c The newly presented objective function

6. CONCLUSIONS AND FUTURE WORK

A new objective function for optimization-based smoothing
is proposed for both triangular and quadrilateral elements.
Unlike the current popular approaches, the new objective
function makes it possible to untangle and smooth in a single
process. The objective function has higher order continuous
derivatives and only one minimum, if any, that make it quite
suitable for optimization techniques. Because optimization-
based smoothing is much slower than other algorithms, such
as constrained Laplacian smoothing, an effective way to limit
the number of calls to optimization-based smoothing is
critical in order to obtain the best result in terms of quality
and speed.

Future work in this area may include:

• Speed improvement on metric calculation so we
can use optimization smoothing more often

• Mathematically prove properties of the objective
function

• Extend the algorithm to solid elements

REFERENCES

[1] Steven J. Owen, "A Survey of Unstructured Mesh
Generation Technology", Proceedings, 7th
International Meshing Roundtable, Sandia National
Lab, pp.239-267, October 1998

[2] Scott A. Canann, Joseph R. Tristano, Matthew L.
Staten, "An Approach to Combined Laplacian and

Optimization-Based Smoothing for Triangular,
Quadrilateral, and Quad-Dominant Meshes", 7th
International Meshing Roundtable, Sandia National
Labs, pp.479-494, October 1998

[3] Lori A. Freitag, "Local Optimization-Based Untangling
Algorithms for Quadrilateral Meshes", Proceedings,
10th International Meshing Roundtable, Sandia
National Laboratories, pp.397-406, October 7-10 2001

[4] D. Field, "Laplacian smoothing and Delaunay
triangulations," Communications in Numerical
Methods in Engineering, Vol. 4, p. 709-712, 1988

[5] Lori A. Freitag, “On combining Laplacian and
optimization-based smoothing techniques”, Trends in
Unstructured Mesh Generation, ASME Applied
Mechanics Division, AMD-Vol 220, 37-44, 1997

[6] R. Fletcher,, and Reeves, C.M.: Function Minimization
by conjugate gradients, Comput. J. 7, 149 (1964)

[7] Wa Kwok and Zhijian Chen, “A Simple and Effective
Mesh Quality Metric for Hexahedral and Wedge
Elements”, p57-66, Proceedings ot the 9th International
Meshing Roundtable ‘2000, New Orleans, Louisiana,
October 325-333 2000.

[8] Patrick M Knupp, "Matrix Norms & The Condition
Number: A General Framework to Improve Mesh
Quality Via Node-Movement", Proceedings, 8th
International Meshing Roundtable, South Lake Tahoe,
CA, U.S.A., pp.13-22, October 1999

[9] Stefano Paoletti, “Polyhedral Mesh Optimization Using
the Interpolation Tensor”, p19-28, Proceedings ot the
9th International Meshing Roundtable ‘2000, New
Orleans, Louisiana, October 325-333 2000

[10] Lori A. Freitag, and Paul E. Plassmann, "Tetrahedral
Element Shape Optimization via the Jacobian
Determinant and Condition Number", Proceedings, 8th
International Meshing Roundtable, South Lake Tahoe,
CA, U.S.A., pp.247-258, October 1999

[11] C.K Lee, and S.H. Lo, "A new scheme for the
generation of a graded quadrilateral mesh," Computers
and Structures, Vol. 52, No. 5, p. 847-857, 1994.

[12] Zhijian Chen, Joseph Tristano and Wa Kwok,
Construction of an Objective Function for
Optimization Based Smoothing for Surface Meshing,
The 7th US National Congress on Computational
Mechanics.

[13] ANSYS, Inc., “ANSYS Theory Manual”, 20.8. First
Order Optimization Method

� ����� ���� ������	
����� �� �����������

��� �
������� ��������

�� �������� ��	
��� �����

� ������� ��	
�
�
 �� �����
�
����� ��������� ��� �����	� �� �����	�
� �� ���	 �
 ��	
���
����	� ��	!�
��	!��

� ������� ��	
�
�
 �� �����
�
����� ��������� ��� �����	� �� �����	�
� �� ���	 �
 ��	
���
���� �����"!�!�
��	!��

��������

� ����� ���� �����	
 ��	��� � ��	������� � � ����	��� �� �������� ��	��� ��� ��� 	� ���	���	 � �����	����� ����	�����
��� � ���� ���	���� ������	��� ��� ������	�� �� 	�� ����� �����	
 ������ ����� ������� ������	 ���� ��� ���
���	��� ��	��� ��� �������� ��� 	�� ����	����� �� 	�� ������	�� � 	�	�� �� ������ �������	�	��� ����� ���
�������� ��� �� ������� 	� �������	 ���� 	
�� ��� ���������

��������� 	��
 ���������� �	���
���� 	��
 ������ 	������

�� �	��
�����
	

������	��� �����	
 ���� 	��	 �����	 �������� �����
��	� �����	��� ������ � ����� 	�������� ��� 	���
���	���� �������� ��� ���� 	� ���� ���� �������
�������	��� ��� ���	����	����� ������ ��	� ���������
�����	�
 ��� ���
��� ��	��� ���� ��������	� 	��
��Æ���	
� �� �������! ����� ���� �����	��� ���
������� ���� ��	� ������� �� ���� ��� ���	��� ���
	��	 ���
 �
 ����� �� �����	���� ������	�� ����
��� ��	�� ��	����	�����
 ��������	 "���� ���	��� ������
����# �� ����������! � ������	���! ��������! ��� ���
������� 	�� ��� ���� ������ 	��� �������� ��	
������ 	�$� ��� �������
 �����	 ��� �����	

	� �� �Æ����	 �����	��� ��� ������ %� �����	���
����� ������ ��������� ����! 	�� �	��	��� ��� ��
���� ���� ���� 	�� ��� ��	������	� � ���� ������
��������� �������
! �����	������! ��� �����	�	�����
����	����� "���� �	���	��� ��� ���	�� 	���	��#�
&������� �������� ��� �������	 ���� ���	���� ���
������! � ���� � �	��� ������	��� ��	����

��� �����	 ���$ ������� 	�� ��� ���� 	�� 	����
����	 �� ����� ���� �����	
 ��� � ����� ����� ���� �����
�	
 ������	�� � ��	�������� ��� ������	�� � ��� 	�

���	���	 � ������ ����	����� ��� ��� ��	�����	���
	��	 �� �� ���� � � ��� ���	���� ��� ������	���
	��	��
 	��	 � ����	���	�� ����������
 �� ������ 	�	
��������

������	�� ���� �� ��� ��	�����	��� 	��	���� ����
���� �	������ ��������
! ��� �� 	�� ������	 	����
����� 	��	 �� '����� ()*� +��� �����	 ���$ (,* �
(-* ������� ����	�� ����� ��� ��	���� �� 	�� �����	
	���	���	 � � ������. �� /�	 �������� ��� ����
���� ������
��� �������� ��� ��� 0�������	
�� ����
���	���� �� � �����	����� �		���� ��� ���� � 	� ���
	������ � ����� 1��	��	��� ������2 ��� �	 ����������
��/�� 	�� ����� ��� �����	
 ������	��� ��� ������
����	����� � ���	���	�� � �� ��������	��� �� 	�� ���
����	 ���	����	���� ��� ��	�����	��� �����	 �����
��� � ����� ���� � ������ 3��	�� ������ 4������
��� 	���� ��� �������� �� 	�� ����	�

� �����	� �	� �������
	��
�������	�

� ������� 	��	��
 �� 	���	���� ���� ������	��� � 	�
��� � ������� 5��	���� ���� �� � ��������� ������ 67
	� � ���������� ���� �� ���������� ���� �� 	�� ��
��

��� ������ 7� ��� ������	�� �� ��������� ��� ���
�� ������	�� 	� ����� � ���� ���� ��� �����	��
������	�� �� ����
	�� ����	��� �� � ������� ��������
���� ��� 	� 	�� �� �� �������� ����	��� ���� �������
����
� ���! �������	�
! 	� ����� ���� �� ������
	�� �����	�� 0������ ����	���� 4���� 	�� ��	��	���
��� 	���� ����	��� ���	��� 	� 0������8 ����	���
���� � ��	���� ��������	� �����
 ��� � ���! 	�� ����
�� ��	���	�� &9: ����� 	��	���� ��� ��� �������
	���� %� ���	������! 	�� 0������ �������

;� < =� ;� < = ")#

�� 	�� ��
���� ������ 7 ��� �� ������ 	� ��������
��� &9:8 �� 	�� ��������� ������ 67 ��� ����� ���
��	������ ���� �� 7�

��	����	����
! �����	����� �������	��� ��� 	��� &9:
������� ��� �� ����
 ���	���	�� ��� �� ���������	
��	�����	��� ������� � ��	������ �� ")#! 	�� ������
	����� ����	����� � 	�� ������� 9�������	 ��	����� ���
	�� 0�������� ��� �� ����

� <

�
�

("��#� > "��#�*����� ",#

��� ���� �� 0������ ������� ")# ������ � 	�� ���
���	�� :�����0������� ����	���� +������ 	�� ������
	����� ������� 	� 	�� ��������� ������ �� ����

� <

�
��

��� > ��� > ��� > ���

���� � ����
���� "?#

����� ��� �� ������� ������	�
 �

� <

�
��

	�"���#

��	�
����

����� 	� ����	� 	�� 	���� ��� � � 	�� �������� ���
	��� �� 	�� ��� ��	���� 	�� 	�� ������ ��� 	��!
��������� 	�� ���� �� ��������� ���� �����	
 �
 ��	����
	���� ��������	 (@! A* �� ����	��� �� �������� ��	���
(B*! �� ��/�� 	�� ����� ��	��	��� ������

	"�# <
�
�
	�"���#

��	�
"C#

��� ����� ��� �����	
 �
� < 	��� %� ���	! 	�� ���
	��	��� ������ ���������� 	� ��
 �������� �����	�

()=* �

	"�# <

�
�
�
	�"���#

����
��	�

� "A#

��� ��� �� 	�� ���� ��� �� ���	������ �
 ��	��������
� ����� ����� ������ ����� �� 	��� 	�� 1�����	���2
������� 0�	 � �� � 1������2 ������	 ��� ������
"����	�� 	� ���� �� ,9 ��� ������ �� ?9#� �� 	��
1������2 ������� ����! � � 	�$�� 	� �� 	�� �������
���� ����

� <

�
��
��	������
��
����

�

���� 	�� ��	�� ��	��� ��� �� ��	� ������	� 	�� ���
���	��� �� ��	� ���� �� 4���� ��	� ��� �� ����� ��
����� � �� ��	������ 	��
���	��� �����	��� ������
(-*

"�# <
)

,

�
�

��	�
>
��	�

�

�
�

���� <) ���� � < ��	� ��� �� � ��	� ��
�� =� �������� 	�� ���� �� ���	�������	��� ����	���
(,! D*! �� ��	������ �� ����	��� ��	��	���������	���
������ "�	��� ���� ��� ������
 ������#

�� < ")� �#	"�# > �"�#� "D#

����� ���Æ����	 = � � �) �� ������ �������	��� ���
�� ����	�� 	� �������� 	�� �����	��� ��	��	��� ���
�����	��� 	����

3�� 	�� �����	����� ���� ���	���� �������	��� ���
�� 	�	�� � ������. �������� 	�� ����	�����

� <

�
��

��"�#����� "-#

�����	 	� ����	��� �������
 "�� �	���# ���	����	� %�
����� 	� ��	��� 	�� �����	���� ������� �������	���
"-#! ���	����	��� 	� 	�� ����	����� ���� ���� ���� � ���
���������	�� ���� ��� ��������� ��	����	��� ���� �

�� <

���
���

���
	�����

�	�����"��	���#� "@#

����� ��"�#� ����	��
 	�� ������	��� ����	 ��� �	���
��� 	�� ������������ ������	��� �����	 ��� ���� ��

E����$.)� ��� �������	��� ��� �� ������� 	� ��

��	���	���� ���� ���	������ �������	 	
�� �� ����!
���� ���������	� ������	��� ����F ,� G�	���	����
���� ���� ���� ���
��� ����� ������� ��� 	�� ����	
���� ��� �� ����	���	�� �� 	�� ��������� ���$ �� ���
	��� D�

�� �
��� ������� �������

0�	 � /�	 ���	��� ��� ������� ������	�� �� 	��
����� ��	��	��� ������ "A# ��� "D# ��� 	��� ����
�� 	���� �������� ��� ���� ���� 	�� ���� 	�������
��� ��������	���� ���� ���� 	��
 ��� ��	 �����
 ���
�� ���� ������	����

��� ����	��� 	"�#! ���������	�� �� 	��� �� �������
��	 �� 	�� ��	��� 	���� �� ��������	� 	��������	���
� < ���� �� ��������� �� (A*� %	 �� ���� 	��	
	"�# ���	��� 	�� ���� ����� ��� ���� ����	 ��	�� ��
	�� ,9 ��� ��� �� ������� ������	�� �� ?9� ��� ��
	���	� ��� 	�� ����� � ��	���� 	�� ���� ���� ��� ����
����	 ��	�� � "��	�� �� 	�� ����	� �� 	�� ����# ���
,9 ��������	���� ���� ���

��� � � ")�	#�� , � � >)�� � C	� � ,�

��� 	 �) ������� �� ��, ��� � �)F ���� � �����
�����

��� ����/�� ��	��	��� ������ �� ��	��� 	���
������	�� �� 	"�#� %	 � �� ������	�� ��� ���������	�

�� 	�� ������� (-!)=* � ������ �� ������� ����������
�	
 ������	�����	���! �� 	�� ��� 	��	

��� � ��� � H���

����� � ��� H ��� �� �	���	�� ���� ���

%� 	�� ��������� ��	��� �� ���� ������� 	�� �����
������ ��"�# �� ������������ ����� �����	
 ����
���
�"�# <)���"�# "
�"�# <)�	"�# # �� ������
������ ������ ������	 ��� �������� ��������	���
������	 �� ���� ��	����

��� ������� ��������

0�	 � /�	 ������� 	�� ,9 	��������� ������	! �����
�� ���� ��	 ��	������
 ����
��� �� 	�� ��	���	���
"�� (A!))* ��� ���������#� ��$��� 	�� ��������� ����
���	 	� �� 	�� ������	���� 	������� ��	� ��� �� ����	�
) ��� �����	��� 	�� ���	��	 �������� ��	��� �� 	��
������ ��� ��	� �� ����	���
 	��������� ������	 ��	�
���� � ��� ���� �� ����	� ��� ��� ��! �� ��	

��	� <
C	
?
�� 	�"���# <

,

?
"��� > ��� > ���#�

���

	 <
��� > ��� > ���

C
	
?�

��� �����	
 ������
� � ����� 	�

� <
C
	
?�

��� > ��� > ���
�

��� � � ���� $���� ������� (),!)?* �� � 1����2 ���
���	��� ������ �� 	�� ��� 	��	 �	 � ����� 	� = ��
��
 	
�� �� ��������	� 	�������� %	 � ��� ����������
"	�$� ����� ���� 	�� ��	����� (=�)* #�

��� ������������ ����	��� ������ ���� "D# �

�� < ")� �#
��� > ��� > ���

C
	
?�

>
�

,

�	
?

C�
>
C�	
?

�
�

��� ����� �	 �� 	�� ������������ ����/�� �����	

������
� < ���� ��� � 	������� ��	� /��� ����
"=� =# � "=�)# � � ����	��� �� 	�� ��������	� "�� �#
�� 	�� �����	� ���	�� ��� ���� �� �����) ��� ������
��	 ����� �� ������	�� �� � � �������! 	�� �����	

������ ������ �� ��	���	��� �� 	�� ��� 	��	 �	
����	 ���� ����	 �� 	�� ������
� ����	! ��	 �	
������ � 1����2 �������

 �� 	�� ������� �� �� ����	���
 	�	�������� ��	� 	��
������� 	�	�������� ��������� ������	 ��	� ���� ��

� � � � � ��� � � ���

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

���

���

��	

������ �� ����� ���� ��
�"�� �# �	 �
��	�� ���� ��
�����
������ ������ �����

����	�) �� ����

��	� < D
	
,�� 	�"���# <

)

,

	�

��

��
 �

����� � � 	�� ������ �� 	�� 	�	�������� ��� ��� � � � � �	
��� �	 ���� ����	�� ��� ��� 	�� �����	
 ��� ����	���
��	��	���������	��� ������ �����	����
 �� ��	

� <
-,
	
?��		

��
��

���� �

�� < ")� �#

�		

��
��

����

-,
	
?�

>
�

,

�
)

D
	
,�

> D
	
,�

�
�

���
� < ���� ����� ��� ��� 1����2 ������ �� 	��
��� ����� ������ � ������ 	�	�������� ���� ����
���

� <
),"?� #���		

��
��

< "
�#
���

�� ������� �� ()C* ���� 	�� ������� ����� �� 	����
�����	��� �� �����	������
 � ��I��	 	�� ���� �� 	��
�������� ���������

�� ���� ! �! "#$� ����%! ��������

��� ��� �� 	�� ������ 	���� ������	 ������ ���� �� �
�������� � ���� �������! ���� 	�� �������� ��	���
� ��	 ���	��	 �� 	�� ����� 3����	����! �� �	�/�
� 1������� ���������2 ()=*! �� 	�� ��� 	��	 �	 �
������� ���� ����� �
 � /��	� ������ ������ ������
��	��� �� �	 ����� �� ���	��� ��� "��	����#� ���
�� ����� ����� ��� 	�� ����	��� ������ "����� �����
��� �����	
 ������# ��� ����
 �� �����	��� +�	���
�� ��� 	�� ����� ��� � ���� �	 �� ���	��	 ��	����
������ ���� � �������	�	��� �� 	�� �������� ��	���
�� 	�� 	���� ������	 ����� �� �������! 	�� ��������
��� �� ���	 ����� = � ��� �� �) ��	� 	�� ���� ��	�
���	��� ���� �� � < =�) ��� �� ���		�� �

� <

��
����

")� ��#
��������")� ��#

�������� ��� "B#

0

1

2

3

4

5

6

7

������ �� ����� �� ����� �
����� ��
 ����������	 �� ����

���	� ��
 �� �	 �
���	��
 �����	�

��� �	 �������� ��	��� �

� <

��
����

")���#��������")���#�������� "�������� �������#

")=#

<

��
����

��� 6���� �����

��
����

��� <)�

����� ��� < ")���#��������")���#�������� ��� 	�� �����
���Æ����	 �� ")=# ��� 	�� ������������ ���� �� ����
	�� ��� 	�� ������ �� ��	���� 6��� < "�������� ����
���#�

��� ��� 	�� �������� ����! 	�� ����� �)�C �� 	��
�� �� ����	��� ������ �����	�� �	 ���	��� �� 	��
��������	���� ����� ���	 �

�� �
��

����

)

C
��" 6���#�

 �� � 	�������� ���� 	�� 	
�� �� �������	�	��� �� 	��
�������� ��	��� ���	��� DC �������	 ���	��	 ��	���
��� ���
 ��� �� ��	����� ���� 	�������� ����� ��
	�� ��� 	����� �� ��������� ����� ��� DC ��� ���
	����� ��� �� ��	����� ���� 	�� ���� ��	���	 ���	��
	����� ���� �� ����� , �
 ��	�	��� ��� ��I��	���
"��	�� ��I��	��� 	�� �����	�	��� ����� �� ������� 	�
������� ����	 ���#�

��� ����� �	 ��� 	�� ����� ����� �� 	�� �����	
 ����
���
� ��� 	�� �������� ���� ��� ���� �� ����� ?!
����� �����	
 ���	��� ��� ������� � ����	��� �� 	��
���	��� "�� �# �� ��� ���	�� �� 	�� ��������	���� ��	�
	�� �	��� ���	��� /��� �	 ����	 "=� =#� "=�)# ��� ")� =#�

��� ���	���� �� 	�� ����� ����� �� 	�� ����� �����
	��� ������ �� ������ 	��	 �� ����� 	� ���	��� ����
�����	
 �	 � �Æ����	 	� ���	��� 	�� �����F 	��	 �!
	�� ����� �� 	�� ����	��� ������ �� � /��	� ������
�� �������	��� �� ���� ���	�� ��� ���	��� ��� 	��
������ �� 	��� �������	��� � ������	��� ����	 ���
���������	��� 	�� �����	� ����	����� "@# ���� �������
	�� 	�� ����������	 �� ��� �����	
 � 	�� ����	 ��
������ ��������	��� ������� "-#�

� � � � � ��� � � ���

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

���

���

��	

������ �� ����� ���� �� ����
 ���	� ��

�"�� �# �	
����
�����
�� �����	� ���� ��
����� ������ ������ ������
�����

&� 	�������� �������	����
	

��� �������	 �� 	�� ���	���� ����	����� "@# � ����
������ � �� �	���	��� ��	�����	��� ������	��! ��� �
3��	��8 ��	��� �� ���	��� �������	 �����	 ��	���!
����� �� ������� 	� 	�� �����	�� ��������� ��������
%� 	�� ���$! 	�� ������ 3��	�� ��	��� � ���� ���
	�� ���� �	���	��� 	�� ������ ������� �����	
 ������

"
�#�
�� < ���
	���

)

��"�	���#
"))#

� �����	�� �� ����� 	� ����	�� 	�� ��	�����	��� ����
��� %	���	��� ���� ���� 	�� ��������� ��	���� 	��
������� �����	
 "))# �� 	�� �������	 ���� � ��
	��� � ����� 	�������� "�	��� ���	���� ��� ������#�

'� �
��(�����
	�
(�)� ���)
�

%� 	�� ���	��� ���� � ������ �� �� ��������� ����! 	��
����	����� ��� �� ����/�� �
 ������ �����	
 	���
"��! ��� �������! (D*#� ��� �������� ����	����� "@# ��
�� ��/��	� ������� �� 	�� �	 �� ���� ��	� ������ ����
����� � ��� 	� 	�� ������� �� ��	� �� 	�� ������
���	�� �� 	�� ��	������� � �����	
 �������	��� ���
�� ��������� �
 ��������� 	�� ���	�� ��	� �
 �� ���
	����� �����	
 ����	��� �"��	�#! ��� 	��	 	�� ���
��	������ ���� �� � /��	� ���������	��� �� 	�� ������
��� ��/��	� �������� ��� ����/��	��� ����� 	�� ����
�����	��� ��������� 	� 	��	 ���� � ������ ���� ���!
���� 	�� ����� �� 	�� ����	����� �� � ����/���	�
 ���
������ ���� ������ ���� ��� �����	 �� 	�� ����! 	��
/��� ���� ���� ��	 ���	��� ��������� ���� "������
	���� ���	 ��� � ��� ���	��� ��� 	�� ����� �������
	���	
 ��� �������
 �����	���#�

4���� 	�� ��	��	��� ������ 	"�# ������� ���	���
���� ������	 ����! ��� ��� ��/�� � ������ 	�� ������
������	 ���� �
 ��	�������� � ��	��� �� ��������� ���
������	�� ���� ��	��� ���	����
 �� �������	 ������
���� ������	 ��� �������	 ���� �� 	�� ����� +��������
	��� �� 	�� �������������
 ����/�� ����	����� ����
����	 �� � ���� ��	� ���� ������ 	�� ���� � ����
� ������ "����� ����� ������	���	
 �� 	�� ���� ���
������ �������
 �����	���# 	� 	�� 	����	 �����

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

������ 	� �
��	���

�� �	 	�	��	��� �����	� 	�����
���� ������ �	� �������� ���� �
����

*� 	�������� �+������

*�� �� �,��- . % �!�%�-#�%! -!�" �� � �/
$ �0�� " �%��

��� 0������ ���	��� ��
 ������� ����������� ����
�� ��������� ������! � �	 � �����	��	 	� ����$ 	��
�������� �� 	�� �����	 	
�� �� ���	��� ��� ��� ���
����� 5������ 	�� ��������� "�������# ������
��	� 	��������� ���� ��� /��� �������
 ���� ����
�� 	�� ���	 �� ����� C� 4���	���� ��	� 	�� �����	��
����	��� ����	����� ���� � < =�@ ������� 	�� ����
�� 	�� ����	 �� ����� C� ����� � �� ������� ��� 	��
��� ���� ��� ���� �������� 5��� �	 	�� ���$ �� 	��

���	�
 ���� ��� ����	�
 ����	�� ��� 	��� �	 	��
����	���	 ������ ��� ����	�
 ���������

*� � ���,�� 1��, � ���� . $,%�-��- 0%/
���$�

��� ��������� ��������� 	�	 �����	��	� 	�� ������
	��� �� 	�� �������� ���	���� ������	��! ���� ���
���	��� �� � ���� ��	� ���
��� �������� 4��� �����
��	�� ���� ������� ����/���	 ����� �����	��� ����	
�� 	�� ������ ����� ������� ������ ()A*�

 ����� A �����	��	� 	�� ���	��� �������� �� 	�����
����� ���� ��	� �������� �������� ��� �������
 ����
��� /��� �� 	�� �������� ����� � ��� ������	
 ��
�����	��� ����	 ��	 	�� �������� � �	����	��
�

��� ����	 �� ���	���� �� � ��� �� ��������	����
���� � ���� �� ����� D� ��� ���	��� ���� ����	
�� 	�� ����$�������	�� ������ ������������ 	� �
	���������� �������� ��� �	 ���	����	��� 	� 	�� ���
����� ������� J������
 ���� �� 	�� ��	����� ��������
�������
 ��� /��� ��� ���� �� 	�� ���	���� �����	��
�������
 �� 	�� ��������� ��� ������� 	� 1����2 �����
	�� ����� ��� ���	��� ��� ��� 	�� 1��������2 ��� �	
�	���	���)! ,! ? ��� �����

*�� ���, #�. �"��- �� � �$ �0�� " �%��

J������ �������	��� �� �����	����� ���	���� �����
��	�� ������	�	� ��� ��������� � ���� � ���	�����

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

������
� �
��	���

���� 	����� ������ ������ �	�
�������� ������ �
����

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

������ �� !���
�����
��
�� ��
�	 �������	� "
��
���� ��
���� �	 ���� �	�����
���
�� ����
 � ���
����	 ��
��� �������
� �	 �������
��� ����
 #� $ ���
����	� ��
��� �������
�

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

������ �� %	�����	� 	����� ���� ������ �	� ��������
���� �
����

� �� ������� ��	 � ������� 	�� ��������� �� � ������
��������	���� ��� ��� �� ������� �
��������� �������
 �� 	�� ���	��� ���� �� ������	� 	�� ���� ��	����� 	� �
�
��������� ����� ��� ��� � ����������� ������ ���
����� 	��� �	 	�� ������ � ������	�� �
 	�� ��� ��
	�� ���	 �� ����� -� ��	�� ����
��� 	�� ���	����
������	�� ��� A �	���	���! 	�� ���� � ���� 	� �������
	����	�� � ��� �� 	�� ����	 �� ����� -�

*�& �����%��2 %"%���0� 3#%"!��%��!%� -!�"
1��, . �"�" $����

%� 	�� ���	 ������� 	�� ���	���� ��������� � ���
����� 	� � ���� �������	� ����! ������	�� 	� ����	����

/	 � ���	��������� ������� ��� ���� �� ���
 ����
��	� ��������� ������� ��� �	 ���	����
 ��� ������ ������
����� ��� ��	 �������	 ���	 �� 	�� ���� ������ ���
��	�� ���	���� � ���� �� ����� @� ��� �������
������	� 	�� �����	���� �� ���� ��� ���	��� "��� "�##!
���� ��	���	 �	 	�� ���	���� ��������� 1�����2 ���
���� ���	����� ���� 	�� ������� ��� 	��� 	� �����	�
� ������� ����! ����� � �������	���� ������ ������
��
 ��
�� ���� 	� �� �������� %��	����
! 	�� ������	�
��� ���	�� � ���� �����	�� ��� ���� ����! ��� 	��� 	��
���	���� ������	�� �� ��� ���� 	��� ������ ���
����������	 �� 	�� ���� ��	��� ��� �� ��� �� �����
B�

%	 ��� ��� �� ������� ���� ����� B 	��	 ���	��
��� ��
 ��	 ��	��� ������ ���	����� �� 	�� �������

��
��� ���! �� ����� 	� ���� � ���� 	��	 ��	��� 	��
���	��� ��� ����	
 �� 	�� �������
 ��
��! � ����$
���	���� 	��	��
 ��
 �� �	�������

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

������ � &��
���	 �����	 �	�����
�� ����� �	�
��������
�� ���������

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
−0.01

0

0.01

0.02

0.03

0.04

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
−0.01

0

0.01

0.02

0.03

0.04

0.68
−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.68
−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.87 0.88 0.89 0.9 0.91 0.92
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.87 0.88 0.89 0.9 0.91 0.92
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

1.21 1.212 1.214 1.216 1.218 1.22 1.222 1.224 1.226 1.228 1.23
−0.14

−0.135

−0.13

−0.125

−0.12

−0.115

−0.11

1.21 1.212 1.214 1.216 1.218 1.22 1.222 1.224 1.226 1.228 1.23
−0.14

−0.135

−0.13

−0.125

−0.12

−0.115

−0.11

������ �� "
���	�� �� �	����� ������ �	� ��������
��
�
�����

4� �
	�����	� �����5�

��� �����	����� ���	���� ������	�� ��������� ����

���� �	����	��
 ����	 ��� 	��������� ��� �������
��	���� ����� %� ���	������! �	 ������ ������ ��
	�� ��Æ���	�� 	��	 ���� ���� 	��������� ��� �	���
���	���� %	 � ���������� 	� ������� ������	 	
��
��� �
���� ���� � ���� � ?9 "	�� ?9 ��� � ����
���	�
 ����� 	�	��#� '� ���� ��� ������� ��	 	�	 ��
������ �����	��� ���� ��� �������� 	�� ����	 �� ���
�
��� �� K	��� ��� ����	�� 	� 	�� ����	 �� �������	
����� ������� ��� ��� ����� ����	���	���

��$�����������	. ��� ���$ �� ���� �����	�� ��
���	 �
 0�30 ����	 ������ D,C@A�==)�=,�

��.�!��$��

()* '����� ��+� 13�������� 4���	��� �� 	�� L����
������ &���� :���	��� �� � 3��������� ��������
+���2 ������� �	
������������ ������! ���� ,!
)CBM)-,!)BD-

(,* J���$���� ��G�! 4��	���� ��4� 1����	��� N�����
��� 4������� &������ �� ��� 9��������2 �����

��� �	
������������ ������! ���� CD! ?C,M?D@!
)B@,

(?* 5����$���8
�� ����! %�����$� 4��� 1� O����
�	����� ��� �� 	�� '����� ���� ������	���2
������� �	
������������ ������! ����)?D! ?@AM
?B@!)BB-

(C* 5���
 �� �
������������ ������ �����������

���������� ��� �������� ����������� ��
��� ���
 �����!)BB-

(A* 0���$�� O�9� ���� ���������� ��������
4��������O�����! J�����!)BBB

(D* &��������� ��! 5���
 �� � 1K�	�����	��� ��
5����	�	����� �����2 ��������� ������� 	��

������ ����������� � �������! ���� C! BAM))-!
)B@@

(-* �������� O��� 1J������ O����	����� ������	���
�� L����%���	��� �����2
���! ����! ���

����! ���!! ���� C=!)D)-M)D?-! ,===

(@* ������		� K�&� 1� +��������� +���� ��� � 3��
���� ������	��� +�	��� �� 5����	�	����� ����
9
������2
���! ����! ����! ����! �����!!
���� DD! ?,?M??@!)B@-

(B* P���� &� 1��������� +�� L����	
 +�	����2
�"�� ������� �� �������#�
��������! ���� ,?!
)B?M,)@! ,==)

()=* J����	 0�O�! �������� O��� 1������ 5����	���
3����� �� ��������� +������� �������	��� 	� ?9

���� ������	����2 ���������� �	 ��� ����������

���� �� ��� "������������ ���	������ $%�����&��

���� �	 #������������ �����'��������� ������� ���

(�)�����$� ���� *+�*,� *--.� ��!������/���� 0���

���! ,==)

())* ���� 9��� 1L����	�	��� +����� ��� %��	���
+����2 "������������ ������� 	�� ���������

������� �� �����������! ���� C-! @@-MB=D! ,===

(),* J��$ E�:�! Q� �� 1�� ������	�� ��� ���������
��	���	���� �����2 ���������� ���������1!
���� -?!)M?D!)BBD

()?* 0�� 5�P�! 0� 4�R� 1� 3�� 4����� ��� 	�� ����
���	��� �� � ������ L�������	���� +���2
���

������ ��� ����������! ���� A,! @C-M@A-!)BBC

()C* 0�� ��! ��� J� 1K� 	�� 4���� �� ��	������� ����
J���	����2 ����������� �	
����������! ���� D?!
)C)M)AC!)BBC

()A* J����� +�! 5���
 �� � 1&�����	�� �� 	�� :��
����	 5����	��� 3����� +�	��� ��� 4���	����
,�9 +����2 2"
�� 0�����! ,==? "�� ��������
	���#

���������� ��	
� ��������� ��� ����

�	����� ����������

���� ��������� ���	
�� ������ �
����� �	���	�

��������� �	�
�� ���

����� �
��
�� �������� �� ������ ���
��������������
��
�����	� ���	��� ���������	
�� �����
���
� �� ����� ����
�
��������������	�����

��������

��� ����� ��	�
��	�� ��	��������� �������	������� ���� �� ���� �� ��� ������� ����� ����������� ����� ���
� ���� ������� �� ����������� ����� ������ ��� ���� ���� ��� �������� ������� ������� 	����� �� ����� �!����"�
�#������ � ���	�� �� ���� ��!������� 	������ � ���� 	����� �� ��	�� ��� ������ �������� �� 	��� #������$
������������ �� 	��	�	 ����
�����$ ���	�� ����$ �� ���� �� �	�������� � ���� ����� �� ���������� 	������ ���
�������� ����� �� ��	�� ��� 	��� #������ ����	�%����� �� �� ���� ���� �&���
��	� �� &� ����'����� ��������
��� ����	�%���� �� ��� 	��� ������� �	&�� �� &� �������� �	�������

��������� 	��
 ������� 	��
 ����	������� 	��
 �	���
���� ��	�������� �������	�������

�� �	��
�����
	

��� ������� ����� ����������� ����� (����) �� ��

����� �������� ������������$ � ����$ &� ������	��
��	����� ��	������� ���� � ���� ������ ����� ��
����� �!����"� *#������ � ��� ��	� ��	��� ���
��������%���� ��������	 ���� � ����� �� ��� ��������
������� ������� (���) ����	� +,-� ��� ��������	 ���
&�� ����� �� &� ����������� ���&�� ��� �������� ��

������� ���������� ������ ��� �������� �����������
�������� ������� �� ���������� �� ����� ����� ���	

�� ��	���! �� ���	������� ��'�������� ���� ���
�	�����&�� �� 	��� ���� �������� ��������� ����������
������ �������� ���� �� ���� ��� �./�� 	��� ��

������ ���� +0- �� ������ ����������� ��!������� ��
����������� 	����� ����� ���������� �������� ��� ��

�	���� &�� 	�� ���� ��� ���� #������ �� ���������
	����� 	������ 1� ��� ���&����� ������� ��� &��
����� ��� ����� 	��� ������ 	������ *	���������$
��	� ��	������� ���� ����� 	����� �!��&�� ����&��

���� ���� 	
������ ��� 	� �
���� �� ��� ��� ����
��� �������	��� �������

���� ������ 	�� ����� 	
������ ��� 	� �
���� ��
��� ��� ������ ���� ������
���� �����	�� ����� !�
"!�#$%

&�������$ ��������� ���� ��� ��� ����	� �� �� ���
����������� ���&�� ��� ��� ����������� ������

�� ���� ����� ���� �����$ � '������ �����#�� +�- ��
���� � ����� ����� ���	��� ������ ����������� �� &�
������	�� &� ������� ��� ���� �� ����&������ 2���
���� '����$ 	��� ����� ����������� ��� �&�� �� ��	

����� �� ��� ������� ���&��	 ��
��	�� � ��	� ���$
�������$ ��� �	������ ������� ����� �!���������$
���	��� ��� ���&��	 &����� ��� ������� ��
��	� ��
�������� �� ����� ��	����� 	�������� ��������$
����� ��� � 	������	 &� ����� ��� �� &� �&�����
&����� ��� ��
��	� �� �������� � ��	������ �� 	���
&����� ��� 	������� �� ��� �������� '��� ������ ��
�������� ����� �� � ����� �����	��� ����	��������
���� ��� ���&��	� �� ��� �������� '��� ������ �!�����
��� �������� ����� ��� ��� ������� ��� 	��� ������
�
��������$ ��� �� ��� ����&�� ����� �� ��� ���

�����%���� ��������	� �� ���� �������� ������$ ��� ��
�� �&������ 2� ��'� ��� ���������� �� � �� �� &� ���
��	� (�� ��) �� ����� ��� �� �� �&������

�� ��� ��� &�� �&������ ���� ��� �&���
��	� ����

����� � 	�� ����� ��	������� �� �������� �� ����

������ �� ��� 	���� ��� ��	� ��� &�� ���� ��

����� ���� �� ���������� 	����� �� ���� � ����

��	������ ���� �� �&��� &����� ��� ������� ���&��	
��
��	� �� �������� �� ������ ��� ��	� ����� �� ���

��� � �������&�� 	���$ �� ����� &� ������� �� ���
��������� ����� 	��� ���������� ���� � ������� ���� �
�����	��� �&���
��	�� � �	������� ����������� ��
������� ��� �������� ����������� &����� ��� �&���

��	� �� ������� 	��� ���������� +3- ��� ���������
4���� �����'�� ��� ������� 	��� ����������$ �� ����
� ���� ����� �� �	����� 	��� #������ ���� ������� ��
��� ������� ����������$ �������� � ����������� ����
���� � ������ ���&�&����� �� ���� �� ��	�������

� ���� ������� �������

� ��� �������� ������ +3-$ � ������ �� 	����� ��� ����

��� �� �����	�� ����� #������ 	������ ��� 	��� �	���

��� � �5����� �&���
��	�� ��� 	����� ���� �������
� � ����&�! ���	���� (��� 6����� ,) ���� �� �������

������ �� � ��	���'�� ����������� ���������� 6��� �����
(�/.$ �/6$ ��.$ �� ��6) ���� ���������$ ������

�� ���	 ��	&������ �� &��	7����� �!������� ��
�'������7'������� �� ��	�� ��� �	&�� �� ����� ��
� 	�����&�� �	&��$ ��� ������ ����� ������� �
8��� �� �� ��� ���� ������ ��� ��. ���� ��� ��������
&������ ������� ��� ������� �� �������� ���	 � ��������
��������� ��� ����� ������ ���� ��� 	��� �	������
	������ ����9

� ��	�	 ���	�� ���� ��%� (�*�)�� ���� �� ���
	��	�	 ���� ����� � ��� 	���$ �������
&������ ������ � ������$ ���� 	����� �� ����
���	 %��� �� �'���� 6�� ��� ����&�! ���	����$
��� �����!�	��� �������&�� ���� �� ���� 	����� ��
 �*� ������� ��� :�:::3: 	����� (����
������
�	����� ��� ���� ��� �� ������ � ���������� �	���
�&���
��	��)�

� �!�	�	 ���	�� ������� �	&�� (��1)�
���� �� ��� 	�!�	�	 #������������ ���	�� ��

����� �	&�� � ��� 	���� ��� #������������
������� �	&�� �� ��'�� �� ��� 	�!�	�	 ��

����� �	&�� �� �� �� ��� ���� �������� �� ���
#������������� ��� ������� �	&�� �� � �����!
�� ��� ��	 �� ��� �#����� �� ��� ��� ��8���� ����
������$ ������� &� ����� ��� ����� ���� 	�����
����� ���	 �� �� �'���� ��� �����!�	��� ��

�����&�� ���� �� &����� ,�: �� 0�:$ ���� ,�:
&��� ������ ��1 ������ ��� 0�: ���� �� �����
���������� �	��� �&���
��	���

�&��� �� ��� 	 ��	��� '�����(�
� 	� 	����
�� �
'���)
*��	
�� ��� ��'+	������ � '	�� 	�� 	�	�� �� ��� �	'�
'����(��	���, �� ��� 	� ���
� ��� ��� ���
��� +�������� ��
���� +	+�� -� ����,��.� ��	� �� ��
�� �� 	 +�����' �� �
��� �� ��� �� '	�� ��'+	������ 	����� ,��'����� '�����)
-� �	/� ��/���� 	 �
'��� �� ��	��� '������ �� �
++�	��
&���(�
� �
� ��
���� �� �	�� �	/� ��� ��
�� ���' 	�

���
�)

Z

Y

X

������ �� � ������� 	
�
	
��� �
�	 �� �	
 ������� �
�
��
���

� �!�	�	 ���	�� �	������� 	����� (��)�
��� �� &� ��� ���� �� ��� �
�� #������������ ��

�	�� � ��� �����
������ �� ��� 	���� ��� ���

	�� � ����� � ���� ���� ���	�� �� ���

��� ; �
�� ���

�� <��

�

�� ; 	�!
�

���

���� ; �	
�(��)�=�

����� =� �� ��� ������� ����� �� �� ���� ��� �

���� 	���� ���� 	����� �� �5������ � ��������
8�	�� � ���� &����� ��8���� #�������������� ��
���	�� � �� � ��� &������$ �� �� �� �������
� ��� ����������� ���� 	����� �� ��� 	����

��� �������� ��� ���	��� ����� ��� ��� ���������
���� 	����� ����� ���	 %��� �� �'���$ ���� �
�����!�	��� �������&�� ���� &����� %��� ��
>�:� 2�� �� �!����� >�:$ �&���
��	�� ���
�� &� ���������� �	����

� �!�	�	 ���	�� ������ ?���&�� (��?)� ����
�� ��� 	�!�	�	 ��� �� ��� ����� � ��� 	����
��� 	����� ����� ���	
,�: �� <,�:$ ���� � ��

���!�	��� �������&�� ���� �� :�3: �� ,�:� 2��
 ��? �� ���� ��� :�3:$ �&���
��	�� ��� �� &�
���������� �	����

����� 	������ ��@��� ��	� �� ��� &���� ���������� ��
���	����� 	��� #������9 ��%�$ �	�������$ ����$ ��
������ ������ �� ����� 	������ ����� 	������ �����
������ ���������� ��� ���� ���������� ���� �&���
��	�
�� ���� ����� ���� &�� ���� � ���� ������

��� �������� ����� +3- ����&������ ��� �	�������
�� ����� 	������ &� �������� � ��� �� 0> ����&�!

0 0.2 0.4 0.6 0.8 1 1.2

x 10
−6

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Unfiltered Pulse Abort Time

M
in

 P
rim

al
 C

on
di

tio
n

N
um

be
r

������ �� �����
 ����� �� ������� �
���

	����� �� �����	��� � �&���
��	� ��� ���� �� ���
	������ 6�� ���� �� ��� 0> 	����� �� 	�� ���������
������� 	��� #������ 	����� ������� *��� 	�����
����� ��$ � ���$ &� ������ ���� ��� �&���
��	�
��� ��� ���� 	��� �� ������ � ������� ����� �� �
���� 	����� �� � ���� ��������� �� �&���
��	�$ ���
������� ���� ���� ���� � ������� A ��� �����
���$ � ����� ��������� �� �&���
��	� ���� ���� �
���������� "�" ������� 6����� 0 ����� ��� �������
���� �&����� ��� ��� �!�	�	 ���	�� �������
1�	&�� 	������ ���� 	����� �!��&��� ��� "�" ������9
�� ��� 	��� ��� ���� #������ (�	��� ������� �	&��
������) ��� ��� �&���
��	� �� �������� �� ���
	����� (����%���� &���� �� ��� "�")� � ���� ����$
��� �&���
��	� �� �����	��� � ��8����� ����
����� 	��� #������ 	������� �� ��� 	��� ��� ����
#������ (����� ������� �	&���)$ ��� ����� � ���
������� ���� ��� � ��� �������� &���� �� ��� "�"� ����
�������� ���� ��� �&���
��	� �� ���������� �	��� ��
���� ���� �� ������ ��� �� 	��� ���	��� ����� ����
����� #������ (����� ������� �	&��)� �� � 	�����
�!��&��� � ����� "�" ������ � ��� ������� ����$ ��
�� ��'� � �		�
����� ���� ��� ��� 	�����$ �	���$
��� ��� �� ������ ��� ����� �&���
��	� �� ��������
�� ��� 	������ � ��� ���� �� ��� ��1 ������� ����$
��� �!�	���$ ��� �������&�� ���� �� �����!�	�����
&����� , �� 0�

��� ������ �������� ��� ����� 	����� �� ���������9

� B������ � 	��� ��� � ���� ���	����$

� ������	 � ����� ��$

� �� ��� �� �&���� (���	�������)$ ������� � ��
	��� �� ����� �� �������� �����

� �� ��� �� ���� �� �&��� ���	�������$ �����

���� � ��������� �� ������� �!������ � ���	� �� ���
�	&�� �� 	�
����� ���� ���������� 	�� &� �������
�� � ���� 	����� ���&��	 &������ &��� ��� 	�����
���� �� ��� ����� ���������� ��� ����� ��� ���������
����� �	������ �� �� ��� �� �������� ������ 	���
��� ��� ��������� ���������� A�� ������� ���� ���� ����
�	������ ���� �������� � 	��� ����� �������� ���
�&���
��	�$ ���� �������� ��� ���������� ���� ��� ��

������ ���� ����� 4������$ �� ������� ������ ��� ��	�
���� � 	�����$ ��� �������� 	���'�� �������� ��
��������9

� B������ � 	��� ��� � ���� ���	����$

� ��������� ��� #������ 	������ (�*�$ ���)$

� �� �� 	����� ���� ������� ��� �������&�� ����$
�	����� ��� 	��� � ������� ���� ���� ��� 	��

���� ��� �������&��$

� ������	 � ����� ��$ ���� ��� ���������

� ���� ��������$ ��� �������� ���� ���� �� ������
�����$ �� ��� �������� �������� 	��� ������ ��� ���
�������� ��������� ����	�� �� ��"� &��� 	��� ����� ��

����� � � ���
	������� �&����� ����� ��$ �� ������
���&�&�� �� ������ �� ������ ��� &����� 	����� &�

����� �� ��� ������� ���� ��� &��� 	����

��� ���� �� ��� ������ �� ������ ������������ ��
�� '� ���� �� �	����� ����� �&���
��	� � ���
��. (����� ����&�! .'������) ��$ �����$ ��� �����
����� &� 	������� ��� 	����� �� �	����� ��� ����

��� 	��� #������ 	������� � ���� ��$ �� �� &�������
���� � 	���������� ���� &� ��������� ���� �� &� ��

����� �� 	��� ��������� 	����� ���&��	� ���� ��	

	��� ����� � ��� 	������ �� ��	������ �� �����

�������� A�� ����� ��� �	������ ��� �&���
��	� ���
�	������ (��� �����������)$ ���� &�����$ �������
�����	��$ ��	����� �� ������ ������$ �� �����

�� ����	�� � ���� ����� �� ��'� ��� ���������� ��
�	�������

�� ��

���	� ��������

� ������� �� ����&�! 	��� (��� 6����� ,) ������� ��
��!������� ���	���� ��� ��!������� 	��� �� ����

���� &� '��� ������� #������������ 	����� � ��� &��	
�����
������ (� #������ ������) �� � ��� ������ �����

������ (� #������ �����)� ����� 	����� ��� " �����"
���� ��� &��	 �!�� �� ������ ��!�������

2� ��	���� ��� ������� � ���� ����� �� ��!���
0� &��	 �����
������ 	������ ��� �������� �����
������ ���� ����� �����
������� ����� ��� ���� ����
�� ����� �&���
��	��� C�0 �� ��� "&���" 	��� � ����$

������� �	������$ �� �������� � ��� ������� �&���

��	�� C�� �� ��� "�����" 	���$ ����� � ����������
� ��� &������� � ��� �&���
��	� ��� C�� �� �������
������ �� 	������� �	����� ��� ��� ����� 	������
6��� ������������� �����
������ 	����� ��� ���� �
6����� ��

A�� �������� �� �	������ �� ��� ����&�! 	���
��� ���������� ��� ������9 (,) �	���� ��� &��	
�����
������ 	��� �������� �� #������������ ���	���
(���� � ��� &����� ������ �� ��� �����
������
��� ���� '!��)$ �� (0) �	���� ��� ��!������� 	���
(������ ���� � ��� &����� �������� '!��)�

2� �� �� �	���� ��� ������ �����
������ 	��� (���
6����� 3) ���� �� ����� &� ��Æ���� �� �	����� ���
#������ �&����� � ���� ������� (��� 	����� ���
�	���� �� ����� ���������)� 6�� ��� ��	� �����$
�� �� �� ����	�� �� �	����� ��� #������ �� �� ��
��� ����� ������� 	������ 6�����$ ���� ��� �� 	���
�� � ��	��� ��������� �� ��� 0� �����
������ 	�����$
����� �� ������ �� &� ����� &� �	������ ��� ��!�������
	��� �� � ���� 0 �&���� 6�� 	��� ������ ���	������$
��� ������ �� ����� �������� �� �	���� ����� ���� ��
&� ��������� � � ���� &� ���� &����� � ���� �����
���� &� �!������ � ������ �����

� ��� ������� ����� ����� ���� ��!��� #������������
	����� �������� � ��� &��	 (#������
������) �����

������� 6�� ���� ���� �����
������$ ����� ��� ���
	����� �� ������� � ���� ����� ����� �� ����� &�
��� �������� �����9

� ���� ..� 1������ ��� #������������ �� ��� ��!

������� 	����� ��� �	������$

� ���� �.� ��� #������������ 	��� � ��� &��	
�����
������ �� �	������$ ��� ����� �� ������
��� ��!������� 	���� ��� ��!������� 	��� ��
�� �	�������

�� ��

���	� ��� ����

��
��������
	

� ���� ������ �� ��	���� ���� .. 	����� �� ����
�. 	����� �� �!����� �������� &��'�� �� 0� 	���
�	������ �� �	����� #������ (�� ���� �&���
��	�)�
�� ������ ��� �	������ �. 	�����$ �� '��� ��� ��

����� �	&�� �	������ +>-$ �� �	���	���� � ���
�./�� ����� ���� �	������ 	��	�%�� ��� ��������

���	� ���� ��� '�	� ��	� ����� �� 	� ���'��� ��� .���
	��) 0	���� ���
��������, ������

' '	+ �	� 	 ���,
�
�	����) 1� ���'��� �� ���� '��� �	� .��� 	��)

��� '��� ��'+��2 ,��'������ ��� '	� ����� ��� ��
�'���� ��'� �� 	�� �� ��� �
��	�� '�����(��
� �� '���
���� ��'	�� ����/	��) �� ��� ����� �	��(3� '������ 	��
���	��� ������ ��� ��� ����� �� �'���� ��� /��
'�)

ZY

X
ZY

X
ZY

X
ZY

X

������ �� �
�	
� �� �	
 ������
����� �� ���� �� � ��!
��� ��""��

Q
C

Q
C

2

������ 	� #������ ����� �
�	�

�&8������ ������ &� ������ �����! ��������9

� ;
�

��

(��) (,)

�����

(��) ;

��

���

���� (0)

��

��� ;
���� < �������
0���

(�)

���� �	������ �� ������� �� �	����� ���	�� �����
(����� �� ������ �����) ����� ������� �������
���	���� � ���������� ����� �������� ��� ���� �����
��� ����	�%���� �� ����� ��� �. 	����� ���� �����
�� ��� 	��	�	 �� � �

� ������ �������� �� ��� �. 	����� ������� ������
��5����� &����� ��� ��	������ �� �	������
	�����$ �� ��� ������ ��� �� ���� �� ���� ������
��5������ ��� 	��� ������� � ��� 	����� �������
��� 	������ � ��� ������� �����$ ��1$ �� $ ��
 ��?$ ���� ���������� ���� ��� ��� #������������
&��	 	������ ���� ��$ ���� ��� 0� 	������� ��
&� 	��� ������� � ���� �����$ �� ��
��&�� �����
	������ ��1
0�$ ��
0�$ �� ��?
0�� ���
 �*� 	����� � ��� �������� ����� ��� �� � 0�
	����� �� �� ���� ����	���� ���	 ��� ��!�������
	���� 6�� ��������� ��"�� ��������� � �� 0�
	�����$ �*�
0�$ ����� �� ��	����� ���� ���
��� #������������ &��	 	���� � ��������� 	�����$
������� ���	�� ������� �	&��$ ���1
0�$ ���
����� �� 	����� ������ � ��� ������� ������ �� ���
	������ �� &����� �������� ��� �5��� �� �������
�	&�� �	������ � �&���
��	��

2� ���� ������ �� �*�
0�$ ��1
0�$ ��
0�$
 ��?
0�$ �� ���1
0� � ��&��� ,$ 0$ �$ 3$ ��

> ��� &��� ��� ������ ��	������ (..) 	����� ��
��� ��� �����
������ �	������ (�.) 	�����$ ����
���� ��� ������ ������� �� �������� � �&���
��	��
��&�� D ����� ��� ����� �&���
��	� ��� &��� ���
��	������ �� �	������ 	������ ������� ��
��� ��!��� �����
������� �	������ �������� � �
�������� �&���
��	�$ � ������� ���� �� E,FG ���
������� ������� � �&���
��	� ��� 3:0F �� �
������� ����� ��� �&���
��	� �������� � ����� ��
	������� ��� �	������� �&���
��	� ��������� ���
�� �	������ � ����� �����
�������$ ��$ �� 	��� ��
EH�0F� 2� ���� ��� ���� �	������ �� ���������� ��
��������&�� ��� � �	������ ����� �&���
��	�� &��
���� &� ������� ���������

�� �������� &����� ���� �	������ ��� �������$
�� ������ � 6����� > ����� �� ������ ����� � ���
'�� 	������ ��1$ �� $ ���1$ �*� �� ��?
������ ������ ����� � �&���
��	�� *��� ��� ���

	�� ���������� �� � ����� �� ���� �� C�,� ���
����� ��������� ��� .. �������$ ����� ��� ����� ��
�� ���� ��� ���	�� �� ��� �. ��������

������ '��� �� ��� ���� ��� ���1$ �� ���� ����
���� 	����� ����� ������ ���������� ���� �� &������
��� ������� �	&�� �&8������ ������ ���� �� 	�

�	�%� ������ �� � ����� &��� �� ��� ������� ��

����� �	&�� ���� &� ���1� 1�!�$ ������� ���
���� ��� ��1� ��� �����
���� (�*) #������ �� ����
���� ������� �� ����� ��� ��� ����� ��1 ���������
(����$ ��� #������ �	������) ����� ��� ������ �&���

��	� ��������� I�� ���� � ��� �*
#������ ����
���� �&���
��	� ���������� ����� ��� �������� ����
�&���
��	�� ��������� *���� �� ��� ��!��� ��� ���
� ��� �* #������� ��	������$ ��� ����
���� (12)
#������ ������� �� ��� ��� ����� ��1 ��������
(����$ ��� #������ ���������) ����� ��� ������ �&���

��	� ���������� I�� � ��� 12
#������ ���� �&���

��	� ���������� �������� ���� ������ �&���
��	���
A�� �� �� (C��) ���� � ��� 12
#������� I�� �
��� 1* �� �2
#������� ���� �&���
��	� ����������
����� ��� ��������� ���� ��� ������ �&���
��	��
��������� ����� ���� ��� ��� � ��� �2
#������
�� '�� ��� � ��� 1*
#������� �����	�&��$ ���
� ��� �2 �� 1*
#������� ������ ��������� &�

����� ����� 	������ ��� �����	��� ��� ������ �&���

��	� ��������� ����� ��� �*� �� ��? ���� ��	

���� �������� C�,:�&��� ����� ��� �� ������ ������
� ���� ����� ��1 ��������� 	�������$ �&���
��	�
��������� ��������&���

�������� 4�� �� �� �!���� ��� &������� ��
C�,:�&��� (��� 6����� D ��� ��� .. �� �. 	�����)J
�� ��� '���� �����$ ��� 	��� ������� �� � ���

����� ��������� �����	 � ��� ����� ������ ��
��� &��	$ ��	&��� ���� � �������
���	����� (�����
&����
���������� ��&	�����) ��� ��� &��	 ������

 ��� �*�
0�

���� .. ���� �. F �����

C�, :�:::H: :�:::H0 <0�0
C�0 :�::,:K :�::,:>
,�H
C�0& :�::,:0 :�::,:� <,�:
C�� :�::,K> :�::,3�
,E��
C�> :�::,:K :�::,,E <,:��
C�>& :�::,:H :�::,:H <:�:
C�D :�:::K: :�:::H, <�:�:
C�K :�::,3� :�::,:,
0H�3
C�,:� :�:::�H :�:::�K
>�,
C�,:� :�:::�H :�:::3K <0:�>
C�,:� :�:::>> :�:::DK <0,�E
C�,, :�:::KH :�:::E0 <��E
C�,,� :�:::D: :�:::D: <:�:
C�,0 :�:::3: :�:::ED <,,>
C�,:�&��� :�:::�H :�:::�0
,E�:
C�,,&��� :�:::KH :�:::EK <��E

��� �� ��$���� �
��� �� ������
����� ���������
�%��
 �����	
� �
�	
��

��� .. �� �. 	����� ��� ����� ������������&��
� ��� '����� A�������� ���	 �������� � ��� �� ��
������ ����� ���� ��� ��� ����&�� ��5����� � ���
�. 	��� ����� �	������ ��� ������ � ��� �%�	�����
���� ��	����� ������ �� ��� &��	 ������ A���� ���

��&�� ����'��� ������ �� &� �������� &� ������ ��
��� 	������� 6����$ ��� ����� ���� � ��� 	��� ������
�� ��� �����
����� ���� ���� ���� ��	��� �����

���� ������� &� �	������ �� ���� ������ ���
��� ����� � �&���
��	�� ��� �*� 	����� �����
���� ��� 	��	�	 	��� ����
����� ��� �	��� � ���
.. 	��� �� 	��� �	����� &� �	������$ ���� �����
	���� ������ ������ ��� ��� �������� � �&���
��	��
��� �� 	������ ����� ��� �. 	��� �� �	������
��� ��� .. 	��� (� ���	� �� ���� ���������)� ����
������ ���� ������ ������� ��� �&���
��	�$ &�� ��

������$ ���� ��� ���Æ���� �� ������	� �����$ ��

����� ������ � ��� 	���� ��� 	��� ������ �!����

��� ��� ��� �������� � �&���
��	� �� ���� ��� ��������
� �*�$ ���������� ���� ���� �������� ��� ��� &��	
�����$ � �������� ����� � ����� ��� ������� �� �����

����� � ���	� �� ��������� � ��������� ��������� ���
�������� �&���
��	�$ �� ����� &� ������� �� �� �����
��� � ������ ���� �	������ ���� 	��� ��� �������
�	&�� ����� �������� ��� �&���
��	�$ &�� � �����
���� �� �!������� ����� &� ����� �� ���� ������
���� �������

������� 2� ���� �!�	�� C�,,&��� �� �����	��
��� �	������ ��� � �������� ������� �5��� � ���
�&���
��	�� 6����� K ����� ���� ��� 	�� ����� �
��� �	������ 	��� �� ��� �	�����	�� � ��? �����
������ ��� �� �� ��� #������������� � ��� ����� ���

��� �� ��� 	���� �� ��������� D�,F &�� ����

 ��� ��1
0�

���� .. ���� �. F �����

C�, ,�0: ,�03 <���
C�0 ,��E ,�0E
K�H
C�0& ,��E ,�0,
,0��
C�� 0�0H 0�>> <,,�3
C�> ,��: ,�0>
3�D
C�>& ,��, ,�0K
��,
C�D ,�EE ,��0
0H�E
C�K ,�3� ,�0D
,,�H
C�,:� ,�>� ,�>> <,��
C�,:� ��3H ��3H <:�:
C�,:� ,�3, ,�3D <��D
C�,, ,��K ,�3, <0�H
C�,,� ,�K0 ,�K� <:�D
C�,0 ,�D3 ,�3H
H�0
C�,:�&��� ,�>� ,�>0
:�D
C�,,&��� ,�E, ,�KH
,�:

��� �� ������� �
���� �� ������
����� ���������
�%��
 �����	
� �
�	
��

���� �� ���	 ��Æ���� �� ������ ��� ��� ��������
� �&���
��	�� ����$ �� �� �!� �� �	�����&�� �� �����

	�� � ������ ���	 ��� 	������ ���� ������� �	&��
�	������ ����� �������� ��� �&���
��	� � ���� �!�	

��� ���� ��� .. 	��� ��� � �&����� ������� ���&�&��
���� ����� ���� ������ &����� � ���� ���� �� �� ���
� ��� �������� ���� ��� &����� ������ �� ������ ���
������ ����� �� �� �	����� ��� ����� 	��� #�������

� ��		���$ ��� �	������ ����� ����������� � ����
������ ���$ '���$ ���� ������� �	&�� �	������ ��
���� ���������� � ����'����� �������� �&���
��	��
�����$ ��� 	���� �� ��� ����������� &�����
�&���
��	� �� ������ #������ 	������ �� ��������
&�� �� ��	������� �5������ � ��������� ��� �5���
�� � ���������� �	������ �������� � �&���
��	��
���� �� ��� &� ��� ����������� �� ��� ���� ���� �
��� �* �� 12
#������� �� ��� ��	���� ������ �� ��
�� ��� �� ��� 	���� ����� &� 	��� 	��� �5������
&� ������� ��������� 	������ �� �� ��	� �����
�5���$ ���� �� ������� �� ��� 	��� �� ��� �������$ ��
������� ��� ��������

�� ��������	 ��

���	�

�� �������� &����� ������� �� �� ��� ������ ��
������� �	&�� �	������ �� �������� �� ��������
�&���
��	�$ �� �	������ ��� ��	� ��!��� ����� ���

���� ���� ��&��"� �������� �	������� 2� &������
���� �� � ���� ��	������� &������ ��� C� 	����� ����
���� �������� � � ����! ��	��� ���� ��������
�	������ �� �� �!������ �� ����� �� �� ��� ����� ��
��� 	���� � �������$ �� ���� ��� �� 	��� ��� 	���

−200 0 200 400 600 800 1000 1200
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Percent Change in Abort−Time

P
er

ce
nt

 C
ha

ng
e

in
 A

P
C

N

NENW

SESW

NENW

SESW

NENW

SESW

−200 0 200 400 600 800 1000 1200
−40

−20

0

20

40

60

80

100

120

Percent Change in Abort−Time

P
er

ce
nt

 C
ha

ng
e

in
 M

P
E

S

NENW

SESW

NENW

SESW

−200 0 200 400 600 800 1000 1200
−30

−25

−20

−15

−10

−5

0

5

10

15

Percent Change in Abort−Time

P
er

ce
nt

 C
ha

ng
e

in
 M

P
C

N

NENW

SESW

−200 0 200 400 600 800 1000 1200
−100

−50

0

50

100

150

200

Percent Change in Abort−Time

P
er

ce
nt

 C
ha

ng
e

in
 M

P
S

M

NENW

SESW

−200 0 200 400 600 800 1000 1200
−15

−10

−5

0

5

10

15

Percent Change in Abort−Time

P
er

ce
nt

 C
ha

ng
e

in
 M

P
S

J

NENW

SESW

������ �� $&
�� �� ��������� �%��
 �����	��� ��
�����#��

ZY

X
ZY

X

������ �� #	
 '' ��� �' �
�	
� �� ��"(�����

ZY

X
ZY

X

������ �� #	
 '' ��� �' �
�	
� �� ��""����

 ��� ��
0�

���� .. ���� �. F �����

C�, >�E, D�3, <,:��
C�0 3��> 3�,K
3�,
C�0& 3�:> ��E3
>�0
C�� ��0H E�30 <,>D
C�> >�3: 3��:
0:�3
C�>& >�3� >���
,�E
C�D D�:K D�30 <>�E
C�K D��E ��3H
3>��
C�,:� H�0� 3�0>
>��H
C�,:� ,:�0 >�:>
>:�>
C�,:� E�0K 3�DK
3��>
C�,, >�KH D�,H <D�H
C�,,� E�:> ,:�: <03�0
C�,0 K�3K D�,>
,K�K
C�,:�&��� >�E: 3�E�
,D�D
C�,,&��� D�,, D�0,
D�,

��� �� ������� �
���� �� ������
����� ���������
�%��
 �����	
� �
�	
��

���� �	������� ��� &���� #������ �� ���� �	������
�� ��� 	��� ���� ������� �&���
��	� �� �5�������� ��
������� �	&�� �	������J

2� ���� ������ �� �*�
0�$ ��1
0�$ ��
0�$
 ��?
0�$ �� ���1
0� � ��&��� K$ E$ H$,:$ ��
,, ��� &��� ��� ������ ��	������ (..) 	�����
�� ��� ��� �����
������ ��������
�	������ (�.)
	�����$ ���� ���� ��� ������ ������� �� ��������
� �&���
��	�� ��&�� ,0 ����� ��� ����� �&���
��	�
��� &��� ��� ��	������ �� �	������ 	������
������� �� ��� ��!��� �����
 ������� �	������
�������� � � �������� �&���
��	�$ ��� ��	� �������
���� �� ��� �������� &� ������� �	&�� �	�������
��� ������� ������� � �&���
��	� ��� ���F ��
� ������� ����� ��� �&���
��	� �������� � ����� ��
	������� ��� �	������� �&���
��	� ��������� ���
�� �	������ � ����� �����
�������$ ��$ �� 	���
�� D,�KF� � ��! �� ��!��� �����
�������$ ��������
�	������ ��� 	��� �5������ ��� ������� �	&��
� �������� �&���
��	�� 2� ���� ��� ���� ��������
�	������ �� ���������� �� ��������&�� ��� � �	

������ ����� �&���
��	�� (�� ����� ��� �� ���� ��
����� ��� 	���)� �� ����������� &� 6����� H$ 	�����
����� �� �� �������� ������ �� ���� ���� #������
��$ � ����$ ������� ��� �&���
��	� (���&�&�� � ����
���� &������ 	��� 	��� ���� ��� ���������� �
��� �������� ���� �� ��� &��)�

� 6����� E$ �� ��� ��� ��	� ���� �� ����� ����
� 6����� > �� �!�	�� ��� ����������� &����� ���

������ ����� � ��1$ �� $ ���1$ �*� ��
 ��? �� ��������� ����� � �&���
��	�� ��� ����
�� ���1 ����� ���� 	��� �� ��� ��	� ��� ������� ��

 ��� ��?
0�

���� .. ���� �. F �����

C�, :�E�D :�E:H
��0
C�0 :�K0> :�KE� <E�:
C�0& :�K0K :�E0E <,��H
C�� :�:�H :�:�H <:�::
C�> :�K0H :�E:> <,:�3
C�>& :�KK: :�E:> <3�D
C�D :�K:D :�KD: <K�D
C�K :�K:K :�E:0 <,��3
C�,:� :�K>E :�DD:
,0�H
C�,:� :�KD: :�E,3 <K�,
C�,:� :�K,: :�DH3
0��
C�,, :�K�K :�K:E
��H
C�,,� :�DKH :�D:E
,:�>
C�,0 :�D:H :�DK� <,:�>
C�,:�&��� :�K>E :�KD3 <:�E
C�,,&��� :�K�K :�KD: <,3�>

��� 	� ���)��� �
���� �� ������
����� ���������
�%��
 �����	
� �
�	
��

����� �	&�� ���������� ��� ��� ���$ C�,:� ��
C�,,&��� ���� ��� �� ����� � ������� ���1� ���
������� � C�,,&��� �� � 	����� <:�HF �� �� &�
�!������ �� ��� �� ��� &����� ���� ��� ����� �� ���
	���� ��� ������� � C�,:� �� ������ ����� ��	�����
�� 	��� ����� ��� �� ����� &� �����&���� �� � ����
�	��� �� "������" ������� ��� &��	� ��� �5��� ��
�������� �	������ � ��1 �� ��� �� &� 	�����
����	� 2� ��� ���� � �	��� �	&�� �� ��� � ���
�* �� 12 #������� ��� ��1� ���� ��� 	��� ���
����� � ��� 1* #������ ��� ��1� 6�� �� ��
��� ��� � ��� ���� #�������$ &�� ���� 	��� �������
� ��� 1* #������ ����� �� ���� �� ����� �!�����

�� �
	�����
	

� ���� ����� �� �	������ ��!��� ����&�! �����
������
	������ ��� ��5���� �	������� ���� ����9 ����

��� �	&�� �� ��������� /��� �	������� ������
�������� �5������ � �������� ��� �&���
��	� ��	

����� �� ��� ��	������ 	������ A� ��� ��	������
	�����$ C�0 ��� ��� ������� �&���
��	� (,�,:�
:D)� A�
��� �	������ 	�����$ C�> ���� �������� �	������
��� ��� ������� �&���
��	� (,��D�
:D)� ���� �	����

�� ��� �&�� �� �	����� � ��� ������� &��� �&���
��	�
�������� ���� � �	������ &� 0��DF� ���� ������
�������� ����$ � ���� ��	��� 	���� ���&��	$ �� ��
�&��� ���� #������ 	����� ��� ������� �	�������
� ���� �����$ �	������ ���� ������ � ��� � �	��� �

������ � �&���
��	�� � ����� �� ���� ������ �� ��	��
��'��� ���� �	������ ���� &� � �	������ ����
� �������� �&���
��	� � ������ &������ ����� ���
	��� 	��� ��Æ���� ���� ���	������ �� 	��� ��� ���
�� �������� ��� ���� ������ ���� ���� &� ���������� ����

−200 0 200 400 600 800 1000 1200 1400 1600
−6

−4

−2

0

2

4

6

8

Percent Change in Abort−Time

P
er

ce
nt

 C
ha

ng
e

in
 A

P
C

N

NENW

SESW

−200 0 200 400 600 800 1000 1200 1400 1600
−40

−20

0

20

40

60

80

100

120

140

Percent Change in Abort−Time

P
er

ce
nt

 C
ha

ng
e

in
 M

P
E

S

NENW

SESW

−200 0 200 400 600 800 1000 1200 1400 1600
−40

−20

0

20

40

60

80

100

Percent Change in Abort−Time

P
er

ce
nt

 C
ha

ng
e

in
 M

P
C

N

NENW

SESW

−200 0 200 400 600 800 1000 1200 1400 1600
−100

−50

0

50

100

150

Percent Change in Abort−Time

P
er

ce
nt

 C
ha

ng
e

in
 M

P
S

M

NENW

SESW

−200 0 200 400 600 800 1000 1200 1400 1600
−60

−50

−40

−30

−20

−10

0

10

20

Percent Change in Abort−Time

P
er

ce
nt

 C
ha

ng
e

in
 M

P
S

J

NENW

SESW

������ �� $&
�� �� *�������� �����	��� �� �����#��

 ��� ���1
0�

���� .. ���� �. F �����

C�, ,�:E ,�:D
,�E
C�0 ,�:0 ,�:0 <:�:
C�0& ,�:0 ,�:0 <:�:
C�� ,�0, ,�0:
,�:
C�> ,�:0 ,�:0 <:�:
C�>& ,�:0 ,�:0 <:�:
C�D ,�:� ,�:0
,�:
C�K ,�:> ,�:3
,�:
C�,:� ,�0> ,�03
:�E
C�,:� 0�:> 0�::
0�3
C�,:� ,�,: ,�,: <:�:
C�,, ,�:K ,�:K <:�:
C�,,� ,�:D ,�:3
,�H
C�,0 ,�:D ,�:3
,�H
C�,:�&��� ,�0> ,�03
:�E
C�,,&��� ,�:E ,�:K
:�H

��� �� ������� �
��� �� ������
����� ���������
�%��
 �����	
� �
�	
��

��� ������� �� �� ��! 	������ A ��Æ���� ���	�

�����$ ��� ������$ ��	������ 	��� �� ������ �� &� ��
���������� ���� #������$ ������� 	��� ���� ��� ���� ��
��	� �� ��� ���� �5������ ��	������ ���� � ���� ������
�� ���� ����� �����$ ��� ��� ������ #������ �� ����

������ ����$ �	������ �� ������ � ��������&�� ����
� �&���
��	� (�::
3:: ������ � ������� �� � ��

��� �� 	������� � ��	� �����)�

�� �� �� ���� �� �	���� 	����� �� ������� ��� �&���

��	�$ �� �� ������ �� ��� ���� �	������ ������ &�
����� �� ���� ����� �����$ &��� ������� �	

&�� �� �������� �	������ �� &� �5������� /���
�	������� �������� ��� .. �&���
��	� ��� � ����
�������� ����� E:F �� ��� ��	�� ������� �	

&�� �	������ �������� ��� �&���
��	� � ������� ��
3::F ����� �������� �	������ �������� ��� �&���

��	� � ������� �� ���F� ��� �&���
��	� ��������
���� ������� �	&�� ��� &����� ��� ��� �&���

��	� �������� ���� �������� �	������ � D:F ��
��� ������ A ��� ����� ���$ �������� �	����

�� ���� ��� ������� �&���
��	� ���� ��� �� ��� 	���
���������� (C�>)� � �� ���� (C�,,&���)$ ������
������� �	&�� �� �������� �	������ ��� �&��
�� �	����� ��� .. �&���
��	�� A���$ �� �� ���
��� 	������ �� ������� ����� �� ��� �	������ 	�����
���� ���� ��� ������ �&���
��	�� 6�� �!�	���$ � C�,0$
��� ������� �	&��
�	������ 	��� ������� ��� &��

��� #������ ��� ��� �������� 	���9 ��1 �� ,�3H
��� 0�0,$ �� �� D�,> ��� E�,>$ �� ��? �� :�DK�
��� :�3>�$ ������������� �����$ ��� �&���
��	� ���
C�,0 ��� ��	��� ��! ��	�� ����� ��� ������� �	

&�� ��� ��� ��������� � 	�� �����$ �������$ �� ��
	��� ���� ����� ���	 ������ �� ��� 	������$ ����� ��

 ��� .. �&��� �. �&��� F �����

C�, 0��:�
:K >�3>�
:K <,�K�:
C�0 ,�,:�
:D ,�0,�
:D <,:�:
C�0& 0�DE�
:K H�0D�
:K <03>�>
C�� 0�D0�
,: 0��H�
,:
E�K
C�> 0�,>�
:K H�>K�
:K <�3>�,
C�>& 0�:0�
:K E��:�
:K <�,:�H
C�D 0�HD�
:E ��:,�
:K <H,D�H
C�K 0�>��
:E ��,D�
:K <,,3H
C�,:� 0�::�
:E ,�,:�
:K <3>:�:
C�,:� ,�3E�
:E ,�0:�
:K <K,:�:
C�,:� 0�K,�
:E ��,:�
:K <,:33
C�,, E�H��
:E 0�>>�
:K <,E>�D
C�,,� 0�E3�
E 0�ED�
:K <H:K�:
C�,0 0�,0�
:K 3�H:�
:K <,�,�,
C�,:�&��� ,�>0�
:K ,�D3�
:E LEH�0
C�,,&��� E�E,�
:E K�D��
:E
,��3

��� �� ��' ��������
� +��	 �
�
����
 �	���
 ��
������
����� ��������� �%��
������	
� �
�	
��

��� ��� �	������ 	������ ���� ���� ��� ������ �&���

��	�� 6�� �!�	���$ ��� �&���
��	� ��� C�,:�&��� ���
��	��� ����� ��	�� ����� ��� �������� �	������
��� ��� ������� �	&��$ ��� � ��	������ �� �����
	������ ���� �� ������ ������ ������������ � �����
�� �������� (�!���� �����&�� ��)� .���� �����
�� ��	����� �&������� ���� ���� � ���� 	���$ ��
���� �� ������ �����&�� �� �����&�� ������� ��� �&���

��	� � ������ ���� 8��� 	����� ������� ���� 	����
�������	�� �� ��� 	���'�� �������� ��������� (��

����&�� � ������ 0) ������ ���� ������&���

� �&����� ������ ��� �� �#���� ����� &� �� ��������
� ��&��� �&8������ ������ ����� ������ �5 �������
������� �� 	��� �	�������$ ����
�����$ �� ���	��
����� � ����� �� ��	����������� �	����� �� 	��
������� �� 	��� #������ �� �����&��� ���� ���� ���� &�
�!������ ���� ��� *�C.��* �������� +D-�

�� 	��� ���� ���� �� ��������� ����� �� ��� ����
	����� �5��� �� ���� ��� �� ������� � 	�������

��� ��� ��� �� �	����$ ���� �� �	����$ �� �� �

��������� ����� 	��� #������ �	�����	�� �����#���
���� ����	 �������� ��� 	���������� ���� &� ������
� 	��� ��Æ���� 	����� ���&��	� ���� ���� ��#����
����������� ��� �� �	������ �� 	��� #�������

���������

+,- 1��� ����� ��������� ��������� �������� ���

���� ������� ������ ��� �!����"� ���� *#��

���� .��� 1�
��������� .���������� B�����
������� �� ���
��������� �����	� ��� (,HH>) �3

3>�

ZY

X

������ �� #	
 �' �
�	 �� ��"(����� +	
� *��������
�����	
�

+0- ����� 1������ ��&�� �./�� ��� B�������
�������� ���
�� ����977��&������������7 (0::0)�

+�- ���� ���� �������� �� ��	������ ���
������ ��
��� ����������� ���� ������	����� ����$ 1�

	������ ������ B����$ ������� ����� �����

������$ ������� ���

+3- 1� 6������ �� �� M���$!���������� �� ���"�
���������� �� ���� #������$ ��1�0::�
,,�0�$
����� 1������ ��&���������$ ��&�#���#��$
0::��

+>- �� M���$ $�%������� ��� ����������� ����

!��
� &
����'�����$ ���� ?� 1�	��� ������ �
*���$ � �����$ 0::��

+D- � /�����$ �� ������$ �� M���$ �� ������$
�� �� ������$ ��� ���(���� ���� #������
)�
�������� ����*��$,0�� ���������� �����
I�����&��$ 0::��

 ��� �*�
0�

���� .. ���� �. F �����

C�, :�:::H: :�:::HK <K�E
C�0 :�::,:K :�::,,D <E�3
C�0& :�::,:0 :�::,:H <D�H
C�� :�::,K> :�::,>K
,:��
C�> :�::,:K :�::,,H <,,�0
C�>& :�::,:H :�::,,3 <3�D
C�D :�:::K: :�:::H0 <�,�3
C�K :�::,3� :�:::H,
�D�3
C�,:� :�:::�H :�:::0H
0>�D
C�,:� :�:::�H :�:::�D
K�K
C�,:� :�:::>> :�:::D> <,E�0
C�,, :�:::KH :�:::KH <:�:
C�,,� :�:::D: :�:::E0 <�D�K
C�,0 :�:::3: :�:::HD <,3:
C�,:�&��� :�:::�H :�:::0H
0>�D
C�,,&��� :�:::KH :�:::KH <:�:

��� �� ��$���� �
��� �� ������
����� *��������
�����	
� �
�	
��

 ��� ��1
0�

���� .. ���� �. F �����

C�, ,�0: ,�3: <,D�K
C�0 ,��E ,��E <:�:
C�0& ,��E ,��K
:�K
C�� 0�0H 0�>> <,,�3
C�> ,��: ,��: <:�:
C�>& ,��, ,�3, <K�D
C�D ,�EE ,�0,
�>�D
C�K ,�3� ,�>E <,:�>
C�,:� ,�>� ,�>0
:�D
C�,:� ��3H ��D0 <��K
C�,:� ,�3, ,�0H
E�>
C�,, ,��K ,�H: <�E�K
C�,,� ,�K0 ��0� <EK�E
C�,0 ,�D3 0�0, <�3�E
C�,:�&��� ,�>� ,�>H <��H
C�,,&��� ,�E, 0�,> <,E�E

��� �� ������� �
���� �� ������
����� *�������
�����	
� �
�	
��

 ��� ��
0�

���� .. ���� �. F �����

C�, >�E, D�E� <,K�D
C�0 3��> ��HE
E�>
C�0& 3�:> ��DH
E�H
C�� ��0H K�0D <,0,
C�> >�3: 3�03
0,�>
C�>& >�3� >��3
,�K
C�D D�:K 3�KK
0,�3
C�K D��E >�:>
0:�H
C�,:� H�0� 0�E:
DH�K
C�,:� ,:�0 3�D0
>3�K
C�,:� E�0K ��>�
>K��
C�,, >�KH H��3 <D,��
C�,,� E�:> ,:�H <�>�3
C�,0 K�3K E�,> <H�,
C�,:�&��� >�E: 0�KE
>0�,
C�,,&��� D�,, E�>3 <�H�E

��� �� ������� �
���� �� ������
����� *��������
�����	
� �
�	
��

 ��� ��?
0�

���� .. ���� �. F �����

C�, :�E�D :�K,D
,3�3
C�0 :�K0> :�K0�
0�E
C�0& :�K0K :�K�, <>�>
C�� :�:�H :�:�H <:�:
C�> :�K0H :�KK0 <>�H
C�>& :�KK: :�K,0
K�>
C�D :�K:D :�E�K <,E�D
C�K :�K:K :�DK:
>�0
C�,:� :�K>E :�DD:
,0�H
C�,:� :�KD: :�>H,
00�0
C�,:� :�K,: :�E:3 <,��0
C�,, :�K�K :�>0D
0E�D
C�,,� :�DKH :��,:
>3��
C�,0 :�D:H :�3>�
0>�D
C�,:�&��� :�K>E :�D�,
,D�E
C�,,&��� :�K�K :�>,:
�:�E

��� ��� ���)��� �
���� �� ������
����� *��������
�����	
� �
�	
��

 ��� ���1
0�

���� .. ���� �. F �����

C�, ,�:E ,�:�
3�D
C�0 ,�:0 ,�:0 <:�:
C�0& ,�:0 ,�:0 <:�:
C�� ,�0, ,�0, <:�:
C�> ,�:0 ,�:0 <:�:
C�>& ,�:0 ,�:0 <:�:
C�D ,�:� ,�:,
,�H
C�K ,�:> ,�:�
,�H
C�,:� ,�0> ,�03
:�E
C�,:� 0�:> 0�0: <K��
C�,:� ,�,: ,�:D
��D
C�,, ,�:K ,�:K <:�:
C�,,� ,�:D ,�:�
0�E
C�,0 ,�:D ,�:3
,�H
C�,:�&��� ,�0> ,�0> <:�:
C�,,&��� ,�:E ,�:H <:�H

��� ��� ������� �
��� �� ������
����� *��������
�����	
� �
�	
��

 ��� .. �&��� �. �&��� F �����

C�, 0��:�
:K D�D:�
:K <,EK
C�0 ,�,:�
:D 3�0,�
:K
D,�K
C�0& 0�DE�
:K 3�0D�
:K <>H�:
C�� 0�D0�
,: 0�D0�
,: <:�:
C�> 0�,>�
:K ,��D�
:D <>��
C�>& 0�:0�
:K >�>E�
:K <,KD
C�D 0�HD�
:E 0�,3�
:K <D0�
C�K 0�>��
:E ,�3��
:K <3D>
C�,:� 0�::�
:E 0�:��
:K <H,>
C�,:� ,�3E�
:E D�:��
:E <�:K
C�,:� 0�K,�
:E ,�DH�
:K <>03
C�,, E�H��
:E ,��0�
:K <3K�E
C�,,� 0�E3�
E 3�D:�
:K <,>0:
C�,0 0�,0�
:K E��D�
:E
D:�D
C�,:�&��� ,�>0�
:K ��:K�
:K <,:0
C�,,&��� E�E,�
:E E�0D�
:E
D�0

��� ��� ��' ��������
� +��	 �
�
����
 �	���
 ��
������
����� *��������������	
� �
�	
��

Session 5
Mesh Topology

���� �� ���� 	
�� �� � ��������

���� ����� �	
��	
�
� ����� �
�
�����

�

� ������ ����	
 ������ �����	 �	 �����	�� �����	�����

�� ���� ����� 	 !"	#��$ �	�	%� &����	

	���� ' ����(����#)*	��*	+�����),�
� -��.	�#�
/	 �	 0	�"����*�	 �	 0��$	#� �1�(�1��1

�� 2�3�� ����� 0��$	# �	�	%� &����	

	���� ' "�����)4�����"�5�+�

),�

��������

We return to the general edge flip in three dimensions. We demonstrate it is nothing other than a combination of
elementary flips. Various properties of this operator are discussed, including conditions that make a flip possible (thus
making a set of tets sharing an edge reducible). We discuss also about the existence of other edge based operators and
a number of applications are envisaged including an exotic use of some degree of anisotropy.

��������� 	�
������� ������� ���� ���� ���� ������ ������
����� �����
����� ��
�����
���� �����
����
���� �������� ��
����
��

�� �	��
�����
	 �	�
������
	�

The “2-3” flip considers 2 tetrahedra sharing a face
and replaces these elements by 3 tetrahedra sharing the
edge whose endpoints are opposite the common face,
this being made if the resulting pattern is still valid.
This flip is the immediate extension of the well-known
edge flip (the “2-2” flip or diagonal swaping) in two
dimensions. The “2-3” flip was discussed a long time
ago and used for various purposes including mesh op-
timization, boundary enforcement in Delaunay based
mesh generation method and some other mesh mod-
ifications. The “3-2” flip replacing, when valid, the
3 tets sharing an edge by means of 2 tets sharing a
face (that opposite the two endpoints of the above edge
endpoints) can be seen as the inverse of the “2-3” flip.
The general (of arbitrary order) flip dealing with tets
sharing a given edge is the natural extension to three
dimensions of the “2-2” flip. The complexity of such
flips is cubic (w.r.t. the number of interested tets) while
a subtle implementation leads to a almost linear time.

A number of authors, [10], [11], [12], [2], [3], [14],

etc., discussed about flips regarding, in specific, the
Delaunay triangulation construction in three dimen-
sions. They show that the “2-3” and “3-2” flips can
be used to optimize to some degree an arbitrary trian-
gulation with respect to the Delaunay criterion.

In this paper we discuss about the general flip and we
show that it is a combination of elementary “2-3” flips
together with a “3-2” or a “4-4” flip. This general flip
can be used to remove an edge in a mesh. We give
some conditions that make this removal (reduction)
possible. Also we discuss if there is any other type
of flips and, to conclude, we indicate various applica-
tions of such flips and we propose an anisotropic point
of view.

�� ���� �
 ��� ����� ����

The “2-3” flip considers the polyhedron made up of 2
tets sharing a face. If this polyhedron is convex, Fig-
ure 1 (left), or not, Figure 1 (right), there exists an al-
ternate tet configuration made up of 3 tets which covers
the same volume or such a solution is not valid. The

��

�

��

��

�

�

��

�

�� ��

������ �� Schematic of the configuration related to the 2
tets ������� and �������. Left, edge �� cuts the
triangle corresponding to the common face, right, the case
is not convex.

initial situation reads�� � �������� � and�� �
�������� � � The resulting situation, when valid,

��

��

��

�

�� ��

�

��

��

������ �� The polyhedron made up of the 2 tets
������� and �������, right, is convex and can be
replaced by means of the 3 tets ������, ������ and
������ , left.

reads :��
� � ������� �, ��

� � ������� � and
��

� � ������� � � In other words, we obtain ashell
made up of 3 elements, such a set being defined now.

Definition 1. Given an edge, ashell is the polyhe-
dron made up of the tets sharing this edge. The com-
mon edge is thegenerating edge of the shell. The ver-
tices other than the edge endpoints constitute thegen-
erating polygon of the shell. �

Note that the above polygon is ordered and, in general,
non planar. Note also that onlyclosed shells are dis-
cussed in the paper, eg the edge is fully surrounded by
tets.

From the topological point of view, the “2-3” flip re-
moves one edge and creates one face. To validate such
a flip, one has to check the positiveness of the 3 result-
ing tets (in other words, the polyhedron is convex or
�� passes through triangle������).

�� ���� �
 ��� ����� ����

The “3-2” flip considers the polyhedron made up of 3
tets sharing an edge. If the so-defined polyhedron is
convex, Figure 3 (left), or not, Figure 3 (right), there
exists a alternate valid configuration made up of 2 tets
which covers the same volume, Figure 4, or this case
is not valid. Note that in a non-convex case, edge��
does not cut the triangle whose vertices are other than
� and� while the supporting line of�� cuts it. In
other words, the plane of this triangle separates� from
� or not. The configuration where the plane is not a
separation plane is called aperfect Christmas tree and
cannot be remeshed.

Definition 2. A shell is aperfect Christmas tree if its
generating polygon is planar and does not separate the
two endpoints of its generating edge. �

��

�� ��

�

��

��
��

�

�

�

������ 	� Schematic of the configuration related to the
polyhedron made up of the 3 tets ������, ������ and
������ . left, edge �� cuts the triangle based on the 3
vertices other than � and �, right, the configuration is not
convex.

The initial situation reads :�� � ������� �,
�� � ������� � and �� � ������� � �
The resulting situation, when valid, reads :� �

� �
�������� �,��

� � �������� � � From the topo-
logical point of view, the “3-2” flip removes one face
and creates one edge. To validate such a flip, one has
to check the positiveness of the volume of the two re-
sulting tets (in other words,�� passes through triangle
������).

At a latter stage, we will discuss conditions that make
this flip possible.

�� ��� 	�������� ����� ����

A 4-tet shell simply reads (after permuting the in-
dices of its generating polygon) :�� � ������� �,
�� � ������� �, �� � ������� � and�� �

�

��

��

�� �� ��

��

�

� �

������
� The polyhedron made up of the 3 tets
������ , ������ and ������, left, is convex and
can be remeshed by means of the 2 tets �������� and
�������, right.

������� � � Note that such a shell can be a perfect
Christmas tree. Nevertheless, the generating polygon
is not necessarily planar and, even planar, is not neces-
sarily convex while the shell exists and is valid.

Definition 3. A shell is aChristmas tree if no mesh
of its generating polygon exists which separates�
from �. �

A shell is not a Christmas tree if a mesh of its generat-
ing polygon for which all the triangles are visible by�
and� exists and, as a consequence, edge�� cuts this
(separation) mesh at a unique point (inside a triangle
or on one triangle edge).

A perfect Christmas tree is then a peculiar Christmas
tree. A non-Christmas tree shell with a planar gen-
erating polygon has a separation plane for� and the
other points and another separation plane (possibly the
same) for� and the other points, thus the definition is
consistent.

��� ����� !" # ��$�$ %&�'' �% !" ����� #!� ���

�� ()%

As �� and�� share face������, a “2-3” flip can
be envisaged. If possible, a brute force reading leads
to � �� � ������� �, � �� � �������� � and
� �� � �������� � � to which we must add��

and��. Edge�� is now common to 3 elements, eg
� �� , �� and��. A “3-2” flip can be then envisaged.
From � �� � ������� �, �� � ������� � and
�� � ������� � �, we find, when valid,� �� �
�������� � and � �� � �������� � � The re-
sulting tets are then� �� � �������� � , � �� �
�������� � � �

�
� � �������� � and � �� �

�������� � � In other words, the��’s polygon is
now meshed by means of 2 triangles, eg������

and������. The solution is made up of 4 tets
formed by joining� and� with these 2 triangles.

While edge�� is no longer a mesh edge, we say we
have reduced the given shell (thus the term shell reduc-
tion).

Using a “2-3” flip on elements�� and��, we obtain
an alternate solution based on the two alternate faces
covering the polygon, eg������ and������.
Moreover, there is no more solutions, another “2-3”
flip leading to the same combinations.

��� �*)+%% ,'� -����$ +! +. # ��$�$ %&�'' �% !"

$&�%� ()%

There is a configuration for which exists an alternate
mesh which is not obtained in the above way (eg by
means of “2-3” and “3-2” flips).

Let us consider a convex shell (thus an alternate mesh
clearly exists) and let us assume that edge�� cuts
segment���� together with segment����, then
no “2-3” flip is valid. As a consequence, it is strictly
needed to define a “4-4” flip which directly constructs
the solution whose existence is known in advance.

��� �&� ����� ()

Here we follow a simple idea (used for the higher order
flips). We consider the��’s polygon, we mesh it by
means of triangles and, finally, we join these triangles
with vertices� and�. Therefore, there are at most 2
solutions.

/� 0�	���� ��0���
���� �����

Such flips consider shells made up of� elements.
Such a shell reads�� � ��������� � with � �
�� ���� � and ���� ��� �

/�� �+*, !#$ +! +. �'�*�!$#-1 ()% #!� � -��$

()

Let	� be a� tet shell, with evident while abusive no-
tations we can write	� � ��� ��� � 	��� � as soon
as�
 	, this being possible as one “2-3” flip is valid.
Therefore, if� � 	 such flips are valid, one can write
	� � ���	������� � 	� � and an ultimate “4-4” flip,
if valid, removes edge�� from this last shell. Using
the same argument as that for a “4-4” flip, we can say
that	� � ��� ����� ��� � 	� � is not, in general, a
way to access the expected solution, in specific, while
knowing it exists.

However, the computer writing, for� � 	, is much
more faster (while more technical) if we are given
in advance all the candidate solutions. This reduces
to enumerate all thea priori possible remeshing of a

polygon with� sides, see Figure 5 for� �
 and Fig-
ure 6 for� � �. Each triangle in these remeshing
is then connected with� and� to constructing the de-
sired tets. The direct flip is based on the data of the cat-

��
��

��

��

��

������ �� The 5 solutions related to a 5-side generating
polygon.

alogue of all thea priori possible solutions and leads
to pick up in this series one or more instead of apply-
ing a number of “2-3” flips so as to obtain a 3 (or 4)-tet
shell.

��

�� ��

��

�� ��

��

��

��

������ �� The 14 solutions for a 6-side generating poly-
gon. Top, 3 edges are incident to each ��, then, 2 edges are
incident to �� to �� and to �� where only 2 cases appear,
then, the other cases, related to �� and �� have already
being seen.

/�� �% # %&�'' -���� ,'� 2

Definition 4. A shell is reducible if there exists a
remeshing of the corresponding polyhedron where its
generating edge is no longer a tet edge (it has been re-
moved). �

On the fly, we already meet some conditions that make
a shell reducible or not.

� A perfect Christmas tree is not reducible.

� For � � �, a shell other than a (perfect) Christ-
mas tree is reducible (indeed, edge�� cuts the
generating triangle and, therefore, as� and� see
this triangle, the 2 solution tets are valid).

To continue the discussion, we have to consider the
general case (�
 � and a non planar polygon) and to
find conditions that make the shell reducible. We will
demonstrate that :

� if the polygon is planar, all shells other than a
(perfect) Christmas tree are reducible,

� for � � 	, the same occurs for a shell other than a
Christmas tree provided an additional condition,

� and this extents to an arbitrary�.

Planar polygon. For a planar generating polygon,
the proof is obvious. Any triangular meshes of the
polygon is such that each of its triangles is visible by�
and by� (as the plane separates these two points), thus
the resulting tets are valid (positive volumes). Note
that the fact that the polygon is convex or not is not an
issue. This ends the proof of reductibility for a shell
with a planar polygon.

Now, we will demonstrate that this proof can be ob-
tained by means of a number of “2-3” flips ended
by an unique “3-2” or “4-4” flip. Let� be the in-
tersection point of segment�� with the plane sup-
porting the polygon. If this polygon has more than
5 sides, there exists one index� such that triangles
���������� and������������ (after a modulo)
lie inside the polygon. As the intersection of these
2 triangles is point����, point � cannot belong to
these 2 triangles. As a consequence, applying a “2-
3” flip reduces by 1 the polygon. For example, if tri-
angle���������� does not contain� , a “2-3” flip
applied to tet�������� and�������� results in
tets����������� ���������� �����������

and, therefore, only one of these tets includes edge��.
Note that this flip removes triangle���� and forms
edge��������. This operation is possible because
triangle���������� separates� from � and edge
�������� cuts triangle����. Thus, point�� is no
longer a vertex of the generating polygon. We then re-
peat the same construction until a polygon with 3 or
4 sides remains where an ultimate “3-2” or “4-4” flip
applies.

Non planar polygon. In this case, the proof for the
reductibility is obvious while it is more subtle to see
that a combination of flips gives the solution (if valid).

The reductibility results from the definition of what a
Christmas tree is. For shells other than such a tree,
the existence of a mesh such that� and� are visible
by the triangles covering the polygon guarantees that
the corresponding tets are valid. Thus, edge�� is no
longer a mesh edge and the reductibility holds.

To see that the solutions results from a combination of
flips, we first look at the case� � 	 before noticing
that the general case reduces to the same simple situa-
tion.

For� � 	, assumed a non-Christmas tree case, there
exists a mesh made up of 2 triangles visible by� and
�. The generating edge necessarily cuts this mesh. If
the intersection falls inside one of these triangles the
other triangle allows for a “2-3” flips resulting in a 3-
tet shell, which is necessarily convex, thus one “3-2”
flips gives a solution. If the intersection is on the edge
common to these 2 triangles, a “4-4” flip gives a solu-
tion. Therefore, for� � 	, a shell is reducible.

For an arbitrary�, if the shell is reducible it exists
a triangular mesh of the generating polygon which
separates� from �. In this mesh exists (see below)
a triangle made up of three consecutive� �’s, say
����������, that does not cut�� (and separates
� from �). This property makes the “2-3” flip re-
moving triangle���� possible and reduces by 1 the
size of the generating polygon (indeed, vertex� � is
no longer a member of the updated polygon). As the
reduced shell remains reducible (with the remaining
triangles of the initial triangular mesh of the generat-
ing polygon), the same applies for the various reduced
configurations. Once these flips have been applied, it
remains a shell where� � � (thus reducible) or� � 	
for which the above discussion applies. To conclude,
a shell where�
 	 is reducible as soon as it is not a
Christmas tree.

To complete the proof, it is needed to see that above
triangle���������� exists. Let us consider a plane
orthogonal to�� cutting this segment. The projec-
tion of the polygon onto this plane is a simple polygon
(eg. non self-intersecting) surrounding��. Indeed,
this polygon is star-shaped with respect to the inter-
section point of the plane with segment�� because
all the tets in the shell with� and� have a positive
volume and the projection onto the plane of these tets
maintains the orientation of the boundary of the poly-
gon with respect to segment��.

In other words, the correctness of the orientation of
the projected polygon holds if the volume of the
��������’s has, for each of these tets, the same
sign than the volume of the tets���������� where��� is the projection of�� onto the plane. At a
factor 6, we have� � �� � � ��� � ����� � �

then we compute�� � �� � �

���� �

������ � � As

�

���� �

������ � � � ��� �

��
��� � � � ����� �

����

����� � � we have, for �� , 4 contributions, eg
�� � �

��
��� � ����� � which is null as�� is par-

allel to

��
���, �� � � ��� �

����
����� � which is

null as�� is parallel to

����
�����, and �

��
��� �

����

����� � which is also null as the 2 vectors in-
volved are parallel. Therefore�� � � , which ends
the proof about the orientation of the initial polygon
and the projected polygon.

Thus, it is sufficient to analyse the (planar) projected
configuration. As�
 	, there are at least 2 triangles
based on three consecutive vertices and edge�� can-
not cut both of them. Therefore, one of these triangles
allows for the solution.

In other words, if a shell is reducible, its reduction can
be obtained using a number of “2-3” flips with a “3-2”
or a “4-4” flip.

Note that in this reasoning we have considered the
solution (the above triangular mesh) to determine the
necessary “2-3” flips. Thus, these flips are not known
in advance and the complexity of the method relies in
effectively finding what flips must be applied.

A couple of remarks. All the previous discussion
(apart for the non reductibility) is no longer valid, in
practice, if one likes to include quality concerns (and
not only a volume check). Also, a more restrictive
definition of a Christmas tree can be advocated, eg,
a Christmas tree occurs when there are not two planes
(and not only a non planar triangular mesh) that sepa-
rates, one� and the other points, the other� and the
other points.

3� �
���4��� ������

To discuss the complexity of the flips, we first recall
the number of possible triangulations and the number
of different triangles covering the generating polygon
of an arbitrary shell. Then, we turn to the theoretical
complexity of a flip (for shell reduction or for mesh
optimization) before restricting ourselves to the actual
cases where� is relatively small (up to 6 or 7).

3�� 	�*,�- +. %+'�$ +!% 5�-%�% �

Table 1 gives��, the number of possible triangula-
tions as a function of�. It also gives��� the num-
ber of different triangles in one possible triangulation.
This concerns the topological point of view and not
any validity aspect.

� 3 4 5 6 7 8 9 10

�� 1 2 5 14 42 132 429 1 430

��� 1 4 10 20 35 56 84 120

���� �� ������ �� �������� �������������� ������
��� ������ �� ����� �� ��� ���������� ��������

We have�� � 	����� �� where the Catalan number
is involved which reads	����� � �������

�������� � On the

other hand,��� � 	�
� holds.

While being a classical result, we have pleasure to
establish the value of the Catalan number. To this
end, let us consider a (ordered) series of objects sim-
ply denoted as� � � � ��� � �. Let �� be the number
of combinations of the various different grouping of
those objects. To find a recursion about��, we can
write as a first case the grouping of��� with the
�� � other objects�� � ��� �� : �� � � � � � � � ��� � � �
as a second case, we consider the grouping of�� ��
with�� 	 ��� ��, eg�� � � � � � � � ��� � � � and, ..., as
case #�, we have�� � � � � ��� �� � �� � �� � ��� � � �
Thus,�� � �� � �� � ��� � ���� � in other words,
�� � ������ ������� ������� � ��� ������� �
and then�� �

����
�	� �� ���� holds. To exhibit an

explicit writing for��, we consider the polynomial as-
sociated with��, eg� ��� �

��
�	� �� �

� � A simple
calculation shows that� ���� ��� � � ��� � � � from

which we have� ��� � �������
� �

Let us expand
�
�� 	� nearby 0. To this end, we look

at the expansion of������ for a small�. We have���
��� � � � �� � ������

� �� � �����������
�� �� �

��� � ���������������������
�� �� � ��� �

For � � �
� and � � �	�, the coefficient of the

term in ��, for � not , reads : �
��
�
� �

�
� � ��� �� �

�� ��� � �� � � � �� ��	�� � after factorizing �
� , we

have : �
�� �

�
� �
���	�� ����� � ���� � 	� ��� �� � �� �

�� � or again� �
���

� �������
� ��� ��� � �� � or, finally,

� �
���

� �������
�������
� ��� ������ � or �� �

��
�������
������ � As in � ���

the coefficient of the term in�� is �, we have� ��� ���
�	�

�������
������ �� �

� � therefore, after identification,�� �
�������
�������� holds which gives the value of	����� (eg
��).

3�� 	�*,�- +. � 6�-�!$ $- #!"'�% 5�-%�% �

We have��� � 	�
� � � ����� �����

 � and,a priori,
the method is cubic in� thus in the number of needed

validity checks.

3�� �&�+-�$ �#' �+*)'�7 $1

The complexity involves three parts, one related to
constructing the list of the�� candidate solutions, the
second related to exhibit the number of different tri-
angles for the generating polygon,��� and, finally,
the cost needed to validate such or such solution with
respect to the purpose (reductibility, optimization or
whatever).

��, the number of candidate triangulations of a shell
increases as an exponential in�, thus the cost to ex-
hibit these triangulations isa priori non polynomial.
Therefore, optimizing a shell is non polynomial. How-
ever, if we consider only the triangulations star-shaped
with respect to one of the vertices in the polygon,��

becomes linear in�.

Edge flips for reduction purpose has a non-polynomial
cost. Indeed, the triangular mesh solution gives the or-
der in which the “2-3” flips must be applied and this
solution must be exhibited among the�� cases. How-
ever, in the planar case, the cost is only quadratic, in
fact, we can consider every three consecutive vertices
in the polygon leading to a triangle which allows for a
“2-3” flip and the resulting polygon is reduced by one,
then, the same applies.

In the non-planar case, this simple procedure does not
apply because it is not proved that reducing by one a
reducible shell results in a shell which is still reducible.
In fact, simple cases can be constructed where apply-
ing a flip may results in a non-flippable reduced shell
(while being reducible before). This suggests defining
an order when choosing a flip to maintain a reducible
shell at each step until the final reduction.

3�� �+*)�$�- %%��%

Reducing the effective cost of a flip is achieved by
a rapid rejection of as manya priori candidate solu-
tions as possible when evaluating the various cases.
A simple idea allows for this. We just have to clas-
sify the candidate triangles as a function of their fre-
quency, Figure 7. Therefore, a negative analyse of one
(at most 2) tets related to one such triangle allows to
immediately reject a number of cases. In the example
in the figure, rejecting triangle�� in case�� leads to
reject case��� and thus triangle�� (and related tets)
are never considered. Moreover, instead of consider-
ing case�� and then the next case, triangles will be
checked following the above classification. Clearly,
the higher order the shell the higher benefit. In this
way, analyzing all the possible cases is unlikely to be
possible. Actually, only shell of order up to 6 are of
real interest and the cost is neglictible. In this case, the

��

��

��

��

��

��

��
��

�� ��

��
��

�� ��
��

��

�� ��

��

��

��	

�� ��� ����

���

������ �� The 5 solutions related to a 5-side polygon with
frequency classification.

full list of the candidate solutions is made in advance
(by hand) and thus is a null cost process (while being
non polynomial in general).

8�
���� ����� 2

As soon as the generating polygon is not a planar poly-
gon and has at least 4 points, it is possible to construct
tets with positive volume whose vertices are 4 of these
points. The simpler example concerns a 4-tet shell.

If tet ��������� � is positive, this shell can
be possibly written as a polyhedron with 5 tets,
��������� � �������� � �������� �
and�������� � �������� � �

If ��������� � is negative, the writing is
��������� � �������� � �������� �
and�������� � �������� � �

Is it a new flip ? No, it is not, to be convinced, con-
sider the last remeshing and compare it to the second
writing already seen (in Section about the “4-4” flip) :
�������� � �������� � �������� �
and �������� � � A “2-3” flip applied to
�������� � and �������� � with the
common face ����� results in the 3 tets
��������� � �������� � �������� �.

Thus the 5-tet solution is obtained after applying a “2-
3” flip (which is often possible as the 4��’s are not
planar) to 2 tets in the classical solution. So it is for
�
 	.

9� ���� ����� 2

Edge flips remove an edge, a question is then to decide
if exists similar transformations which remove a face
(which could be seen as aface removal operator).

An idea is to find such a transformation as the inverse
of an edge flip. Indeed, the “2-3” flip , inverse to a

“3-2” flip, seems to be an example of such a transfor-
mation and thus each edge flip,�
 �, should have a
corresponding face flip.

Actually, designing a face flip reduces to find 2 points
� and� and a polygon made up of faces that see these
2 points. This implies some properties about these
faces.

Let � be a vertex of tet�� and let�� be its opposite
face in this tet (�� � ���� �). Let�� be the tet shar-
ing face�� with ��. Point�, opposite this face in��

defines with� segment��. If �� cuts��, we return
to a known case (2 tets sharing a face) where a “2-3”
flip applies which removes face�� and construct edge
��. If segment�� does not cut��, we find the tets cut
by this segment. After some conditions we return to a
pattern that can be seen as the inverse of an edge flip.

Above conditions reduces to one condition :

� either there is only one tet face cut by��,

� or�� cuts one edge,��, common to a number of
tets whose other vertices are� and�.

�

�

�

�

� �

�

�

������ �� Some local situations for segment ��. Left, the
2 possible cases, i) 2 elements exist sharing a face cut by ��
such that the opposite vertex is � in one and � in the other,
ii) segment �� cuts an edge which defines a shell where the
other vertices are � and �. Right, segment �� cuts several
tets thus making this case not candidate for a “face” flip.

As a consequence, the related polygon is either made
up of the vertices of the cut face or made up of the
vertices of the 2 faces sharing edge��.

In other words, all the other cases are not candidate
to a flip thus reducing the field of applications of such
an (face flip) operator. For completeness, however, it
must be noticed that some peculiar meshes exhibit can-
didate cases.

To end, let us remark in the case of a “2-3” flip, in
a convex case, that the polygon isa priori made up
of the ordered list of the vertices of the common face
but, after some conditions, it could be augmented by
some neighbouring faces so as to arrive to a larger pat-
tern, Figure 9. The aim is here to increase a quality

criterion, let us think to a case where�� cuts triangle
������ close to edge����.

��

�

��

��

�

�� ��

�

��

��

�

������ �� Enlarging the polygon candidate for a “2-3”
flip. While a priori reduced to 3 vertices, another vertex is
added together with 2 tets having the requested property.

:� �	��
��
��� �����

In this section, we introduce an exotic use of edge flips
in an anisotropic context. To this end and for simplic-
ity, we return to the “2-3” flip. We extent this operator
to an anisotropic context. Then we show how this sim-
ple operator applies in the crucial boundary enforce-
ment step in a Delaunay based mesh generator (while
being usable for other purposes).

From the topological point of view, nothing new in this
case. The simple underlying idea is to govern the flip
by introducing an anisotropic quality function.

Therefore we are concerned with an “optimization”
problem where the quality function must be defined.
Let us recall a quality function used for mesh optimiza-
tion in a classical (eg isotropic) case. The function
which has our favor, for such a point of view, reads

�	 � ����
�

��
� where� �

�

�
�	�

 �
� with � the

length of edge #� in tet�, �	 the volume of tet�
and���� a normalization coefficient.

Let us develop an anisotropic quality function based on
the above expression. To this end, we introduce� the
matrix corresponding to the anisotropic metric in hand,
then��	 � ����
�

��
�

� with ��	 � !������	 and

� �

�

�
�	�

� �� �� where �� �
�
" #���#�
 �

symbol" �� �
 standing for the dot product while
#� is the vector related to edge #� in tet�. For the
sake of simplicity, we assume the matrix to be constant
over�.

The envisioned application concerns the tedious
boundary enforcement in a Delaunay based mesh gen-
eration method. It is known that such a process is
mainly based on edge flips (at least in the approach
we have proposed a number of years ago). The idea
(which is so simple but took about 10 years to be ma-
tured !) trivially consists in governing such flips using
a local and temporary defined metric based on the edge
we like to create.

The above anisotropic metric (matrix) is then defined
in accordance. Let us recall that�, a general met-
ric, reads as a� 	 � symmetric positive definite ma-
trix which can be also written as� � �� �� � with
� an orthogonal matrix and� a diagonal matrix with
positive entries.

Therefore, if#$ is the sought edge, we define the met-
ric as

� �
#$

� �

�� �

�

 �

�
��

 �
�
��

�� � (1)

%� � ��

and %� such that " %� � %�
�

 and
%�
 � � and, finally,%� � �����
������� with

& "" �. From%�� %� et%�, we define

� � � �%�� %�� %�� �

Thus� is well defined and enjoys the good proper-
ties.

Note that this definition allows to artificially make
points# and$ closer while the other points are, tem-
porarily, made farther. Also the direction of the vector
supporting edge#$ is favored.

In [9] (in french) we show how this trivial method is
used and reduces the cost of the boundary enforce-
ment step included in a Delaunay based mesh gener-
ation method.

�;� ���������
	�

Edge flips allow for a variety of applications among
which we select what follow.

�;�� ��$ *�%& +)$ * <#$ +!

Edge flips (together with node repositioning) is one of
the tool used for tet mesh optimization purpose, [1].
All (internal) edge are considered as candidate for a
flip.

Criterion is no longer the volume positiveness but a
quality function. As already mentioned, a rapid rejec-
tion of the unlikely suitable solutions is crucial leading
to a rather effective method with a low cost (in specific
as compared with the cost of node repositioning). In
this way, optimizing a large number of tets takes only
a couple of seconds (��
 sec for a mesh with�
 ��	
tets,	� sec. for	� �� tets in our computer imple-
mentation).

�;�� ��$ *�%& ��'#�! %#$ +!

In this section, we turn to twoa priori different ques-
tions. One could be “is it possible to replace the De-
launay kernel, [6], by just locally splitting the element
within which falls the point under insertion and then
applying a series of edge flips”. The other could be
to see “if edge flips allow to make an arbitrary mesh a
Delaunay mesh”.

Direct point insertion plus edge flips. Such a
method perfectly runs in two dimensions. Inserting a
point reduces to find the triangle(s) within which the
point falls, split this triangle(s) into 3 (4) sub-triangles
and apply a series of edge flips until the Delaunay cri-
terion is locally satisfied. Is it the case in three di-
mensions ? This problem has been discussed in [12]

and [11] which consider the configurations of 5 dis-
tinct non-coplanar points. In [11], an algorithm us-
ing low order edge flips is proposed which assumes
that the point insertion follows a peculiar order: the
current point to be inserted must be outside the con-
vex hull of the already inserted points. In the general
case, this problem appears to be still open. However
we think that this problem can be translated in another
one which says that some point to point connections
are missing while some others are to be deleted. The
idea could be to remove the extra connections while re-
creating the missing ones using flips. The key would
be to prove that flips never lead to a non Delaunay con-
figuration which is no longer “flippable”.

Delaunisation of an arbitrary mesh. We are given
an arbitrary mesh (eg non Delaunay) and we like to ap-
ply a number of edge flips so as to arrive to a Delaunay
mesh1.

1Thus the neologism “Delaunisation”.

This is known in two dimensions for atriangulation2

and it is also true for amesh not for the Delaunay cri-
terion but for a constrained variant of this property. Is
it the case in three dimensions ?

In [10] is given a 3D example for which using “2-3”,
“3-2” and “4-4” flips to fullfil the Delaunay criterion
does not complete a Delaunay triangulation. The best
we can do is to conjecture that applying such flips even
with a Delaunay criterion violation result in a Delau-
nay triangulation.

The same question for a meshing problem is much
more tedious since constrained entities (must) exist. In
this case, it is not safe to formulate any conjecture.

In other words, this question seems to be still open.

�;�� �+�!�#-1 �!.+-��*�!$! # ��'#�!#1

,#%�� *�%&

As partially evocated, a natural use of edge flips is to
remove edges (and faces) in a tet mesh and to create
alternate edges and faces. This is the key point (while
being not sufficient) in the method we proposed in the
mesh generator developed at INRIA, [5], [7].

�;�� �! %+$-+) � *�%& !"

In this application, we are given a classical (thus
isotropic) tet mesh and we like to introduce some de-
gree of anisotropy in some regions, [13]. The “2-3” flip
appears to be attractive to handle such a problem. Let
us consider 2 adjacent tets where the common face has
a nice quality (following an isotropic quality function).
Clearly, in this pattern (common face������ and
opposite points� and�), the distance between� and
� is larger than the other distances from point to point.
Flipping the common face and constructing edge��
reduces to artificially make those points closer while
the other are put farthest, [9], and, actually, this opera-
tion introduce some degree of anisotropy in the mesh.
Indeed, such a flip can be seen as an anisotropic opti-
mization, thus a way to optimize a mesh with respect
to an anisotropic metric.

We have then in hand a simple and low cost method
which introduces some anisotropy in a given mesh.
Nevertheless, the sole use of “2-3” flips results in con-
structing 3-tet shells which, as well known, are under-
connected (there are not enough tets around an edge).
Therefore, this sole operator is not fully satisfactory
and higher order flips must be envisaged.

Notice, to end the discussion, that constructing
anisotropic meshes in this way is an alternate solution

2We assume the reader familiar with the difference between a

triangulation problem and a meshing problem.

to a direct method (see [8], in french, for such a direct
approach).

��� �
	�����
	 �	� ������ =
��

We demonstrated that the natural extension of the “2-
2” flip in two dimensions is the edge flips discussed
in this paper. We showed it is nothing other than a
combination of elementary flips. Various properties
of this operator were discussed, including conditions
that make a flip possible (thus making a shell of tets
reducible). We considered also complexity issues for
different purposes (reductibility, optimization, ...). We
discussed also about the existence of other edge based
operators and a number of applications were envisaged
including exotic uses of some degree of anisotropy.

Future works may include computer implementation
of anisotropic edge flips (as needed in a general
anisotropic mesh generation method), also, a number
of applications can be envisaged (as a perspicacious
reader can easily imagine !).

������	���

[1] E. BRIÈRE DE L’I SLE AND P.L. GEORGE, Op-
timization of tetrahedral meshes,IMA Volumes in
Mathematics and its Applications, I. Babuska, W.D.
Henshaw, J.E. Oliger, J.E. Flaherty, J.E. Hopcroft and
T. Tezduyar (Eds.),75, 97-128, 1995.

[2] H. EDELSBRUNNER, Algorithms in Combinatorial
Geometry, 10, EATCS Monographs on Theoretical
Computer Science, Springler-Verlag, 1987.

[3] N. FERGUSON, Delaunay edge swapping in three di-
mensions,Technical Report, Institute for Numerical
Computation and Analysis, Dublin, Ireland, 1987.

[4] P.J. FREY AND P.L. GEORGE(2000),Mesh gener-
ation. application to finite elements, Hermès Science
Publishing, Paris-Oxford.

[5] P.L. GEORGE, Improvement on Delaunay based 3D
automatic mesh generator,Finite Elements in Analy-
sis and Design, 25(3-4), 297-317, 1997.

[6] P.L. GEORGE AND H. BOROUCHAKI (1997), De-
launay triangulation and meshing. Applications to fi-
nite elements, Hermès Science, Paris.

[7] P.L. GEORGE, F. HECHT AND E. SALTEL , Au-
tomatic mesh generator with specified boundary,
Comp. Meth. in Appl. Mech. and Eng., 92, 269-288,
1991.

[8] P.L. GEORGE ET H. BOROUCHAKI, Premières
expériences de maillage automatique par une
méthode de Delaunay anisotrope en trois dimensions,
RT INRIA n� 272, 2002.

[9] P.L. GEORGE, Sur une bascule tridimensionnelle
anisotrope et ses applications,RT INRIA n� 273,
2002.

[10] B. JOE, Three-dimensionnal triangulations from lo-
cal transformations,SIAM J. Sci. Stat. Comput.,
10(4), 718-741, 1989.

[11] B. JOE, Construction of three-dimensional Delaunay
triangulations using local transformations,Comput.
Aided Geom. Design, 8, 123-142, 1991.

[12] C.L. LAWSON, Properties of n-dimensional triangu-
lations,Computer Aided Geometric Design, 3 , 231-
246, 1986.

[13] C.C. PAIN , A.P. HUMPLEBY, C.R.E.DE OLIVEIRA
AND A.J.H. GODDARD, Tetrahedral mesh optimi-
sation and adaptivity for steady-state and transient
finite element calculations,Computer Methods in
Appl. Mechanics and Engineering, 190, 3771-3796,
2001.

[14] D.F. WATSON, Computing the n-dimensional Delau-
nay Tesselation with applications to Vorono¨ı poly-
topes,Computer Journal, 24(2), 167-172, 1981

INCREASING THE NUMBER AND VOLUME OF HEXAHEDRAL AND
PRISM ELEMENTS IN A HEX-DOMINANT MESH BY TOPOLOGICAL

TRANSFORMATIONS

Soji Yamakawa1 and Kenji Shimada2

The Department of Mechanical Engineering, Carnegie Mellon University,
1soji@andrew.cmu.edu

2shimada@cmu.edu

ABSTRACT

This paper describes a new method for increasing the number and the volume of hexahedral and prism elements in a hex-
dominant mesh by topological transformations. The method takes as input a hex-dominant mesh consisting of hexahedrons,
prisms, pyramids and tetrahedrons and modifies the mesh to increase the number and the volume of hexahedrons and prisms
while maintaining the relaxed conformity criteria, which allows a connection from two tetrahedrons to a quadrilateral face of a
hexahedron or a prism. If a hex-dominant mesh satisfies the relaxed conformity criteria, it can be used in the finite element
analysis by applying an error reduction scheme on non-conforming faces [1-3], inserting pyramids on non-conforming faces [4],
or converting the mesh to an all-hex mesh by a template method [5, 6]. With more hexahedrons and prisms in a hex-dominant
mesh, a more accurate finite element solution can be obtained in a shorter time. Hence the proposed method increases the
practical value of a hex-dominant mesh. Several experiments showed the number of hexahedrons increased by about 10% to
20%, yielding hex-dominant meshes with 70% to 90% hexahedron volume ratio.

Keywords: hex-dominant mesh, topological transformation

1. INTRODUCTION

This paper describes a new method for increasing the
number and the volume of hexahedral elements in a hex-
dominant mesh by transforming elements. In general, a
hex-dominant mesh yields a more accurate finite element
solution with a shorter computational time than a
tetrahedral mesh with the same degrees of freedom, and is
easier to create automatically than an all-hex mesh.
However, even with an equal degrees of freedom, the
accuracy and computational time of the finite element
analysis depends on the ratio of the number and the volume
of hexahedrons included in the mesh; increasing the
number of hexahedrons increases the accuracy of the
solution and decreases the computational time. Hence, it is
important to create a hex-dominant mesh with as many
hexahedrons as possible and with as much volume as
possible being hexahedrons. Or, if possible, a post-

process for a hex-dominant mesh would be useful to
increase the number and volume of hexahedrons. (Please
note that applying subdivision patterns used in [7-9]
increases the number of hexahedrons, but it does not
increase the total volume filled by hexahedrons.)

The proposed method takes as input a hex-dominant mesh
consisting of hexahedrons, prisms, pyramids and
tetrahedrons, and increases the number and the volume of
hexahedrons and prisms while maintaining the relaxed
conformity criteria, which allows a connection from two
tetrahedrons to a quadrilateral face of a hexahedron or a
prism. The details of the relaxed conformity criteria are
discussed in Section 3. The method first subdivides prisms
and pyramids included in the input mesh into tetrahedrons.
Then, the method applies sequences of topological
transformations (explained in Section 4) to increase the
number of hexahedrons. Some of the remaining
tetrahedrons are then merged and converted to prisms [10].
If the mesh must conform, pyramid elements can be

inserted between tetrahedrons and a quadrilateral face of a
hexahedron or a prism via the method presented by Owen
et al. [4].

The organization of the paper is as follows. Section 2
reviews previous work of hex-dominant mesh generation.
Section 3 discusses the relaxed conformity criteria and
gives a definition of a hex-dominant mesh which is dealt
with in the proposed method. Section 4 describes three
types of topological transformations that modifies some
elements while maintaining the relaxed conformity criteria.
Section 5 presents a strategy for applying the
transformations to increase the number and volume of
hexahedrons. Section 6 gives some results of the method,
followed by discussions in Section 7 and conclusions in
Section 8.

2. RELATED RESEARCH

A few hex-dominant mesh generation techniques have been
published. Meyers et. al [11] and Tuchinsky and Clark [12]
present a method that creates a hex-dominant mesh by
expanding the plastering method, which is presented by
Blacker and Meyers [13]. Their method creates
hexahedrons from the boundary inward by the plastering
method, and if the plastering method cannot fill entire
volume with hexahedrons, their method fills the remaining
volume with tetrahedrons.

Owen and Saigal present an algorithm called H-Morph
[14], which converts a tetrahedral mesh to a hex-dominant
mesh by creating hex elements one by one starting from
domain boundaries and moving inward. The method
always maintains a valid hexahedron-tetrahedron mixed
mesh during the process.

Meshkat and Talmor present an algorithm that converts a
tetrahedral mesh into a hex-dominant mesh based on the
graph theory [15]. Their method takes a tetrahedral mesh
as input and creates a graph that represents the topology of
the tetrahedral mesh. Their method then searches for a
pattern that can be converted to a hex or a prism in the
graph, and when a pattern is found, a new hex or a new
prism is created, and the graph is updated accordingly.

Yamakawa and Shimada present a method that first creates
good node locations for a hex-dominant mesh by packing
rectangular solid cells in the target geometric domain. A
tetrahedral mesh is then created using the node obtained by
the packing. Finally, the tetrahedral mesh is converted to a
hex-dominant mesh by merging some tetrahedrons [10].

There is a highly effective post-process for a tetrahedral
mesh called local transformation [16], which improves the
quality of a tetrahedral mesh, though, no such method has
been published for a hex-dominant mesh. Bern and
Eppstein present one method of transforming hexahedral
elements [17]. However, it is unclear if their method can
improve the quality of an all-hex mesh or a hex-dominant
mesh.

3. RELAXED CONFORMITY CRITERIA

The topological transformations described in Section 4 deal
with a hex-dominant mesh that satisfies the relaxed
conformity criteria. The criteria allows a connection
between two tetrahedrons and a hexahedron or a prism
through a quadrilateral face. The purpose of the relaxed
conformity criteria is to increase the applicability of the
mesh to the finite element analysis and relieve the burden
of hex-dominant mesh generation. The traditional
conformity criterion demands that an interface between two
elements be identical and that the interface must not be
shared by a third element. A tetrahedron thus cannot be
directly connected to a hexahedron by a face because a
hexahedron has only quadrilateral faces, and a tetrahedron
has only triangular faces; this condition makes a hex-
dominant mesh very difficult to create. To relieve the
burden of hex-dominant mesh generation, the relaxed
conformity criteria is introduced, and it allows connection
between two triangular faces of two tetrahedrons to a
quadrilateral face of a hexahedron by sharing the four
nodes. Such a quadrilateral face connected to two
triangular faces is called a non-conforming face, or more
explicitly, a non-conforming quadrilateral.

Although the relaxed conformity criteria has been
implicitly used [1-3, 12, 15], a clear definition of the
relaxed conformity criteria has not been given; here we
propose a definition of the relaxed conformity conditions.

Condition 1. For a non-conforming quadrilateral, there
must be exactly two tetrahedrons that each
has only one triangle sharing three of the four
nodes of the non-conforming quadrilateral.
The quadrilateral obtained by merging the
two triangles must be equal to the non-
conforming quadrilateral.

Condition 2. A diagonal of a non-conforming quadrilateral
must not be an edge of another quadrilateral.

Condition 3. If two quadrilaterals share only two nodes,
the two quadrilaterals must share an edge (i.e.,
sharing only a diagonal is not permissible.)

Condition 4. Two quadrilaterals must not share only three
nodes.

For example, the case illustrated in Figure 1 (a) violates
Conditions 1 and 4 because the left hexahedron is
connected to the right hexahedron and the tetrahedron
between the two hexahedrons through a quadrilateral face,
and the quadrilateral of the right face of the left hexahedron
and a quadrilateral of the left face of the right hexahedron
shares only three nodes. The case illustrated in Figure 1 (b)
violates Condition 1 because only one tetrahedron is
connected to the right-hand side quadrilateral of the
hexahedron, and half of the quadrilateral is exposed to the
exterior of the mesh. The case illustrated in Figure 1 (c)
violates Condition 1 because the right-hand side
quadrilateral of the top hexahedron is connected to three
tetrahedrons, and the right-hand side quadrilateral of the
bottom hexahedron is connected to four tetrahedrons. The
case illustrated in Figure 1 (d) violates Conditions 2 and 3

because an edge of a quadrilateral is lying on the diagonal
of another quadrilateral. The case illustrated in Figure 1 (e)
violates Condition 3 because the right-hand side
quadrilateral of the left hexahedron and the left-hand side
quadrilateral of the right hexahedron share two nodes, but
do not share an edge.

(a) Violating conditions 1
and 4

(b) Violating condition 1

(c) Violating 1

(d) Violating 2 and 3 (e) Violating 3

Figure 1 Examples of violation of the relaxed
conformity conditions

If a hex-dominant mesh satisfies the four relaxed
conformity conditions, it can be used in the finite element
analysis by:

Method 1. Inserting a pyramid on each non-conforming
quadrilaterals to recover perfect conformity via
the method presented by Owen et al. [4],

Method 2. Applying an error reduction scheme, such as
MPCs [1, 2] or Dohrmann et al.’s [3], or

Method 3. Converting it to an all-hex mesh by applying
conversion templates, such as HEXHOOP
templates [5] or Geode template [6]. (Geode
template requires another condition in addition
to the relaxed conformity criteria to be
applicable; all non-conforming quadrilaterals
must form a topological ball or terminate at the
boundary. Nonetheless, satisfying the relaxed
conformity criteria makes Geode template more
likely to be applicable.)

Applicability of the above methods also depends on a finite
element solver. Method 1 can be applied when a solver can
take pyramid elements. Method 2 can be applied when a

solver is capable of imposing an error reduction scheme.
Method 3 can be applied when a solver is not too restrictive
about the quality of the all-hex mesh converted from a hex-
dominant mesh. Nonetheless, satisfying the relaxed
conformity criteria makes a hex-dominant mesh more
likely to be applicable to the finite element analysis.

The next section shows three types of topological
transformations for a hex-dominant mesh that transform
elements while maintaining the relaxed conformity criteria.

4. TOPOLOGICAL TRANSFORMATIONS
FOR A HEX-DOMINANT MESH

This section explains three types of topological
transformations developed in our research: (1) edge-
collapse, (2) node insertion, and (3) shear. Each
transformation is performed while maintaining the relaxed
conformity criteria defined in Section 3. Applying these
transformations systematically increases the number and
volume of hexahedrons in a hex-dominant mesh. The
strategy of applying these transformations is explained later
in Section 5.

4.1. Edge-collapse transformation
The edge-collapse transformation collapses an edge that is
used only by tetrahedrons. All tetrahedrons using the edge
are deleted and the two nodes of the edge are joined into
one node. If the two nodes of the edge are not used by any
hexahedrons, the transformation can be easily
accomplished by merging two nodes into one and deleting
all degenerating tetrahedrons. However, if one of the nodes
of the edge is used by a hexahedron, the relaxed conformity
criteria may be violated as a result of the transformation,
and thus the program must check for the violation.

When the relaxed conformity criteria are violated as a
result of the edge-collapse transformation, the violation
may be resolved by applying a subsequent edge-collapse
transformation. Figure 2 shows an example of such
resolution. Figure 2 (a) shows a portion of a mesh, two
hexahedrons and three tetrahedrons between them. When
edge CF is collapsed, the relaxed conformity criteria are
violated because quadrilaterals ABC’D and ADC’E shares
only three nodes as shown in Figure 2 (b). To resolve the
violation, edge BE must be collapsed as shown in Figure 2
(c). The second edge-collapse transformation may yield
another violation of the relaxed conformity criteria, and if
so, the method attempts to resolve the violation by applying
an additional edge-collapse transformation. Thus, one
edge-collapse transformation may yield a series of the
edge-collapse transformations, which continue until all
violations are resolved. However, the violation is not
always resolved by applying a series of the transformations,
and if a violation cannot be resolved in the end, the series
of the transformations must be cancelled.

Figure 2 Edge-collapse transformation: Resolving
a violation of the relaxed conformity criteria by a

series of edge-collapse transformations.

4.2. Node insertion
The node insertion transformation adds a node on an edge
and subdivides elements using the edge. If a target edge
(an edge on which a node is inserted) is used only by
tetrahedrons, each tetrahedron using the edge is simply
subdivided into two tetrahedrons by a triangle formed by
the node inserted on the edge and the two nodes of the
original tetrahedron that are not connected to the edge.

Inserting a node on an edge used by a hexahedron, however,
is not easily accomplished because four subdivision
patterns are possible; the appropriate pattern must be
chosen for a configuration around the hexahedron, or the
transformation cannot be applied if none of the patterns fits
the configuration. As shown in Figure 3, when node X is
inserted on edge FG of hexahedron ABCDEFGH, the
hexahedron can split into four possible subdivision
patterns:

(1) one hexahedron ABCDEFXH and one tetrahedron
CHGX as shown in Figure 3 (a),

(2) one hexahedron ABCDEFXH and two tetrahedrons
DHGX and CDGX as shown in Figure 3 (b),

(3) one hexahedron ABCDEXGH and one tetrahedron
BEXF as shown in Figure 3 (c), and

(4) one hexahedron ABCDEXGH and two tetrahedrons
AEXF and BAXF as shown in Figure 3 (d).

To distinguish these patterns, a subdivision pattern is
denoted as PQ-Rn, which means a node is inserted on edge
PQ, and R becomes a node of a new tetrahedron (where R
is equal to either P or Q), and n new tetrahedrons are
created by the node insertion. Subdivision pattern (1) is
thus denoted as FG-G1, pattern (2) FG-G2, pattern (3)
FG-F1 and pattern (4) FG-F2.

To apply pattern PQ-Rn, the face of the hexahedron using
node R and not using edge PQ must be either a non-
conforming quadrilateral or a quadrilateral exposed to the
exterior of the mesh. For example, if pattern EH-H1 or
EH-H2 is applied to the mesh shown in Figure 4,
quadrilaterals DCGX and DCGH will share only three
nodes after the node insertion, and condition (4) of the
relaxed conformity criteria will be violated.

In addition, to apply pattern PQ-Rn, if a quadrilateral face
of the hexahedron using edge PQ is a non-conforming
quadrilateral, one of the edges of the two tetrahedrons
connected to the quadrilateral face lying on a diagonal of
the quadrilateral face must not use node R. For example,
when two tetrahedrons ADBT and DCBT are connected to
face ABCD as shown in Figure 5, applying pattern AB-Bn
yields a violation of condition (1) of the relaxed conformity
criteria because a non-conforming quadrilateral AXCD will
not be connected to exactly two tetrahedrons by faces.

If all hexahedrons using edge PQ satisfy the above
conditions for pattern PQ-Rn (n can vary across the
hexahedrons), a node can be inserted on edge PQ. Note
that yet the appropriate n must be chosen. If the
quadrilateral face using node R and not using edge PQ is a
non-conforming quadrilateral, one of the edges of the two
tetrahedrons connected to the quadrilateral face must be
lying on a diagonal of the quadrilateral face. If the edge of
the tetrahedrons lying on a diagonal of the quadrilateral
face is using node R, n must be 2 as shown in Figure 6 (a).
Otherwise, n must be 1 as shown in Figure 6 (b).

(a) FG-G1 (b) FG-G2

(c) FG-F1 (d) FG-F2

Figure 3 Four possible subdivision patterns when
inserting a node on an edge used by a

hexahedron

A

B

C
D

E

F

A

B

C’

D

E

A

B’

D
C’

C

G

A

B

D

E

F

H

X

A

B

C

D

E

F

G
H

X

G

CA

B

D

E

F

H

X

A

B

C

D

E

F

G

H

X

(a) (b)

(c)

Figure 4 Node insertion transformation: Applying
EH-X1 or EH-X2 to this mesh yields violation of

the relaxed conformity criteria

Figure 5 Node insertion transformation: The two
tetrahedrons connected to face ABCD must not

have edge BD

If the quadrilateral face using node R and not using edge
PQ is exposed to the exterior of the mesh, n must be 2, or a
quadrilateral face of the new hexahedron will be connected
to only one tetrahedron, creating a violation of condition
(1) of the relaxed conformity criteria.

4.3. Shear transformation
The shear transformation shears a hexahedron by re-
connecting a hexahedron and tetrahedrons sharing an edge
and/or a diagonal with one of the six faces of the
hexahedron. Suppose some tetrahedrons sharing an edge
and/or a diagonal of a face of a hexahedron can be merged
and converted to a prism. For example, tetrahedrons JFEI,
IEDF and EADF shown in Figure 7 (a) are sharing an edge
and/or a diagonal of quadrilateral IFAD of hexahedron
ABCDFGHI and can be merged and converted to a prism.
Now the hexahedron can be split into two prisms by a
quadrilateral formed by connecting two edges: (1) an edge
connecting the two triangles of the pseudo-prism and being
shared by the pseudo-prism and the hexahedron, and (2) the
opposite edge of edge (1) in the hexahedron. In Figure 7
(a), edge (1) can be either ID or FA, and the quadrilateral
can be IDBG or FACH respectively. One of the two
prisms that came from a hexahedron shares a quadrilateral
face with the pseudo-prism and can be merged with the
pseudo-prism to become a hexahedron. The other prism

must be split into tetrahedrons while maintaining the
relaxed conformity criteria. If quadrilateral IDBG is
chosen to split the original hexahedron ABCDFGHI in
Figure 7 (a), three tetrahedrons DBCG, DGCH, DGHI,
and a hexahedron ABDEFGIJ are created as shown in
Figure 7 (b).

The shear transformation splits two quadrilateral faces of a
hexahedron into triangles by adding a diagonal edge. In
Figure 7 (a), quadrilaterals HIDC and CBGH are split.
There are two possible tessellations for each quadrilateral.
However, when such a quadrilateral is a non-conforming
quadrilateral, only one of the two tessellations can conform
two tetrahedrons connected to the quadrilateral. In such a
case, an appropriate tessellation must be chosen, and three
new tetrahedrons must conform to such a tessellation.

One shear transformation may yield subsequent shear
transformations when a sheared quadrilateral face of the
hexahedron is connected to another hexahedron. For
example, if the shear transformation is applied to
hexahedron DABCIFGH of Figure 8 (a) and transformed
into hexahedron ABDEFGIJ as shown in Figure 8 (b),
quadrilaterals JIGF and IHGF violate the relaxed
conformity criteria because the two quadrilaterals share
only three nodes. To resolve this violation, the shear
transformation must be applied to the adjacent hexahedron
connected to quadrilateral IHGF as shown in Figure 8 (c).
Furthermore, the second shear transformation may yield the
third shear transformation, and the series of transformations
continues until all violations are resolved, or the series of
transformations must be cancelled if a violation cannot
finally be resolved.

(a) n must be two in this case.

(b) n must be one in this case.

Figure 6 In a PQ-Rn transformation, n is
constrained by the tetrahedrons connected to the

quadrilateral face using node R and not using
edge PQ

A
B

C
D

E
F

G
H

X

P

Q=R

P

Q=R

A

B
D

C
X

T

Face AXCD
violates Condition
1 of the relaxed
conformity criteria

(a) Before applying the
shear transformation

(b) After applying the shear
transformation

Figure 7 The shear transformation: shearing
hexahedron ABCDIFGH to ABDEJFGI

5. INCREASING HEXAHEDRONS VIA
TOPOLOGICAL TRANSFORMATIONS

This section explains three typical patterns in which the
number and the volume of hexahedrons are increased by
applying the topological transformations explained in
Section 4. The pattern shown in Figure 9 (a) can be solved
either by collapsing edge HI or inserting a node on edge
AD. Figure 9 (a) shows a portion of a hex-dominant mesh
consisting of a hexahedron on the right and tetrahedrons
filling the remainder of the portion. If tetrahedrons left of
quadrilateral CDHG in Figure 9 (a), are converted to
hexahedron ABCDEFGH, quadrilaterals CDHG and
CDIG share only three nodes violating the relaxed
conformity criteria. If node X is inserted on edge AD as
shown in Figure 9 (b), tetrahedrons left of quadrilateral
XCGH can be converted to hexahedron ABCXEFGH, and
tetrahedrons filling between hexahedrons ABCXEFGH
and DCKJIGML can be converted to a prism. Another
resolution for this case is to collapse edge HI. If edge HI is
collapsed into node Y as shown in Figure 9 (c),
tetrahedrons left of DCGY can be converted to hexahedron
ABCDEFGY.

Figure 10 (a) shows a pattern in which some tetrahedrons
are trapped between two hexahedrons on the left and right.
An extra node is needed to convert the tetrahedrons to a
hexahedron, or a node must be deleted to convert
tetrahedrons to a prism. Since the volume between the two
hexahedrons is enclosed by four quadrilaterals and two
triangles, we call it a 4Q2T pattern. The 4Q2T pattern
shown in Figure 10 (a) can be resolved by inserting a node
on either edge JK as shown in Figure 10 (b) or IJ as shown
in Figure 10 (c). If a node is inserted on edge JK or IJ,
tetrahedrons between the two hexahedrons will be
converted to a hexahedron. Another resolution is achieved
by collapsing edge BC as shown in Figure 10 (d) or MN as
shown in Figure 10 (e). If edge BC or MN is collapsed,
tetrahedrons between the two hexahedrons will be
converted to a prism.

(a) Initial configuration

(b) After shearing
DABCIFGH to

ABDEFGIJ: Violation of
the relaxed conformity

criteria must be resolved by
a subsequent shear

transformation

(c) Resolving a violation of
the relaxed conformity
criteria by applying the
shear transformation to

another hexahedron

Figure 8 One shear transformation may yield
subsequent shear transformations (not all internal

edges are drawn).

(a) Before applying a
transformation

(b) Resolution by inserting
a node on edge AD

(c) Resolution by collapsing
edge HI

Figure 9 A case that can be solved either by
inserting a node on edge AD or collapsing edge HI

(not all internal edges are drawn).

E

A
B

C
D

F
G

H I
J

A B
C

D E

F
G

H

I J

E

A
B

C
D

F G
H I

J

E

A
B

C
D

F G
H I

J

E

A
B

C
D

F G
H

I J

A
B

C

D

E

F
G

H
I

J
K

L
M

A
B

C

D

E

F
G

Y

J
K

L
M

A
B

C

D

E

F
G

H
I

J
K

L
M

X

(a) 4Q2T pattern between
two hexahedrons

(b) Resolution by inserting
a node on edge JK

(c) Resolution by inserting a
node on edge IJ

(d) Resolution by collapsing
edge BC

(e) Resolution by collapsing
edge MN

Figure 10 Resolving a 4Q2T pattern (not all
internal edges are drawn)

Figure 11 shows a pattern that can be resolved by the shear
transformation. Figure 11 shows three rows of elements,
the top row has two hexahedrons on the left and right, and
the mid row has a hexahedron on the left, and the bottom
row has two hexahedrons on the left, and the remaining
portion is filled with tetrahedrons. If tetrahedrons left of
GIDB in the mid row are converted to hexahedron
AEDBFJIG, quadrilateral FJIG shares only three nodes
with the bottom face of the right hexahedron in the top row,
and if tetrahedrons right of GJEB in the middle row are
converted to hexahedron BEDCGJIH, quadrilateral BEDC
shares only three nodes with the top quadrilateral of the
right hexahedron in the bottom row; either case creates a
violation of the relaxed conformity criteria.

If the right hexahedron in the top row is sheared so that the
top row pattern matches the bottom row, tetrahedrons left
of GIDB in the middle row can be converted to hexahedron
AEDBFJIG, and the remaining tetrahedrons will be
converted to prisms as shown in Figure 11 (b). Or if the
right hexahedron in the bottom row is sheared so that the
bottom row pattern matches the top row, tetrahedrons right
of GJEB in the middle row can be converted to hexahedron
BEDCGJIH and remaining tetrahedrons will be converted
to prisms as shown in Figure 11 (c).

A pattern sometimes appears as a combination of the above
basic patterns. A sequence of transformations can often
resolve such patterns.

Figure 11 A case that can be solved by the shear
transformation (not all edges are drawn)

6. RESULTS

Figure 12, Figure 13, and Figure 14 show experimental
results of the method. For each example, an input hex-
dominant mesh is created by the method presented in [10].
Each example includes screenshots of hex-dominant
meshes before and after applying the transformations,
remaining tetrahedrons before and after applying the
transformations, statistics before and after applying the
transformations.

In these example cases, the percentage of the number and
volume of hexahedrons increases, and the number and
volume of tetrahedrons is reduced by the transformations.
The percentage of the number of hexahedrons increases
from 30% to 50% in the hex-dominant mesh shown in
Figure 12, from 32% to 46% in the hex-dominant mesh
shown in Figure 13, from 25% to 34% in the hex-dominant
mesh shown in Figure 14, and from 33% to 43% in the hex-
dominant mesh shown in Figure 15. The percentage of the
volume of hexahedrons increases from 67% to 82% in the
hex-dominant mesh shown in Figure 12, from 70% to 80%
in the hex-dominant mesh shown in Figure 13, from 66% to
76% in the hex-dominant mesh shown in Figure 14, and
from 71% to 80% in the hex-dominant mesh shown in
Figure 15.

A B C D

E F G H

I
J K

L M N P

D

K

A B C

E F G H

I
J

L M N P

A D

E F G H

I
J K

L M N P

A B
C

E D
F G H

J I

(a) Before applying the shear
transformation

(b) Resolution 1 (c) Resolution 2

A B C D

E F G H

I
J K

L M N P

A B C D

E F G H

I
J K

L P

These results show that the method effectively increases the
number and volume of hexahedrons, and decreases the
number and volume of tetrahedrons.

7. DISCUSSIONS

The three topological transformations described in Section
4 deal only with hexahedrons and tetrahedrons. Hence,
when the input hex-dominant mesh includes prisms and
pyramids, all of them must first be subdivided into
tetrahedrons. Or, the three transformations cannot be
performed near a prism or a pyramid.

The transformations deal only with hexahedrons and
tetrahedrons because there are too many configurations of
neighboring elements if pyramids and prisms are included.
There are many variations of a configuration of
neighboring elements even with only hexahedrons and
tetrahedrons. The transformations would become too
complex due to an overwhelmingly large number of
variations of neighboring element configuration, if prisms
and pyramids are considered. Thus it was deemed
reasonable to limit transformations for hexahedrons and
tetrahedrons, and subdivide prisms and pyramids in the
input mesh into tetrahedrons first, and re-create them after
the transformations are performed.

The result of the proposed method depends on the order of
the transformations. Some transformations performed
earlier may interfere with further transformations, and
fewer hexahedrons can be created as a result of this
interference. In the current implementation, the program
searches and resolves the patterns shown in Figure 9 and
Figure 11 first. It then searches and resolves the patterns
shown in Figure 10. It iterates the search and resolution
until no such pattern is found. However, it is very difficult
to find the optimal order of the transformations, and thus it
becomes a subject for future research.

The effectiveness of the method also depends on an input
hex-dominant mesh. However, we could only test the
method with a hex-dominant mesh created by the method
presented in [10]. The proposed method works well when
there are some islands of tetrahedrons, which gives some
freedom for the transformations. Threfore, we expect that
the proposed method will also work well for a hex-
dominant mesh created by Meshkat and Talmor’s method
[15]. However, the proposed method may not perform well
for advancing front type methods [11, 12, 14] because such
methods tend to create less islands of tetrahedrons and the
remaining tetrahedrons tend to be flatter. The relation
between the effectiveness of the proposed method and hex-
dominant mesh generation algorithms is another issue for
future research.

Also, when there is more than one option for resolving a
case, the program must decide which option to choose.
And, one choice may interfere with further transformations
yielding fewer hexahedrons. The current implementation
chooses the option that gives better quality elements
measured by the scaled Jacobian [18, 19]. However,
choosing a less but acceptable quality element may yield

more hexahedrons. Choosing an option to resolve a case
also becomes an issue for future research.

In addition to the three transformations described in Section
4, there can be more possible transformations. There may
be a better strategy of applying the transformations than the
strategy described in Section 5. An ultimate goal of this
method is to convert the input hex-dominant mesh into a
fully conformed hex-dominant mesh without using
pyramids while filling most of the volume with
hexahedrons. However, it is unclear if such
transformations and strategies are possible, and thus it is
another issue for future research.

8. CONCLUSIONS

This paper has presented a new method for increasing the
number and volume of hexahedrons in a hex-dominant
mesh by applying topological transformations. Three types
of transformations are presented, and by applying them
strategically the number and volume of hexahedrons in the
hex-dominant mesh increase. Some experimental results
show the method works effectively, and it increases the
practical value of a hex-dominant mesh. The experimental
results show the number of hexahedrons increased by about
10% to 20%, yielding hex-dominant meshes with a 70 to
90% hexahedron volume ratio.

REFERENCES

[1] D. L. Dewhirst and P. M. Grinsell, "Joining
Tetrahedra to Hexahedra," Proceedings of MSC
World Users' Conference
(http://www.mscsoftware.com/support/library/conf/),
pp., 1993.

[2] D. L. Dewhirst, S. Vangavolu, and H. Wattrick, "The
Combination of Hexahedral and Tetrahedral Meshing
Algorithms," Proceedings of 4th International
Meshing Roundtable, pp. 291-304, 1995.

[3] C. R. Dohrmann, S. W. Key, and M. W. Heinstein,
"Methods for Connecting Dissimilar Three-
Dimensional Finite Element Meshes", International
Journal for Numerical Methods in Engineering, vol.
47, pp. 1057-1080, 2000.

[4] S. J. Owen, S. A. Canann, and S. Saigal, "Pyramid
Elements for Maintaining Tetrahedra to Hexahedra
Conformability", AMD-Vol. 220 Trend in
Unstructured Mesh Generation, ASME, pp. 123-129,
1997.

[5] S. Yamakawa and K. Shimada, "HEXHOOP:
Modular Templates for Converting a Hex-Dominant
Mesh to an ALL-Hex Mesh", Engineering with
Computers, vol. 18, pp. 211-228, 2002.

[6] S. A. Mitchell, "The All-Hex Geode-Template for
Conforming a Diced Tetrahedral Mesh to any Diced
Hexahedral Mesh," Proceedings of 7th International
Meshing Roundtable, pp. 295-305, 1998.

[7] D.-Y. Kwak and Y.-T. Im, "Remeshing for Metal
Forming Simulations-Part II: Three-Dimensional
Hexahedral Mesh Generation", International Journal

for Numerical Methods in Engineering, vol. 53, pp.
2501-2528, 2002.

[8] H. Li and G. Cheng, "New Method for Graded Mesh
Generation of All Hexahedral Finite Elements",
Computers and Structures, vol. 76, pp. 729-740, 2000.

[9] M. Bordern, S. Benzley, S. A. Mitchell, D. R. White,
and R. Meyers, "The Cleave and Fill Tool: An All-
hexahedral Refinement Algorithm for Swept
Meshes," Proceedings of 9th International Meshing
Roundtable, pp. 69-87, 2000.

[10] S. Yamakawa and K. Shimada, "Hex-Dominant Mesh
Generation with Directionality Control via Packing
Rectangular Solid Cells," Proceedings of Geometric
Modeling and Processing 2002, pp., 2002.

[11] R. J. Meyers, T. J. Tautges, and P. M. Tuchinsky,
"The "Hex-Tet" Hex-Dominant Meshing Algorithm
as Implemented in CUBIT," Proceedings of 7th
International Meshing Roundtable, pp. 151-158, 1998.

[12] P. M. Tuchinsky and B. W. Clark, "The "HexTet"
Hex-Dominant Automesher: An Interim Progress
Report," Proceedings of 6th International Meshing
Roundtable, pp. 183-193, 1997.

[13] T. D. Blacker and R. J. Meyers, "Seams and Wedges
in Plastering: A 3-D Hexahedral Mesh Generation
Algorithm", Engineering with Computers, vol. 2, pp.
83-93, 1993.

[14] S. J. Owen and S. Saigal, "H-Morph: an Indirect
Approach to Advancing Front Hex Meshing",

International Journal for Numerical Methods in
Engineering, vol. 49, pp. 289-312, 2000.

[15] S. Meshkat and D. Talmor, "Generating a Mixed
Mesh of Hexahedra, Pentahedra and Tetrahedra from
an Underlying Tetrahedral Mesh", International
Journal for Numerical Methods in Engineering, vol.
49, pp. 17-30, 2000.

[16] B. Joe, "Construction of Three-dimensional
Improved-quality Triangulations Using Local
Transformations", SIAM Journal on Scientific
Computing, vol. 16, pp. 1292-1307, 1995.

[17] M. Bern and D. Eppstein, "Flipping Cubical Meshes,"
Proceedings of 10th International Meshing
Roundtable, pp. 19-29, 2001.

[18] P. M. Knupp, "Hexahedral Mesh Untangling and
Algebraic Mesh Quality Metrics," Proceedings of 9th
International Meshing Roundtable, pp. 173-183, 2000.

[19] P. M. Knupp, "Achieving Finite Element Mesh
Quality via Optimization of the Jacobian Matrix
Norm and Associated Quantities. Part II - A
Framework for Volume Mesh Optimization and the
Condition Number of the Jacobian Matrix",
International Journal for Numerical Methods in
Engineering, vol. 48, pp. 1165-1185, 2000.

 Number of nodes 2,375
Number of Elements 3,308
Number of Hexes 1,008(30%)
Number of Prisms 402(12%)
Number of Tets 1,898(57%)

Total Volume 3,337.7
Hex Volume 2,243.8(67%)
Prism Volume 422.8(13%)
Tet Volume 671.2(20%)

(a) The hex-dominant mesh before
applying transformations

(b) Remaining tetrahedrons before
applying transformations

(c) Statistics before applying
transformations

 Number of nodes 2,336
Number of Elents 2,367
Number of Hexes 1,193(50%)
Number of Prisms 302(12%)
Number of Tets 872(36%)

Total Volume 3,333.4
Hex Volume 2,734.1(82%)
Prism Volume 302.1(9%)
Tet Volume 297.2(9%)

(d) The hex-dominant mesh after
applying transformations

(e) Remaining tetrahedrons after
applying transformations

(f) Statistics after applying
transformations

Figure 12 Hex-dominant mesh of a mechanical part

 Number of nodes 10,462
Number of Elements 10,086
Number of Hexes 3,263(32%)
Number of Prisms 1,459(14%)
Number of Tets 5,364(53%)

Total Volume 5,843.8
Hex Volume 4,067.4(70%)
Prism Volume 846.0(14%)
Tet Volume 930.4(16%)

(a) The hex-dominant mesh before
applying transformations

(b) Remaining tetrahedrons before
applying transformations

(c) Statistics before applying
transformations

 Number of nodes 10,221
Number of Elements 7,979
Number of Hexes 3,684 (46%)
Number of Prisms 1,028 (12%)
Number of Tets 3,267 (40%)

Total Volume 5,818.5
Hex Volume 4,682.8(80%)
Prism Volume 596.8(10%)
Tet Volume 538.9(9%)

(d) The hex-dominant mesh after
applying transformations

(e) Remaining tetrahedrons after
applying transformations

(f) Statistics after applying
transformations

Figure 13 Hex-dominant mesh of a cell-phone case

 Number of nodes 4,918
Number of Elements 5,382
Number of Hexes 1,374(25%)
Number of Prisms 695(12%)
Number of Tets 3,313(61%)

Total Volume 12,263.8
Hex Volume 8,117.9(66%)
Prism Volume 1,821.2(15%)
Tet Volume 2,324.8(19%)

(a) The hex-dominant mesh before
applying transformations

(b) Remaining tetrahedrons before
applying transformations

(c) Statistics before applying
transformations

 Number of nodes 4,849
Number of Elements 4,530
Number of Hexes 1,576(34%)
Number of Prisms 502(11%)
Number of Tets 2,452(54%)

Total Volume 12,240.5
Hex Volume 9,363.1(76%)
Prism Volume 1,316.4(11%)
Tet Volume 1,561.0(13%)

(d) The hex-dominant mesh after
applying transformations

(e) Remaining tetrahedrons after
applying transformations

(f) Statistics after applying
transformations

Figure 14 Hex-dominant mesh of a PDA case

 Number of nodes 11,511
Number of Elements 20,613
Number of Hexes 6,896 (33%)
Number of Prisms 1,583 (8%)
Number of Tets 12,134 (59%)

Total Volume 206.5
Hex Volume 147.4(71%)
Prism Volume 16.7(8%)
Tet Volume 42.4(21%)

(a) Hex-dominant mesh before applying
transformations

(b) Remaining tetrahedrons before
applying transformations

(c) Statistics before applying
transformations

 Number of nodes 11,561
Number of Elem3ds 17,758
Number of Hexes 7,665 (43%)
Number of Prisms 1,231 (7%)
Number of Tets 8,862 (50%)

Total Volume 206.4
Hex Volume 164.7(80%)
Prism Volume 12.3(6%)
Tet Volume 29.5(14%)

(d) Hex-dominant mesh after applying
transformations

(e) Remaining tetrahedrons after
applying transformations

(f) Statistics after applying
transformations

Figure 15 Hex-dominant mesh of a blood vessel for analysis of aneurysm: Due to varying cross-section, it is
difficult to create a mesh of this geometry with a conventional method

TOPOLOGY MODIFICATION OF HEXAHEDRAL MESHES USING
ATOMIC DUAL-BASED OPERATIONS

Timothy J. Tautgesa1, Sarah E. Knoopb
aSandia National Laboratories, Albuquerque, NM., U.S.A. tjtautg@sandia.gov

bUniversity of Wisconsin-Madison, WI., U.S.A. seknoop@students.wisc.edu

ABSTRACT

Topology modification of hexahedral meshes has been considered difficult due to the propagation of topological
modifications non-locally. We address this problem by working in the dual of a hexahedral mesh. We prove several
relatively simple combinatorial aspects of hex mesh duals, namely that they are both complexes of simple polytopes as
well as simple arrangements of pseudo-hyperplanes. We describe a set of four atomic dual-based hex topology
modifications, from which the flipping operations of Bern et. al can be constructed. We also observe several intriguing
arrangements and modification operations, which we intend to explore further in the future.

Keywords: hexahedral mesh generation; arrangements; dual; simple polytope.

1 SANDIA IS A MULTIPROGRAM LABORATORY OPERATED BY SANDIA CORPORATION, A LOCKHEED MARTIN
COMPANY, FOR THE UNITED STATES DEPARTMENT OF ENERGY UNDER CONTRACT DE-AC04-94AL85000.

1. INTRODUCTION

Many finite element analysis practitioners prefer using all-
hexahedral meshes. These meshes are believed to yield more
accurate solutions for a given computational expense,
especially in the non-linear analysis regime (theoretical
studies investigating this issue are appearing now [1], joining
the more empirical studies on the subject [2][3]).
Generating all-hexahedral meshes suitable for finite element
analysis remains an active area of research[4]. Working with
hexahedral meshes has been considered difficult in part
because of the non-local nature of connectivity modifications
inside hex meshes. That is, until recently there were
relatively few known options for modifying the topology
interior to a hexahedral mesh which did not propagate
through the mesh. This is in contrast to tetrahedral meshes,
where local connectivity modifications are a crucial part of
most robust tetrahedral mesh generation algorithms [5].
Furthermore, local connectivity modifications have also
played an important role in all-quadrilateral meshing [6][7].
It is reasonable to expect that post-meshing topology
modifications will play an important role in any successful
automatic hexahedral meshing algorithm. In addition to
mesh generation, local connectivity modification in
hexahedral meshes could also be useful for adaptive
refinement and for local mesh quality improvement,
analogous to its counterpart in tetrahedral meshes. For all

these reasons, we believe local connectivity modification in
hexahedral meshes to be an important technology.

1.1. Hexahedral Dual
We study hex topology modification in the dual, for reasons
which will become apparent later in this paper. The dual of a
hex mesh is analogous locally to Voronoi diagrams for
tetrahedral meshes, where (in three dimensions) each primal
entity of dimension k (e.g. node, edge, face) has a
corresponding (3-k)-cell (e.g. 3-cell, 2-cell, 1-cell). Non-
locally, the dual of a hex mesh has special properties: 1-cells
and 2-cells can be grouped into larger structures which have
non-local extent in the mesh. Indeed, the dual of a
hexahedral mesh can be viewed as an arrangement of
surfaces, with (3-k)-faces in the arrangement corresponding
to k-dimensional entities in the primal mesh. Although this
characteristic was recognized quite some time ago[8], its
application to hexahedral meshes was not recognized until
much later[9]. The physical interpretation of these surfaces is
of topologically 2d layers of hexahedral elements; pairwise
intersections of these surfaces represent columns of hex
elements in the mesh. Both these structures are typically
non-local in the mesh, and are sometimes self-intersecting.
These structures are referred to as sheets and chords,
respectively, and have been used in the development of the
Whisker Weaving dual-based hex meshing
algorithms[11][12].
One useful way of representing dual sheets (from here on
referred to as sheets) is by viewing their 2d projection, where

intersections with other sheets are depicted by lines (pairwise
intersection) and vertices (three-way intersection). These
“sheet diagrams” simplify the study of the dual arrangement
by representing it as a series of 2d projections[11].
An example of a simple hex mesh, its dual, and its
representation as a series of sheet diagrams is shown in (fig).
The outer loop of each sheet represents the sheet’s
intersection with the outer boundary of the mesh. The lines
of intersection with other sheets we refer to as chords; on the
sheet diagrams intersections with other chords represent hex
elements, and intersections with the outer loop represent the
emergence of a chord at a face on the boundary of the mesh.
Loop-intersecting and interior vertices on sheet diagrams are
sometimes labeled with the face/hex to which they
correspond, respectively.

Figure 1: Hex mesh with three elements (top); dual
surfaces (sheets) and dual vertices shown. Two-
dimensional projection into "sheet diagrams"
shown below.

One can see that:

• Each chord appears on the two sheets whose
intersection form the chord

• A hex element appears as a vertex on three sheet
diagrams as the pairwise intersection of three
chords

• Each 1-cell (or segment of a chord) and 2-cell in
the sheet diagrams represents a face and edge in
the primal mesh, respectively

Sheet diagrams, and the 1-cells and 2-cells on them, are used
later in this paper to depict hex topology modifications.

1.2. Prior Work
Relatively little work has been done in the area of hex mesh
topology modification.
This subject was treated peripherally in the development of
Whisker Weaving [13], and in the study of “knife” element
resolution [14]. While some of the structures being used in
the current work were evident, no effort was made to utilize
them in local mesh improvement aside from the constructive
process.
Knupp & Mitchell studied hex mesh topology optimization in
connection with hex meshes arising from tetrahedral mesh
subdivision [15]. The topology modification operations
described there were similar to some described in this paper,

but the completeness of these operations and their unification
under a common theoretical framework was not addressed.
Bern et. al research topology modifications of hex meshes in
connection with “flips” of hex meshes, where it is shown that
there exists a complete set of hex mesh transitions, each of
whose outer boundary corresponds to the six faces of a cube
[17]. More recently, this research is being extended to
consider face collapsing inside the mesh [18]. This work has
played an important role in our research, both as inspiration
for starting the work as well as serving as a benchmark in
various ways. We describe these links later in this paper.
As mentioned before, the general approach of using local
mesh improvement in a post-meshing context has been used
in both the tetrahedral [5]and quadrilateral [6][7] meshing
areas. While we believe the various cleanup methods
demonstrated for quads could be unified under a common
framework similar to the current work, no attempt has been
made to do that since this seems to be treated adequately by
prior methods.

1.3. Current Work
In this paper we outline the basic operations of and
motivations for locally modifying the topology of an existing
hexahedral mesh. Our initial goal has been to define a
complete set of local, atomic operations on the topology of a
hexahedral mesh. By “complete” we mean that we can
transform a given hexahedral mesh to any other with the
same quadrilateral boundary using only these operations. By
“local” we mean that the connectivity altered by the sequence
of operations is local to the actual hexes targeted by the
operations. This boundary is denoted in the following
sections by a dotted line which replaces the outer boundary of
a sheet diagram, i.e. it is the group of quadrilateral faces
bounding the region of interest, just as the outer boundary of
a normal sheet diagram is a group of quadrilaterals on the
outer boundary of the solid. Finally, the use of “atomic”
above is intended to indicate that the operations we seek to
define are in some sense irreducible, that is, cannot be done
as a sequence of other atomic operations. In particular, we
show that the flipping operations presented in [18] can be
reproduced as a series of these elementary operations.
The contribution of this work is the reduction of other known
hex mesh topology modification operations into a much
smaller set of atomic operations. This work also unifies these
operations under a common theme of modifications to a
simple arrangement of surfaces, while showing how these
operations can be directed toward specific mesh improvement
or mesh modification for other purposes.
The remainder of this paper is arranged as follows. Section 2
reviews elements of the dual of a hexahedral mesh, and
proves several new results for those types of duals. Section 3
describes the general approach we take to hex mesh topology
modification. Section 4 describes the atomic operations we
use to describe others’ topology modification operations.
Section 5 relates these operations to the flipping operations
described by Bern et. al. Section 6 gives conclusions and
future directions for this work.

2. THE HEXAHEDRAL MESH DUAL 2.2. The hex dual is a simple
arrangement of hyperplanes

Before describing our work in hex topology modification, we
describe here some characteristics of the dual in terms of
complexes of polytopes and arrangements. Describing the
hex dual in these terms allows us to take advantage of the
wealth of prior work on combinatorial relations for polytope
complexes and arrangements (e.g. [8]).

Theorem 2: The dual of a hexahedral mesh forms a simple
arrangement of hyperplanes.
Proof: We start by deriving some incidence relations for
vertices in a simple arrangement, by constructing a simple
arrangement containing a single vertex. Consider a single
surface, ha, passing through a point p. Now, add a second
surface, hb,different from the first, also passing through p.
The intersection of the two planes is a line contained in each
plane, which partitions each plane into two facets. Similarly,
add a third plane, hc, which also passes through p, and is
affinely independent of the other two planes (so its
intersection with each plane generates a new line on that
plane). Note that the third plane has to be independent of the
first two, since for simple arrangements each 1-face can only
be formed by the intersection of d-1=2 surfaces. When hc is
added, a new line of intersection is formed with each of the
other planes, such that each plane is partitioned by two lines,
formed by its intersection with the other two planes. Since
all the lines pass through p, each plane is partitioned into 4 2-
faces. The vertex at p, formed by the intersection of these
three hyperplanes, is therefore connected to 12 2-faces of the
arrangement. The number of 1-faces incident on the vertex is
computed by recognizing that three lines pass through, and
are each partitioned in half by, p. Therefore, 6 1-faces are
incident on the vertex. Finally, because each plane is affinely
independent of the others, and passes through p, they each
partition all existing cells in half (where R3 is taken as a
single cell), so the vertex is connected to 23 = 8 3-faces. No
more planes can be added which pass through p, by definition
of a simple arrangement. Therefore, for a simple
arrangement:

To define the dual, we start by identifying the hexahedral
mesh as a cell complex P whose cells Pi are hexahedral.
Then, the dual is defined as a one-to-one mapping Ψ(P): P
P* which preserves but reverses incidence relations:

Pi ⊂ Pj ↔ Ψ(Pj) ⊂ Ψ(Pi)
The dual P* we identify as a polytope complex, with each k-
face dual to a (d-k)-face in the hexahedral mesh.
A great deal of results have been published on various
combinatorial characteristics of polytope complexes and
arrangements. In particular, if it can be shown that the
polytope or complex being considered is simple2, a richer set
of combinatorial relations is available. Therefore, we first
address these issues for hexahedral mesh duals.

2.1. The hex dual is a complex of
simple polytopes

Theorem 1: The dual of a hexahedral mesh is a complex of
simple polytopes.
Proof: Consider a hex element P, one of its bounding
vertices V(P), and the sets of 1-faces and 2-faces

of P incident on V. Because a hexahedron is a

simple polytope, card . Also, since every

k-face of a simple polytope is formed by the intersection of
(d-k) supporting faces of the polytope,

. Since the dual preserves

incidence relations (and does not change dimension),

),(1 VPF

d=

),(2 VPF

PFcard ((1

FPF i)),((02

d
d

d
=

−

=
1

Fi)), 0

f1(V) = 6 (2)
f2(V) = 12
f3(V) = 8

Next, we consider a single hexahedral element P in the mesh.
A hex is a cuboid polytope, which by definition is bounded
by 2d (d-1)-faces (e.g. one pair for each parametric
direction):)()),(()),(()(12 VVPFVPFP Ψ⊂Ψ⊂Ψ⊂Ψ ,

fd-1(P) = 2d or Again, because P is a simple polytope, it obeys the Dehn-
Sommerville relations, and specifically for d=3, we have[19]: *))*,*(*))*,*(*1)*(* 2 PPVFPVFPV ⊂⊂⊂ ,

f0(P) = 2 f2 - 4 with
f1(P) = 3 f2 – 6

dVPFcardPVFcard ==),(())*,*(*(12 and Combining these, we get
f0(P) = 4(d – 1) = 8 (2)

dVPFcardPVFcard ==),(())*,*(*1(2 . (1) f1(P) = 6(d – 1) = 12
fd-1(P) = 2d = 6 However, because the dual relation between entities is one-

to-one and we chose an arbitrary vertex and any of the hex
elements bounding it, (1) must apply to all the dual cells as
well as all the dual vertices bounding those cells. Therefore,
the dual cells must be simple polytopes.

Now, we apply the dual transformation to these relations. As
in the previous section, d is unchanged, and each k-face
corresponds to a (d-k)-face in the dual. Since Eqs. (2) apply
to P in the primal, they apply to Ψ(P) = V* in the dual;
furthermore, the cardinalities don’t change, since Ψ preserves
incidence relations. Therefore, Eqs. (2) become:

□

f*3(V) = 8
f*2(V) = 12 (3)

 f*1(V) = 6 2 A simple polytope is one whose k-faces are formed by the
intersection of (d-k) facets of the polytope. For example, for
a 3-dimensional polytope, each 1-face (edge) is formed by
the intersection of 3-1=2 facets (faces).

However, these are the same numbers of incidences as occur
in simple arrangements. No other 1-, 2- or 3-faces can be
connected to V*, because by dual correspondence that would

mean adding extra 2-, 1- or 0-faces to the original polytope,
respectively, in which case the polytope would no longer be a
hexahedron. Since all vertices in the dual arrangement of a
hex mesh must have incidences as in (3), and since all simple
d-dimensional arrangements must have vertices with valences
as in (2), then the dual of a hex mesh must form a simple
arrangement.

□
Note: Most combinatorial relations for arrangements assume
that hyper-surfaces intersect each other at most a constant
number of times s. However, Theorems 1-2 above use only
information local to the polytope/vertex combinations.
Therefore, as long as the 2-faces local to the polytope and
vertex are distinct and not formed from the same hyper-
surface locally, we argue that then the Dehn-Sommerville
relations hold locally and multiply-intersected hyper-surfaces
do not change the results.

2.3. General comments
By themselves, Theorems 1-2 do not seem to have much
relevance to the subject of hexahedral meshing. However,
showing that a hexahedral mesh dual is a simple arrangement
allows us to take advantage of the Dehn-Sommerville
relations, which govern the counting relations between
entities in any valid hex mesh. We plan to use these relations
to define permissible states, and transitions between those
states, in the dual arrangement, thereby proving the
completeness of our set of atomic operations. This paper is a
work in progress toward that goal.

3. GENERAL APPROACH

One way to look at the hex mesh dual is that hex elements are
induced by the intersection of 3 dual sheets pairwise. It
follows that mesh connectivity can be modified by locally
“deforming” sheets to produce more intersections with other
sheets in the neighborhood of the deformation3. If only sheet
interiors are deformed, mesh connectivity outside the
deformed region is unchanged. Thus, the topology
modification is local.
We characterize local hex mesh topology modification in
terms of atomic, local combinatorial modifications to the dual
arrangement, and show that these operations can describe
other known topology modifications in hexahedral meshes.
Atomic modifications to the arrangement are defined as the
smallest units of combinatorial change to the arrangement
which keeps the arrangement simple. Using these atomic
operations, non-local topology modifications can be
accomplished by applying the operations sequentially. Since
each operation is reversible, this sequence includes some
operations applied in the forward sense and others in the
reverse sense. Although some operations introduce what
would normally be considered poor quality elements in the
primal mesh, this is an intermediate state which gets removed
eventually by other operations. This is analogous to the

3 Since we use the dual primarily to study mesh topology
(i.e. we ignore the issue of geometric embedding of the dual
sheets), sheet “deformations” are discrete in nature; that is, a
sheet deformation is only meaningful if it modifies the
combinatorial properties of the dual arrangement.

construction of quadrilateral meshes by various algorithms,
where poor-quality quads are formed initially but then
removed a-posteriori to meshing.
There are two primary applications of these modification
operations: quality improvement, and adaptive
refinement/coarsening, analogous to the application of
analogous operations in tetrahedral meshes. (In practice,
these applications are not completely independent of each
other.) We speculate that applying our dual-based operations
will require “steering” sheet deformations toward areas of
interest, either to eliminate structures in the arrangement
which induce poor quality, or to enrich/coarsen the
arrangement in areas where adaptive refinement or
coarsening is desired. We leave this subject for future work.

4. ATOMIC OPERATIONS

We present candidates for atomic, local, dual-based hex
topology modification operations in turn in subsequent
sections. Formally, we identify four reversible operations:
chord push, hex push, minimal pillowing, and face/ring
collapse. The first two operations modify interior regions on
three and four sheets, respectively. Minimal pillowing
creates a new sheet interior to the mesh along with modifying
two existing sheets. Face collapse merges two sheets by
forming and joining a new interior boundary on each sheet.
We also describe two higher-level operations, the triple-chord
push and triple-hex push, which are combinations of
elementary operations which occur frequently when
describing topology modifications studied in previous works.

4.1. Chord Push
The minimum combinatorial change one can make in an
arrangement is the addition or removal of d-facets in the
arrangement. Since we restrict ourselves to locally-simple
arrangements, new facets must be introduced in a way which
preserves that characteristic. That means, for example, that
the arrangement cannot be modified by deforming two dual
surfaces such that they meet only at a single vertex or 0-facet.
By this reasoning, then, the smallest (constructive)
combinatorial change in a simple arrangement is to deform
two sheets along a common third sheet which intersects both,
such that they intersect locally. This “chord push” operation
is depicted in Figure 2; starting with the arrangement shown
on top, the 2-cells ab and cd are deformed such that they
intersect, modifying the arrangement to look like Figure 2,
bottom. A chord push operation introduces two new 3-cells, 4
new 2-cells, six new 1-cells, and two new 0-cells in the dual.
In the primal, two new hex elements and nodes are
introduced.

Before

After

Sheet 1 Sheet 2 Sheet 3
1

2

3

4

1

2

3

4

1

2

3

4
1

2

3

4

a
b

c
d

a

b

c

d

x
y

a
b

c
d

a

b

x
y

c

d

x
y

Again, there are no combinatorial changes to all involved
sheets outside the bounding circle on each sheet, therefore
this operation is also local.

a bBefore

After

Sheet 1 Sheet 2 Sheet 3 Sheet 4

a b a b

b a b a a b
c

d

e

f

e

f

c
d

e

f

c
d

2

1

4

3

6

5

8

7 7

8

2
1 4

3

6

5

2

1

4

3

6

5

8

7 7

86

5

2
1

4
30

0

0
0

Figure 2: The chord push operation in the dual.
Intersecting two 1-cells (ab and cd) to form 2 new 0-
cells (x and y), 6 new 1-cells (ax, cx, xy (2), yb, yd), 6
new 2-cells (axc, bdy, xyx (4)), and 2 new 3-cells.
New xy 1-cells make up blind chord on sheets 2 and
3; xy 1-cells on 12 and 34 chords correspond to 1-
cells ab and cd, resp., in original arrangement (top,
sheets 2 and 3).

Figure 4: The hex push operation in the dual.
Deforming two sheets (sheets 3 and 4) such that
they intersect along a common chord (formed by
the intersection of sheets 1 and 2). Vertices a and b
are reversed in sequence along chord 0, and are
surrounded by the new chord of intersection
(sheets 3 and 4). This operation produces four new
0-cells (c-f), 12 new 1-cells (cb, ca, bd, ad, eb, ea, bf,
af, ec, cf, fd, de), 12 new 2-cells, and four new 3-
cells.

Since there are no combinatorial changes outside the
bounding circle on each sheet, the chord push operation is
local.
In the primal, the interpretation of a chord push is an opening
of two interior faces, creating two deformed hexes that share
four faces (Figure 3). Clearly, six new faces are introduced
(four interior and two copies of the original two faces) along
with six edges (5 interior & 1 copy) and two new nodes,
corresponding to the new d-cells in the arrangement
enumerated in Figure 2. Although a chord push induces poor
connectivity initially, a sequence of this and other operations
will result in improved quality.

We are not certain a hex push is an atomic operation.
Repeated applications of chord push operations allows one to
come close to surrounding two vertices; we have not yet
worked out the final stage of this operation, where the two
hexes are pushed through each other. We speculate that this
is really the result of somehow collapsing the original hexes
and opening new hexes in the appropriate places in the
arrangement. This is the subject of further study.

In the primal representation (Figure 5), a hex push swaps the
relative locations of the hexes involved in the push. Yet,
since the chords of the crossing of dual nodes are anchored
on the bounding circle, we create four other crossings as well.
These new crossings become four new hexes in the primal
mesh. These hexes somewhat “pillow” the newly swapped
hexes (Figure 5) all within the bounding faces of this
operation. In contrast to the chord push operation, which
provably forms elements with negative jacobian quality
metrics, the hex push operation forms hexes which do not
have intrinsically degenerate quality (though their quality will
usually be poor).

Figure 3: Primal view of chord push operation.

4.2. Hex Push
The hex push operation (see Figure 4) is similar to a chord
push, except that, instead of deforming the sheets along a
common sheet, they are deformed along a common
intersecting sheet pair, or chord. The two vertices, each the
intersection between that chord and one of the sheets being
deformed, are reversed in their sequence of intersection along
the common chord. This appears on both sheets forming the
common chord, and on each deformed sheet, as a new line of
intersection with the other deformed sheet surrounding the
intersection with the common chord.

Figure 7: Primal view of (minimal) pillow operation.
Single face (left) is pulled apart into two faces
(right), producing two hex elements which share
five faces.

Figure 5: Primal view of hex push operation.

 (start)

(i)

(ii)

Sheet 1 Sheet 2

a a

Sheet 3

a

Sheet 1 Sheet 2

a a

Sheet 3

a

Sheet 1 Sheet 2

a a

Sheet 3 Sheet 4

a b
c b c

b

c

b c b c

d

e

f

g

d

e f g

Sheet 4

b

c
f d

e g

4.3. (Minimal) Pillowing
In a “pillowing” operation, a new dual sheet is inserted in the
dual arrangement such that it induces new vertices. In
previous work, the (traditional) pillowing operation has been
formulated such that it surrounds an existing vertex in the
arrangement [15][17]. However, our view of this operation is
a smaller, atomic operation, which is formed along a 1-cell in
the arrangement instead of around a vertex. We will
sometimes refer to this as a (minimal) pillow operation, to
distinguish it from the (traditional) pillowing operation. The
dual representation of this operation is shown in Figure 6.
The primal corresponding to the (minimal) pillowing
operation is shown in Figure 7. Clearly, the quality of the
hex elements formed by this operation will be intrinsically
degenerate. However, as before, a sequence of operations
can be used to improve the quality.
It is straightforward to show that the (traditional) pillowing
operation is not atomic; this is shown in Figure 8. Starting
with a single dual vertex, a (minimal) pillow is formed along
one of the 1-cells to form two new vertices, then a hex push
operation is performed between one of the new vertices and
the original vertex. The result is the dual arrangement
corresponding to a (traditional) pillowing operation
performed on the original arrangement. Thus, a (traditional)
pillowing operation is a sequence of two atomic operations: a
(minimal) pillow, followed by a hex push.

Figure 8: Starting with a single dual vertex (start);
add a (minimal) pillow (i); then perform a hex push
between vertices a and c (ii). Result is a
(traditional) pillow operation as described in
[15][17].

Before

After

Sheet 1 Sheet 2

Sheet 1 Sheet 2 Sheet 3

a b

a b c
d c

d

c

d

4.4. Face Collapse
We have observed cases where two distinct hex meshes with
identical quadrilateral boundaries whose dual arrangements
have different numbers of non-pillow hyperplanes, with
chords which have different starting and ending quadrilateral
faces. For example, the (2,1)-(1,2) flip from [18] starts with
five dual sheets in (2,1), but merges two of them to arrive at
four dual sheets in (1,2). By definition, transitioning between
such meshes using the atomic operations defined thus far is
impossible, since none of our operations allows chords to be
broken and reconnected, or dual sheets to be broken and
reconnected. On the other hand, this type of operation
should not be disallowed, as long as it can be done without
modifying the quadrilateral boundary, or some bounded
region inside the dual arrangement.
We have derived an operation which performs such a
modification of the arrangement. This operation has an
intermediate state which includes “knife” elements, which are
produced when an interior face in the mesh is collapsed by Figure 6: Dual view of a (minimal) pillow operation.

Sheet 1 Sheet 2 Sheet 3

Sheet 1 Sheet 2 Sheet 3

a a a

b b b

joining two opposite nodes. If the chord corresponding to the
face being collapsed is a self-terminating chord (one which
does not emerge on the region boundary), the collapse
operation produces a single line of self-intersection which
terminates on both ends at knife elements. Collapsing the
column of elements corresponding to that chord removes the
knife elements, changing connectivity only inside the local
region. The total operation, consisting of collapsing an entire
“ring” of elements, can be considered atomic (because there
are no intermediate states with a “valid” arrangement).
However, this operation is different from the others, in the
sense that it can only be applied to a self-terminating chord
(in order to avoid modifying the surface mesh). A ring
collapse also results in a merge of two surfaces in the
arrangement.
The ring collapse, combined with the two hex push
operations, combine to form the results in the transition to the
(2,1)-(1,2) flip from [18]. In this case, it happens that one of
the “blind” chords produced from the hex pushes is the one
collapsed.

Figure 9: A triple-chord push operation in the dual.

4.5. Elemental Operations

We define elemental operations as operations which are not
atomic, but which occur often enough that they are useful as
distinct sets of atomic operations. We identify three
elemental operations: the triple-chord push and the triple-hex
push, along with the “traditional” pillowing already described
in Section 4.3.

4.5.1. Triple-Chord Push
A triple-chord push modifies the topology of three sheets. In
essence, this operation “pulls apart” three faces sharing a
common node, such that the result is two hexes sharing three
faces. There are many interesting things about this particular
arrangement, whose dual and primal representations are
shown in Figure 9 and Figure 10, respectively. First, the
outer boundary of the polytope shown in Figure 10 has the
same number of faces, edges and vertices as a hexahedron,
but its dual is not isomorphic to the simple arrangement
resulting from the hexahedral elements we have considered
up to this point. If it were not for that fact, this arrangement
would result in a “parity-flip” operation described in [17].
The composition of a triple-chord push of atomic operations
has not yet been derived. We speculate, though, that this
operation is composed of three hex pushes (to separate the
three faces, and the edges shared by them pairwise, into two
sets of three faces each, all sharing the interior node),
followed by a “node separate”. This last operation might be
one more fundamental than a hex push, and could replace the
hex push as an atomic operation (meaning that the hex push
would be the combination of several chord pushes then a
node separate). We plan to investigate this set of operations
further in the future.

Figure 10: Depiction of the triple-chord push
operation in the primal, final state (beginning state
is three quadrilaterals sharing a node and sharing
edges pairwise).

4.5.2. Triple-Hex Push
Executing on four sheets, a triple-hex push is accomplished
by pushing a dual surface through a dual vertex (see Figure
11).

a b

c
a b a c b c

Sheet 1

a b

c
b a c a c b

d

e

d

e

d

e

Sheet 2 Sheet 3 Sheet 4

Sheet 1 Sheet 2 Sheet 3 Sheet 4

In addition to future theoretical work, we also plan to develop
applications of these operations, specifically for the purposes
of hex mesh improvement. Using the non-local information
provided by dual sheets, we plan to develop methods for
“steering” modifications towards areas of poor quality,
enriching or coarsening the topology in order to improve
mesh quality locally.

7. REFERENCES

[1] Jonathan Shewchuck, "What is a Good Linear Element?
Interpolation, Conditioning, and Quality Measures",
Proceedings, 11th International Meshing Roundtable,
Sandia National Laboratories, pp.115-126, September
15-18 2002

[2] Steven E. Benzley, Ernest Perry, Karl Merkley, Brett
Clark, Greg Sjaardema, “A Comparison of All
Hexagonal and All Tetrahedral Finite Element Meshes
for Elastic and Elasto-plastic Analysis”, Proc. 4th Int.
Meshing Roundtable, SAND95-2130, Sandia National
Laboratories, Albuquerque, New Mexico, September
1995.

Figure 11: A triple-hex push operation in the dual.

We believe that the triple-hex push can be done as sequence
of atomic operations, most likely involving hex push and
some form of ring collapse operations. The arrangement
resulting from this operation (in the forward direction) is
quite similar to that of a sequence of hex pushes, except that
such a sequence would create more hexes than d and e in
Figure 11. Therefore, something like a ring collapse is needed
for the removal of the extra elements generated.

[3] Deepa Pakal, Muralidhar Seshadri, Scott A. Canann,
Sunil Saigal, “A Comparative Study of Hexahedral and
Tetrahedral Elements”, report to Sandia National
Laboratories, July 1998.

[4] Rod W. Douglass, Graham F. Carey, David R. White,
Glen A. Hansen, Yannis Kallinderis, Nigel P.
Weatherill, “Current views on grid generation:
summaries of a panel discussion”, Numerical Heat
Transfer, Part B, 41: 211-237, 2002.

5. APPLICATION TO FLIPPING
OPERATIONS

For brevity, we only state here that all the flipping operations
described in [18] can be reproduced by a sequence of the
operations described in Sections 4.1-4.4. [5] Barry Joe, “Construction of Three-Dimensional

Improved-Quality Triangulations Using Local
Transformations", Siam J. Sci. Comput., Vol 16,
pp.1292-1307, 1995 6. CONCLUSIONS AND FUTURE

WORK
[6] Scott Canann, Sella Muthukrishnan, Bob Phillips,

“Topological Improvement Procedures for Quadrilateral
and Triangular Finite Element Meshes”, Proc. 3rd
International Meshing Roundtable, Sandia National
Laboratories, 1994.

We have described some combinatorial results for dual
arrangements resulting from hexahedral meshes.
Specifically, we prove that the hex dual is a complex of
simple polytopes, and that this complex is also a simple
arrangement of hyperplanes (pseudo-hyperplanes, really,
since we do not consider geometric embedding of the
surfaces and we allow pairs of hyperplanes to intersect more
than once). We anticipate these results being useful in
proving the completeness of a set of dual-based topology
modification operations also described in this paper.

[7] Paul Kinney, “CleanUp: Improving Quadrilateral Finite
Element Meshes”, Proc. 6th Int. Meshing Roundtable,
SAND97-2399, Sandia National Laboratories,
Albuquerque, New Mexico, October 1997.

[8] Branko Grunbaum, “Convex Polytopes”, Wiley & Sons,
1967. There are several important areas which will receive

continued attention. First, the combinatorial results in
Section 3 need to be verified in situations where hyperplanes
intersect more than once pairwise (most of the classic results
were derived under the assumption of single intersections).
Furthermore, we intend to use these combinatorial results to
characterize allowable modifications to the dual arrangement,
and to enumerate the allowable modifications within some
bounded region of the arrangement. We anticipate that the
allowable modifications will be composed of the operations
described in this paper. We also plan to investigate the
details of the triple-chord push, due to its interesting
combinatorial characteristics.

[9] Murdoch, P., and Benzley, S.E., "The Spatial Twist
Continuum: A Connectivity Based Method for
Representing All Hexahedral Finite Element Meshes,"
Proceedings, 4th International Meshing Roundtable,
SAND95-2130, Sandia National Laboratories,
Albuquerque.

[10] Patrick Knupp, Lori Freitag-Diachin, Michael Brewer,
“A Framework For Mesh Quality Improvement”, 4th
Symposium on Trends in Unstructured Mesh

http://cubit.sandia.gov/training/cubit_team.htm
http://research.et.byu.edu/cubit/MurdochBenzley.pdf
http://research.et.byu.edu/cubit/MurdochBenzley.pdf
http://research.et.byu.edu/cubit/MurdochBenzley.pdf

Generation, July 27-31, 2003, Albuquerque, New
Mexico

[11] T. J. Tautges, T. Blacker and S. A. Mitchell, 'The
Whisker Weaving Algorithm: A Connectivity-Based
Method for Constructing All-Hexahedral Finite Element
Meshes', Int. J. Numer. Meth. Eng., 39, 3327-3349
(1996).

[12] N. T. Folwell and S. A. Mitchell, 'Reliable Whisker
Weaving via Curve Contraction', Proc. 7th Int. Meshing
Roundtable, Sandia National Laboratories, Albuquerque,
New Mexico, October 1998.

[13] Timothy J. Tautges, Scott A. Mitchell, "Progress Report
on the Whisker Weaving All-Hexahedral Meshing
Algorithm", 5th International Conference on Numerical
Grid Generation in Computational Field Simulations,
Mississippi State University, pp.659-670, April 1996

[14] Timothy J. Tautges, Scott A. Mitchell, "Whisker
Weaving: Invalid Connectivity Resolution and Primal
Construction Algorithm", Proceedings, 4th International
Meshing Roundtable, Sandia National Laboratories,
pp.115-127, October 1995

[15] Patrick Knupp, Scott A. Mitchell, “Integration of Mesh
Optimization with 3D All-Hex Mesh Generation”,
SAND99-2852, Sandia National Laboratories,
November 1999.

[16] Scott A. Mitchell and Timothy J. Tautges, “Pillowing
Doublets: Refining a Mesh to Ensure that Faces Share at
Most One Edge”, Proc. 4th Int. Meshing Roundtable,
SAND95-2130, Sandia National Laboratories,
Albuquerque, New Mexico, September 1995.

[17] Marshall Bern, David Eppstein, "Flipping Cubical
Meshes", Proceedings, 10th International Meshing
Roundtable, Sandia National Laboratories, pp.19-29,
October 7-10 2001.

[18] Marshall Bern, David Eppstein, Jeff Erickson, “Flipping
Cubical Meshes”, ACM Computer Science Archive,
http://www.arXiv.org/cs.CG/0108020, June 20, 2002.

[19] Herbert Edelsbrunner, “Algorithms in Combinatorial
Geometry”, Springer-Verlag, Heidelberg, 1987.

http://www.arxiv.org/cs.CG/0108020

����������� ���� 	�
������
 ���

��	��
��� ����� ����

������ �����	

����� ������	
��� ���� �� ��	�� ��	� ����	����� �� ������
������ !�������"

��������

�� �������� � �	�
�� ��	����� �	 ������� � ����������� ���� ��	� �������� �	��� ����� ��� ���	���� 	� ����
�������	� ��	������ �	�� ��	� �	
����� ������������	��� �	������ ����
��� ���� �
�� �� �� ��� �� ����� ��
���� �� ���
����� ���� �
�� �� ���
��� 	� ����	 !�����	���������� "������ #�!�"$ ��	���� ��
����	� 	���� ����� ��
�	��� �	����� %
� ��	����� �������� � ����� ��� �������� ����������� ���� ����	
� ��� ���� �	� ��������� �
�	
����� ����� ��� ��	����� �������� � �	�������� ���� ���� �
������ ��������� ��� �������� &	��� ���	�'�	���	�
��� ��(������ ��� ���	 �
��	�����

��������� 	�
������� ���� ������
���� ������ ������ ��
���� ������ ���

�� �	��
�����
	 �	� ����
��
�
��

��� �!�
���	��� �	������)*� +, �����	��� �� -����
�	��	����	�� �	� �!�" ��	���� ��
����	� �
�� ��
�	��� ������ �!�" ��	������ �	������ 	� � ������ 	�
���	����	� ��� ���� ������ �������	��� �!�" �����
�	������
�� � �	��� �	����� ������ �	 ��
���� �����
������ �	������ ���� ����	��� ��� �	�
������ ��� ��'
�
���� ���
��� .��	����	� �� ��
�����
��� � �	���
�	����� 	/��� 	������	� ����� �� ��	�� �	 �
���'
���� ����������� �
� �	 ��� �	����� �
����� ��������'
��	�� ����� 	��
�� �	��	���� ��� ���
���� �	�����
�������� �� �	� ���
����� ��� �!�
���	�� 	� ���
	���� �����
��� �	���� �	 ��������� ��� ���
����	�
������ ���� ������0
� �	�� �	� ���� ��� �	�
������
���
��� ��� ��� ���	�� ��� �	��
����	��� �	�� ���'
������ ���	������ ���� �	���� ���� �	���� �� ��� ������'
	����� ���� ���
��
�� ��� ���
���'������� ������0
�
)+,� ���� ���
���� �� ���
���� �!�" �	����� �� �	���
������ �� ���� ����� ��� ��	���� 	� �������� � �	�'

������ ���� �	 ������ (���� ������� �������� 	� �����
������

�	�� ���� �������	� ��	������ ����� ���� � �	��	'
��� �	
����� ������������	� 	� ��� �	����� ����� ��'
��
�� �	��������� .���
��� ������������1���	�'�����

��	������)2,� 	�����'����� ����	��)3� 4, ��� ��'
������ ��	�� ������0
��)5,� ����� ����	�� ����
� ��		�� ��������� �	
����� ������������	� �� ��'
�
� ��� �
/�� ��	� ��� �������� 	� �	������� �		
����� �	 ��� �
����� ���� �������� !���� 	�����'�����
������ ��	������)6, ������� ���� � �	�
������ ���'
���������	� 	� ��� �	����� ����� 	�� ����7� ���� ��
�������� �	
����� ������������	� �
� �	
�� �	 �� ��'
����8	
����� ����� ���� �������� � ������� ������
����� ����
��� 	������ ���� ���� �
� ��� � �������'
�����1���	� ��� �������� ��	� ����� ���� ��� �	���
�	������ 	� �
������ ���	��� ��� ��������'��	�� ���
	�����'����� ����	�� ��������� ���� ���� ���	� ���'
������� ����� �	��������� ��� �	
����� ������ 	� ��'
������ ���	�� �	 �����
��

����� ��� ���� �	�� �	�� �	�� 	� �������� �������'
���� ������ ��	� ����� �� ��	 ��� ����� �������	���
 �)9,� ����� ������	� �	��� �� ����� ���	 4 	� 5 �������'
���� :	���� ��������� ��� �	
����� ��� ������
���
� �		�
� ������ ��� ���� �������� �� ���� ������0
�
��
���	���� ������ �);,� ��� �	���� ��� ��
���� �	'
����� ���	 ����� ����� �� �	�	���	
� ���	��� �����
����� ��� �
��	
���� �� ����� 	� ��� ���� ��1� ��� �����
���	 (�� ����������� <�� 	���� ����� ��� ������
���
.���
��� ����������	�� ����)*=, ��������� �	���� ���
���
��� ����� �	����	�� �� ������1�� ��	��� �����

�	����� �� ���� �
�� � .���
��� �����
����	� ��	'
����� 	� ����� �	����� �	������ ����� �� �	
�������
���� ��� ���
���� ���� ���� �	��	�� �	 ��� �	����
�	
������ &���� ��� ��)**, ����� ���� �
���	�� ���'
��
����	� ��� ����
�� ���
����� �������� ��� ��'
(������ ��	���
��� �	 �	��	�� �	 ��� ���
� +. �����
���� ������0
� ���� ��	����� �� �		 �	��
����	�����
��������� ���� �������� �	 ����� �������	���

 � "����	� +� �� �������� ��� ���� �������	� ��	'
������ ����� ��������� �� � �	��'��������� ��	�����
�	� �	��	���� .���
��� ������������1���	�� "����	� 2
���� � ��� ������������	� ������� ����
���
��0
�
���� ���
��
��� ��� ����������	� ������0
��
���� ��
���� � ��� ���������	� ����� �	� ���� ��	����� ��� ��	�
�	�� ������� ������ �� "����	� 3� �� �	���
�� ���
�
��� �	�� ����	������� �� "����	� 4�

�� ��� ���
�����

��� ��	����� ��� �� �	�������� �	 �� � �	���������
.���
��� ������������1���	�� �� (��� ������� �� 	�'
���� #�������� �	 �� � >!< ���� ����$ ��	� ��� ��'
������ �	��� ����� !��� �	�� 	� ��� >!< ���� ����
�	�����
��� 	�� �	�� �	 ��� ����������� ����#��������
�	 �� � .���
��� �	��$� �� ���
�� ��� ������ 	� ���
�	��� 	� ��� >!< ���� ���� �	 ���� ���� ������� ����
�� ���� �� 	
����� �������� �������	� �� ���� ��'
�
� ��� �	��� �������� �� ��� >!< ���� ���� ���	
� .���
��� ������������1���	� ��	������ ��� �
�����
�������� �	�����	��
������� ���� ��� ���
���� �����'
�������1���	� �	��	��� �	 ��� �	
������� 	� ��� �	'
�����

��� ���������� �� ��� �!" ����

��� ���
� ���	 	
� ��	����� �� �	���� ���� �	�
��
	� ?
�� ���	�����	� ���� ��� ��������� �� �	�
�� 	�
��� ��/����� ���	�� ������� �� ��� �	��� �� ��	���� <�
>!< ���� ���� �� �� 	����� ��� �� �	������� 	� ��	
����� 	� �	���@ (���� ��� ���������� >����� �	��� ����
	��� 	�� �������� �� ���� ����� ��������� �	��� ����
��	 	� �	�� ���������� ��� �	�	�	� 	� ��� �	�����
�� � ���� �� ����������� ��� �	
������� �� � ���� �
��
�	�� 	�� �� �	��	����� A	�� ���� ��� �	
������� ��'
���� � ���� ���� �	� �� �����	�� ��� ��� �	�'�����	��
�	
������� 	��
� �� ����� ����� �
������ ����������
���� �� ���
������� �
����� �� >�
�� *� ��� >!< ����
���� �� �
��� �� � �	��	�'
� ������ �� ����� �	�'
���� �������� �	��� ��� ����� 	��� �� ��� �	
����� 	�
����� ���	� ������ ��� ��������� �	�� ��� �� ����	��'
����� �� � �����
� �	 �
���'�����(�� ���	� ������	��
#A	�� ���� ���� �	�����	� �� ������� �� ��������� �	���
�	������� ����
��� �� ��������� �� "����	� +�*�*$� ���
�	
����� �� �� ��������� >!< �	�� �� ����������� ��
� ���� 	� �	���� #������ ��������� �	����$� ����� ��� ���
����	���� 	� ��� ��������� �	����
���� ���� >!< �	���

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

(a) (b)

������ �� ��������� 	
���� �� ������� � �
������ ��� �
�
��
����� �� ����� � ��� �
������ �� �� �
�����
��
����
��� �� �� �
�������
���

����� �!!�#���# ��$�%��& '����! ��
��� ��(�!

<� ������	� >!< �	�� �� ������� � .���
��� �	��� ��
��� ������� ���� ������� 	� ���'���� �	����� �
��
�� ��	�� �������� ���� �<. ������� ���� �����
����
��� ���� ���� ��� �	������ B����� � .���
���
�	��� 	� ����� ����
��� ����	��� ��� �	��	����� 	� ���
���� �	 ��� �	������ �	��	���� ���� ������� �� ���	
���
��� ����� ��� ���	� �	������� ����� ��������� ��
"����	� +�* ���� �	� �� �	�� �� ���� ��� �	������
�� �
� � ����
��'�������	� ��	����� ��� ����� �
����
��'������� �	 ���� ��������� �	���� >	� ���
���
���� ���� �� ��� �� ������ ���� ���� �� ������� ���
��� ����
��'������� 	� ��� ��������� �	���� ��� �
���(���
>���
�� �������	� �� ����	���� 	� ��������� �	����
�'
�� �� ��������	� 	� � �	���� �������	� ���� ��	����'
�� ��	�����)*+,� "������ ���� �������� �	� �����
�	��� �� � 2�2�2 �����	��		� 	� ����� ��������� �	���
�� ����
������ ��� ���� �������� ��� ��� �� ��� �	�'
�
���
��� ������� ��/�������� ��� ������ ���
��
���
�	� �	��
��� ����� ������� ��/������� �� �� �	��	��@
!��� ��������� �	���� ��� � �� ������� � ��������� ��'
�	�� ��� �� ����� �� ��� ���	� ����� 	��
���� ���
������ ������	� �� �	�
�� 	� ��� �	�����	���� �����'
���� �	���� ��� ������ ���
��
��� ����� �	��
���
���� �������� �	� ��� ����
��'������� 	� � �� ���
������	� 	� � �� ��� �	���� �� ��� ��������� ����'
�	��		�� ��� ����
��'������� 	� � �� �	��
��� ��
�	��	��@

� C

�
��

�

�
����

�
�����

����

�
��

�

�
�����

����

�
����

�
��

�

#*$

��� �
�����	� 	� ��� �������� �� ������ � �� �����
	��� � 2�2�2 �����	��		� 	� � � "���� � �� ���������
�� ��� �� ���	����1�� �� � �	����	� 	� ��� �		�������
����� ������	�� � ��� �� ��	
�� 	� �� � ���	���
������@

� C
�� = =
= �� =
= = ��

#+$

<��
�� �� �C �� �C ��� � �� �� ������ ���� �
������	��� ���� ��������� �	�� �� ���� �� � �	����
��� ��� ����
��'������� ���� �� ��� !��� �� �� ��
������ ���� � ������	��� ��� �	�� �� ������ �� ��
��� ��� ��� ����
�� ������� ��� �	 ���

 � ������	� �	 ����
�� �������� ����� ��������� �	���
���	 ��	��� ��� �
���� 	� ���	�� �� � 2�2�2 �����	�'
�		� 	� ���� �	���� ���� �� ������ ���	
��

D���� ���� ���	�����	�� ��� �	���� ��� 	������� ���
������ ������� �� ���� �	 ���	
�� ������	���
�	��� ��� ������ �� �
����	�� ����� �
������ ����'
����� ����� ���� �� �		� �� ��� ��� �	���� �	��� ���
	������ ���	�� ��� �	���� � ��	 �	��� ���� ��� ����
��� ���� ��� 	������ ����� 	� ����� ����
��'��������
��� .���
��� �	��� �� ��� �	����	� 	� ��� (��� ���������
�	���
��� ���� 	������ �������

��� �%���)� ����#���& ���(�����!

��� �
����� �������� �	�����	�� ���
�� ���� ��� .�'
��
��� ������������1���	� �	��	��� �	 ��� �	
�������
�������� �� ��� �	��� ���� ��� �� ��� �	�� ���	�����
�	�����
��	� 	� ���� ������ <�����	����� ���� ����������
��		�� ���� ������	�� ��� �
����� �������� �	���'
��	�� ��� ��������� �� �	��� �	�����	�� 	� ��� ��� >!<
���� �	���� ���� ���@

*� ��	 �����	��� >!< �	��� ��� ��/�� �� �� �	��
	�� ������

+� ��	 (���� >!< �	��� 	� ��/����� ���	�� ����	�
�� �������� �	 	�� ��	����� ����� �
�� �� ��
��������� >!< �	�� ������� �����

2� <� ��������� >!< �	�� ��� ����� �� �������� �	
�� ������	� >!< �	�� ����� �� ������� #�	��� �����
�� ��� >!< ���� ����$ ���� ���

3� ��� .���
��� �	��� 	� �� >!< ��������� �	��
�
�� �� �� � �
�� ����� �� �������� �� ��������
��� �	
����� 	� ���� >!< ���� �	�� �� *5�6E�

4� ��� �	
����� ������ �� ��������� >!< �	�� �
��
�� �� �	������� #��� �� �	�'�����	��$�

5� ��	 ��������� >!< �	��� ��� �� �������� �	 	��
��	���� 	��� �� ���� ���	� �	 ��� ���� �
������
!��� ����� �
�� �� � (���� �	�� ������� �����

��� (��� �	�����	� �� �	� ������ �	 �������� �
�'
���� �������� �
� ����������� � ��		�� ������	� 	� ���

���� ��	� �	���� �	 ����� ���	��� ��� ���	�� �	�'
����	� ��������� ��� >!< ���� 	����� ' ����� �
�� ��
�� ��������� �	�� ��������� ��	 ���	���

��� ����� ��� �	
��� �	�����	��
������� ���� �����
���� ����� �� � .���
��� ��� ������� + (���� �	���
	� ��/����� ���	��� >	� �� ���
� �	��� ��� � C ����
�� �� � .���
��� ��� ��� ����� ������� �� ���
�� �� ��� 	��� �� �� � � �
�� ���� ����#�� ��$ C
����#�� ��$ � ����#�� ��$��� � �� � �C �� � �C �� �����
���� �� !
������� �������� �� �� �� ���� (��� �������
���� �� ��	 �������	��� ����� �	 >�
�� +� "
����� ��'
������ �	�����	� 3 �	���� ��� ����� #���������$ �	���
�	 �� �� ��� ���� ��1� 	� ������� ���� ��� ��������
(���� �	���� �� �	������ ��� �	��� ���� ���� ����
���� ��� ���� ��1�� ��� .���
��� �	���� �	�����
���
�� ��� (���� �	��� ���� �� �� ����� ������� ��� �	����
���� ���������� ��� ���������
��� ������	� 	� ��� ���
����� A	� ��� ��� ���� ���� �� � .���
��� ���
	��� �� ����� �� �	�� �	��� 	� ��� �	���� ���� ����� ��
��	��� �	 ��#��$ ���� ��� 	���� ���
� �	���� !��� 	�
��� ��������� #�����$ �	��� ���	 �	�����
��� 	�� .���
'
��� �	���� �	������ ��������� �	�� �� ����������� 	�
����� ��� .���
��� �	���� ��� � � ���� �� �� ��� ��������
�	 ��� �	���� ��� �	 	� ��� �	��� ���� 	� ��� ������'
���
��� ������	� ���� ������ �� �0
�� �	 	� ���� ����
��� ����#��#��$� �	$� ��� �	��� ���� �� ��	�� �� �	��
� �� >�
�� +� ����� ����#���	$ C ����#�	� ��$� ���
	���� ��������� �	��� ���� �	�����
�� .���
��� �	����
����� �	
�� �� ��	��� �	 �	���� 	� ���
���� ���� 	�
��� ���������
��� ������	�� ������	�� �� ������� ���
#����$ ������� ��	 (���� �	��� 	� ��/����� ���	��
��� ����� 	��
�� "�������� 	�� ��� ��
������ ��� �	�'
����� ������� ���� ������� ��/����� (���� ���	�� ���
�� (�� ���� ����� ��� ����� �� .���
��� ���� �� ���
�
����� �������� �	�����	�� ��� ���	�����

A	� ����� �	 >�
�� 2� ����� �� � �	���� �� ��� �	'
���� #��	�� �� � ������'������ ��������$� .���
���
���� ��� ��� ��� �	
�� �� �������� �	����� ��'

����� ������� �	 ��	�� ������ ���� ����� ���� ����
����� 	��
� ������������ 	� ��� �	����	�� 	� ��� �� 	�
�� �� ����� ���������� >!< ���� �	����

 � ��	 �������	�� �
����� �������� �	�����	� 3 �� �	�
������� �	����� �� ����� �������	�� ������� .���
���
���� ��� �	������ ������� ��	 (���� �	��� 	� ��/�����
���	��� �� ��� ��� .���
��� �	��� �	�����
��� �� ��
��������� >!< �	�� �� ���	��� �	 �� �������� ������
��� >!< �	��� �� ���� ��
������� ��� ����� ��� ��'
�������� ��� �	��� ����� ���� �� ��	�� �� >�
�� 3�
<��
�� ���� ��� ��� .���
��� �	��� 	� ��������� >!<
�	�� � �� ��	��� 	� ��� ���� �	��� ���� �	���� �� <�'
�
�� ���� ��� ��� >!< �	��� ��� �
��� ���� ���� 	�
����� *
���� A	�� ���� � �� �0
�������� �	 �� ��� ���
A	�� ����#���$ C ����#���$ C

�
*� F �4� F �4� C

*�+2� �	����� ����#��$ C
�

*� F *� F �4� C *�4=�
������	��� ��� .���
��� �	��� 	� ��������� �	�� �� �	��

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������������
������
������
������
������
������

������
������
������
������
������
������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

Pj

Pk

N

I

Pb

������ �� ������� ��������� ������� ��
 ����� ����
��
���� �����
����� ��� ������ �
��� ��� ����� �
��� �����
��� ����� �
��� ��� ��������� �
����

�	� ������� ��� ��� ���� ��	� 	��
����� �	������ ��
�� �	��� ��� .���
��� �	��� 	� � ��	��� �	 ��� ������ 	�
�� ��� �������� �	 � �	
�� ���
��� ������� ���������
���� ��� ��	� 	��
����� &�� � �� ��� �������� 	� ���
.���
��� �	��� 	� � ��	� �� ����� �� ��	
�� �������@

�
#=�4 � �$� F #*� �$� F #*� �$� �C *�+2 #2$

"	���� !0
���	� 2� �� �� � �C �

�
� ������	��� �� ���

.���
��� �	��� �	�����
��� �� � �� �� � �	� ����� ��
*5�6E #�	�����	� 3$� �� ���� ������� ��� ������� ���
���� ��	� 	��
����� A	�� ��
��� ��� �������� ��'
������� �� "����	� +�*�*� ��� .���
��� �	��� �	�� ���

� ���� 	
����� ��� �	�� ����� ��� ����� 	���	��@ #*$
�	�� ��� .���
��� �	��� ������ ��� �	� �� �� �� ������
�
���'�����(�� ���	� ������	��� ���� ���� ����(����
�	
����� �	 ��� �
����� ��(��� ��� ���������� #+$
��(�� ��� ��������� >!< �	��� #2$ &���� ��� .���
'
��� �	�� ����� �� ��� ����� ��� (� ������� ���� �� �
�	��'��	������ ���� �� �	��� ��� ?����� 	������	���

< .���
��� �	��� ��� 	��� ��� 	� 	�� �
������ �����'
�	�� ��� �	
����� ������ �� ��������� >!< �	�� �
��
�� �	�������� "
����� �������� �	�����	� 4 ���	����
����� ���� ����� 	� �	�� ��������� �	��� 	��
� ���� ��
����� ����� ��� �� � .���
��� ��� �������� �������
��	 	� ����� �	��� ����� ��� �	� �����	��� ���� ��
���
������� �� >�
�� 4� "
����� �������� �	�����	� 5
��	��� ����� < ����� 	� �	����
���� ��������� �	���
�
�� ��� ���	� �	 ��� ���� �
������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

P1

P2

N1N2

N3

������ �� ������� ��������� ��� ����� ���� �����
��
���� ��� ������ �
��� ��� ����� �
��� ����� ��� �����
�
��� ��� ��������� �
���� ��� �
���� �� ��
�� �� �
�������������� ����������

��* ���������# �����"�(��

��� .���
��� �	���� ��	� � >!< ���� ���� �������'
�� ��� ��� �
�����'�������� �	�����	�� ��� ��� ���	 �
.���
��� ������������1���	� �	
����)*2,� ��� �	�
'
������ ���� 	� ��� ���	�� �� ������	�� �������� ��'
�
�����	
���� ��� ���������� ��� ��������� ��� ���
������� ���	� �
�����
��� ��� �	��	��� �	
����@

������� �������	��
 �

� ��
� ������ � � �� ��� � ����	

���
�	� � �����
 ��

�����
 � �� �����
 � �

���� � �� �
�� �
� �����
 � �����

�� ��� ��� �
������
�	���

�����
 � �� ��� �����
 � �

����

������ � �
������ �
	 �����
 ��

�� ������������������	 �����

�
	 �

�
	 ���

.���
��� ������������1���	� ��� ������� �	�� ������
����������� ����� ��� ���	���
��� �	��� ���
?����� ��� 	�����1���	�'����� ��		���� 	����'
��	��)*2,� <���� ��		���� 	� �� ������ <A"G" ��
�������� ����� ������� �	� ���� ���� *E 	� ��� �����'
������ ���� ���
��� ���� ��� ������� %
� ��	�����
�	�� �	� ��	���� ��� ���	�������
�������� ��	
� ���
0
����� 	� ����������� �� ��)4,� �	����� ��� ����
0
����� �� ������� �	 �	�� 	���� �	�������� ������
�	��� �� �������

F1

F2

I

��
��
��

��
��
��

��
��
��

��
��
��

P1

P2

N

C

������ 	� �� ! �� ������� ���� ���
���� �� �������
��������� �
�����
� " �� ���
���� �� ��� �� ��� �����
#$% �
���� � �� �� ��������� #$% �
��� �� ��� �� ���
!������� �
����
� �� ��� �� �������������

��+ ��)�$ �����)�����$ ��(��,�� ���

<� ����������� ������� ��� ��������� ����� ���	�� 	�
��� �	���� ��� ���	����� �� � ���
����	� ��� �����
���
����	������ � ���	�� 	� ���	������� �� �� ��'
������� �	 ���� � ���'������� ���� ����� �	��	���
��	���� �	 ��� �	
����� 	� ��� �	����� %� ��� 	����
����� �� ���	�� 	� �	� ���	������� � �	���� ����
����� �	
��� ����	������� ��� �	���� �	
����� �
�'
(���� ��� ���	�
��� �	 ������ ��� ����� 	� �
�������	�
	� ��������� �	��� ��������� �� "����	� +�* ���� ���

��� �	���	� 	��� ��� ���� �������� < �	� ���	� �� ��'
�	�� 	� ���	������ ���
��� �� � ����� �
�������	� ���
������	�� ������ �	��	����� �	 ��� �	���� �	
������
<�����	������ ���
��� �	
�� ���������� ��(�� ��� >!<
���� ���� �
����� �� ���	�� 	� ��������� ���� �� ���
�'
������ �� >�
�� 5�

��- ��.%!���!!

.���
��� ������������1���	� ��� ���� ���� ���� ��
�'
��� ��� ������� �	�
�� ��� ����'������ ������������	��
�����)*2� *3,� ������	��� �� ��� ���	������� 	� ��� �
�'
���� �������� �	�����	�� �� �	�
���� ������������ 	
�
��	����� ���� ������ ������� � �	�������� �����������
���� ������������ 	� ��� �	�������� 	� ��� ���
� �����
���� �� �� �	������ �	 �	�� ��	������ ����� ��� �����
	� ��
��������

*� ������	����
	

 � ���� �����	�� �� ��� ������� ��	
� �	� ��� �
�����
�������� �	�����	�� ��� ����������� ��� ���� �����'
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

N1

N2

������
� ����� �
��������� ��������� �
��� ���
�����
�
 ��&����� �������� ��� �������� �� ���
����� !�������
���� ������

*�� ��� ��!" ���� ���� !��%)�%��

�� ����� ��� ������ 	����� ���� ���
��
��)+, �	 ��	��
��� >!< ���� ����� �� �������� �� ���� �	� ������7�
�	���������� ��� ������ 	����� �� � �	������ 	������
�	������ �����
��0
� �	�� �� ����� ����� �� ��� 	�'
���� �� ��	��� ������� 	���� ����� �� 	��� 	�� (���� ����
�	�� �	� ���� ���	�� �������� ���� >!< �	��� ��/��
�� ��� �	�
�� 	� ������	� 	� ��� ��������� ���� �����'
����� ��� .���
��� �	��� 	� �� ��������� ���� �	�� ��
���	 ��	��� �� ��� ������� �� �	
�� �	����� �������� ���
����� 	� ��� �
����� ��� ��������� � ������ .���
���
�	��� �	����	�� �	������ ��		��� ��� �	�� �� ��� ���'
��� �� �
Æ����� �� ��� ������� �� �� � ��� ���	�
��	��
���
��0
����� 	� ��� ���� �	��� �� ����������
���
� ���� ������ !���� ���� � ��� >!< ���� �	�� �� ���'
����� � 0
��� �� �	�� ���	 ��� ���� ����� �	 ���������
�� �� ������� ������� � �	� ��� ������ ������ �	���� �	
��� ������� ������� �	�� ��� ��� ����� ������� �	��
�� ���������� � �	�� ��� ��� �	�� �� �������� ���	 ���
���� ������ ����� ����� >!< �	��� ��� ���	 ��	���

��0
���� ��� ��� ���	 ��� ���� ����� �� ��� �	���'
��� �	 ����� 9 ��������� A	�� ���� �� + ������	� >!<
�	��� ���� ��� ���� ����� �������� ���� ��� .���
'
��� �	��� ���� �	�� ������� ���� ���	 ���� ��� ����
����� �	��� �		��������� ���� �� ����
�� ��� .���
���
�	��� �� �� ������	� �	�� � �� �	��
��� ��	� 	��� ���
��������� �	���� ����� ��� ����������� 	� � � <� ��'
����� 	� � ������ ������ 0
������ �� ��	�� �� >�
�� 6
�	 ���
������ ��� �	������ � ���� ����� ����� ��� 	���
��	 ����� 	� ���� �	���� 	��
���� #������$ ��� ������
#�����$�

��� ������ >!< ���� ���� ����������� ���� ������
�� ��	��� #
� �	 + 	����� �� �����
��$ ���� ������
���� �	������� ����� ���� � �	� 	� ����'������������� �	�

Local refinement

Lower error threshold

������ �� %� �'�����
� �
��� ��������� ��� �
��� ���
�
�
���
�� ��� �
��� ��� ��� ����� � �
��� ���
� ������
��
���� ��� ����� ���� ������
�� �� �
��
��� �
 ��� ����
�
������ ���� ��
��� ��� ��
 ���� ��� ��
���������� ���
�����

������� �!�" �	������ �	������ ���
��� �	�����
���� �� ����� �	 �	� ���	� �
�� �������

*�� � '$� �����# !%���)� ����#���&)��(�/
����!

��� �
����� �������� �	�����	�� ��� ���	���� �� ���'
�� ������� ������ 	��� ��� >!< ���� ����� < ��'
����	� ��	
� ������� �	 �
������� � ������
��� >!<
���� �	�� ��� �� ���� �� �		��� �� ��� ��� ����'
����� �������� >	� �������� �	������ �
����� ��������
�	�����	� *� <�� >!< �	��� ����� ������� ��� ���	�
�������� ��������� �� "����	� +�* ��� ����� �����������
��� ���� �� 	�
�������� < ��� >!< ���� ���� ��
�������� �
�� ���� � �	�� �� ��� ��� >!< ���� ����
������� 	�
������� 	��� �� ��� �	�����	���� �	�� ��
��� 	�� >!< ���� ���� ��	� ���� ��� ��� �����	��
��� ���	 �0
��1����� !��� ��	
� ���� ��	���
�� �	��
�	� ������� ��� 	�������� �	���� ����� �� �� ���� �	
���������� ����������� ���
��� ������� #��������� ��
"����	� 2�+�*$ ���
�������� ���� ��� �	�����	� ����
�� ���� � �� �����������
��� � ���
����� �
����	�
��	�� ���	�@

������ �� % ������ ������ (��� ���� ������ ����� ���
���� �
��� ��� �
� ��
�� �����
��� ��
 ����� �'����

�����	� �� !������	� ��
�

�
�����	� ���� "
�# �����	���

����$ ���%�����
�

� ��&���
�$'���(���)�*����������

�
����$����(���)�*������������

����"+ �$,�

����$��� ���	��-

� !��
�$'�� ���	�����

�
����

�
�(���)�*�� " ����

����*��� " '�������*�����
�

�������
 �

����*���

�(���)�*�� ."
�$'���(���)�*��������

����$����(���)�*��������(���)�*���

�
��� " ��
	�����

�����
 ���

�

��� �
����	� ���%�����
� �	���� ��� ���	� �
������
��������� �	���� ��� .���
��� �	��� �	����	� 	� �
 ���	
��� ������ >!< �	��� ��� �
����	� '�������*�����

������� ��� ��� �����	��� ������� �� ��������� ���
	������ ��� �
����	� ��
	�� �	�� � �		�
� ���	 ���

>!< �	�� ���� ����� ��� ��
��� �	 ��������
��0
�'
���� 	� ��� �	��� �� ��� >!< �����

A	� �	������ �
����� �������� �	�����	� 2� � ���� ����
�� �������� ��� ��������� >!< �	��� ��	� �	� �	 �	�'
�	�� ���� � 	�
������� ��������� >!< ���� �	��� ���

� �� ���	
������� �� �		� �� ��� ��� ��������� ����'
�	��� � � �����	�� ���
� �� �	� 	�
�������� �� �����'
���� �� ��� ��� ����� 	�
� ����� �� �������� �	
� �� �
(���� �	��� � ���� �� �	� ���� �
����� �������� �	���'
��	� 2 �� ��	����� ���
� �� ��(���� �	������ .���
���
�	���� ��	� (���� �������� 	�
� ��� �	� ������ ���� ��
����
��� ���� �	
�� ��	���� �
����� �������� �	�����	�
2 �	� ��� �����	� ��� ���� �	
�� ��	����� �
������
���� �� ���
������� �� >�
�� 9�

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����������������

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
��������

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

3

4

1

2

(a)

(b)

5

������ �)�������� �
� ���
����� ������� ��������� �
��
����
� �����
�� ������
� ��� ����� �� �
 �� ��
�����
����� ��
����� *����� �
��� ��� ����� #$% �
��� �����
����+
��� ��� ���������� �� ��������� �
�� , ����� �
 ��
������ ������� �� ��� � ������� ����� �
�� �� ��-�����
�
 ��� �� .��� �
�� , �� ������/ ��
 �� ��� �������� "
��� 0� ��� �� ����� ��������� �
���� ������
�� �� �
�
���� � ������� ����� �
�� "
� 0� ��-����� �
 � ������
��������� �
�� �/ ��
������ ������� ��������� �
�����
�
 � ���� �� ��
���� �� �
� ������ !������� �
����
� "
��� 0 ���
 ��� !������� ������������1���
��

��� �
����� �������� �	�����	�� ��� �	� �����������
	� ���� 	����� ���� �
�� �� ����� �	� �	 ��	���� 	��
�	�����	� ����� ���	���� ��	�����

*���� ��!%$�! ���)"��#

���
��� �������)+, �� � ������0
� �	� �����������
��	������ 	������� 	� ����� 	����� ���� ���
��
����
�� �������� ��� ������ 	����� �	����� ����?� ���� �	�
��� ������7� �	����������

���
��� ������� ����������� 	������	�� ����	���� 	�
������ 	������ �� ������ ������������ ���
���� �
����� �������� 	� ��� ����'���������� �� ��� �	�����
��� 	������	�� �
�� �� #*$ ������������� ���� ��	
��
��� ��� ���� ������ ���� ���� ��� ���� ��� 	� ��'
�
�� ��� #+$ ��� ���������� ��	
�� �� �	���� "	 �� �	�
������� �� 	������	� ��������
�	� ��� �	��� �	'
����	� 	� ��� 	����� �	��� ���
��� ������� ����	� ��

���� �������� �� 	������	� �� ����	���� 	� � �	
�
	� 	����� �	��� ��� ���
�� �� ��	��� �� � ���� �����
����� �� ���� ��	
��	 ������ ��� ��� ���	 ���� ����
����� ��� ��� ��� 	����� �	��� ��� 	���� ���������� 	�
��� 	������	�� ��� ���
�� �� ��� �	
� 	� 	����� �	���
�/����� �� ��� 	������	��

>	��
������� ��� �
����� �������� �	�����	�� ��� ��
������� �� 	��� �		��� �� ��������� �����	�� ���
������	�� �� ��� ���� �������� 	� ���
��� ��������
���� �� ��
��	�	�� �	� ���	���� �
����� �������� �	�'
����	� * ���� ���
��� �������@

�����	� �� !�������	� ��
�

�
// ���0 �� �������

����*��� " '�������*�����
�

������ " ��
	��������
-
����*����

� ��������

�����
 ������

�����	� ���� "
�# �����	���

����$ ���%�����
�

� ��&���
�$'���(���)�*����������

�
����$����(���)�*������������

����"+ �$,�

����$��� ���	��-

� !���
�$'�� ���	�����

�
����

�
�(���)�*�� " ����

�������
 �

����*���

�(���)�*�� ."
�$'���(���)�*��������

����$����(���)�*��������(���)�*���

�
��� " ��
	�����

// ����� ������

�������������
-
����*���- ����

�����
 ���

�

��� �
����	� ��
	�������� �	�� � �		�
� ���	 ��� ��'
�
��� ������ � ��� 	������	� � !� ��� ������� ����
����	���� 	� ��� ���� �	�� ����� ��� ��� ���� ���
	� �����	��� ��� ���
���� >!<A	�� ����� ��� �����'
	
��� �	��
��� ��� ��	��� �� ��� ���
��� ����� �� ��'
�
����� !��� ��
	�������� ���
��� AH&&� ��� �
��'

��	� ������������� ���� �� ����� ���	 ��� ���
���
������ >!< �	��� �
 ���
����*��� �	�� ��� ���
	� ���� ����� ����� ��� �� ��� ���
��

+� ������� �	� �������
	�

 � ���� �����	� �� ��	� �	�� 	� ��� ������ ��������
�� 	
� ��	����� �� ���� �� ���� ����	
� ���������	�
����� �� ��� ���� ������� �	� <�� ��� ������ ���� ��'
������ 	� � *�= D�1 B� ���� * DI 	� �<�� �
����
����	�� ��JB�

+�� ���� (�0�)�!

��� 	
��
� 	� ��� �!�
���	� �	������ �� � ������
	����� ����� ���
������ ���������� �!�" �	������
�� ������� ����������� ������ ��	� ���� �	�����
�	 ���� ����	
� �������� ����
��� ������	������� ���
���
��
��� ��� �� ����	����� >�
�� ; ��	�� � ��	��
�
	� � ���������	��� ���
��	�� ��� ���� ��� ;*5= ���'
����� ��� �� �������� �� *6�6= ���	����

������ �� 2���
� � 2$2* ���������
��� ������
��

+�� ��(�)�$ (���

��� (���� ������� ����	� ��� � ���� (��� 	� �������'
��	� �� ��� ��������� �������� �	����� �	������ ��'
������� ���� ����	� ��� ����� �������� �� ��� �������
(���� �	� �������� �	����� ���������	� �� �
�	� ����'
���)*4,� ��� �� 	� �� ���� ���� ��� �� ��������
���	 ����	
� ��������� �	� �������� �	��� ����
�� ����
���� ����� ���	�� ��� ���� �� ��� ���	 	
� ��	�����
��� ������� ��� ���� �� >�
�� *= ��� ��������
����� � ��
�� ���������	� #������	���� 	� ��� ������

���
��$ 	� ��� ���� ������� ����� �	��� ������� ����
��� :��
���1���	� �		����)*5,� ��� �	��� ��� � ����
�
���� 	� ����	������� �	��	����� ��� �� ����� �	�'
�	�
���� ��� ����������� ���� ��� +=9�24= ��������
��� ��� �������� ��
���� ���� �� �	
�� ����� �� �	�
�
�� ����'���������� �� ���� ���� ��� ��� ������	�� ��'
�
��� ������� �	�� �	� 	/�� ����(���� ������� >�'

�� ** ��	�� � ��	��'�����	� ���	
� ��� �����������
���� �������� ��	� � �������� �� ���� 	� � �
'
��� ����� ��� ��� ��	 ���	��� ��� �	������ ����
��� ������ � �����	� �������� ��� �		� ���� ���� ��
�	
� �	 ��������

+�* ��� �(�$ "��$��#

�	��� �������� �� ��� ��	���� 	� ����� ����	��� �	�'
��� ��� ������ ���� �	����� �	 ���� ���� ��� ��
������� �� 	�� �	���� >!< ��0
���� � ���� ���� ��
���
�� ��� ���� �
�� �� ���� 	� �'�	����� ������� ����'
����������	�� ��� �	���� H��	��
������ ����� ?��� ���
��� �		 �	��	� �� �<. �	����� ��� �
�� �� ��'
������� �� ����	�� �	��� �������� ��� ������ ���
�'
����	
��� ��� ���� ������� � �	�������� �	�
������
���� ����� ��� ��
��� �	� ���������

+�*�� ���0�����# ��� �(�$! �� 0�1�$!

��
�� ������0
�� ��������� ��)*6, �	 �	 �������� ���
������� �� (��� ����'�	����� ��� �<. �	��� ���	 �
������ 	������ %
� �
����� ������������	� ����� �
�	��	��� �	��� �� ���
�� �	������ ��� �<. �	�'
��� ����� ��� ������ ������8	
����� �	� �� ���������
�	��� �� ����� ��� �� ����'�	�������� � 	
� �
�����
������������	�� �� �	 ��� ������8	
����� ���� �	� �
0
��� �	��� B �� ��		��� � ��� ��	� B �� ��� �	��'
���� 1 �������	� ��� �	
���� ��� �
���� 	� �	��	��
������������ ���� �	
�� �� ������ ������� <� 	�� ���'
��� ��������� ���� B �� ������ ��� �	���� ���� �	
��
�	�� 	��� �	� ��	��� �	��	��� �	����� A		�
��� ���
���)*6, ������ ��� ������ �	
�� ����	� �	 	��� �	��'
	��� �	���� �� ��		��� ���� �� �
������ �������	��
��� ����
��� � �	��� ������� �
������� �� 	���
��	�
�� � ������ ���� ����� � �	��� ��� �� �
��� (���� 	�

�	��
����� ���� ��� �� �	��(�� �	 (�� ��� ���
��
	��
����� �	�
�� �� ����� ������� ������� ������ ���
�	���� �� ����'�	����� ��� ��� �	���� �	����� ���	
	�� ������ 	������ A	�� ���� 	��� ��� �	���� ��� �	�'
������ �	 �	����� ���� ��� ����� :	���� �	 �	� ����
��� 	� ��� �	�	�	���� ����
����� 	� �������� �
�����
������������	���

+�*�� ���'"�$�#�)�$
'�������! ���
����)"��#

< ������	� �	��	��� �� �� ��	��	� 	� � ��������� ���
�� �� �
Æ����� �	 ������ ��� �	���� �	������ �� � ��
��� �����
� ��1� 	� � ������ ���� �� ���
������� ��

������ ��� ����������� ����
� � ����� �+����

��	 �������	�� �� >�
�� *+� .�����	� ��� ��	��	�
��� �0
������� �	 �	��	���� ���	����	� ��� ���� 	�'
�����	� �� �!�" ��	���� ��
����	�)*,� ���� ����'
��0
� ��		���� 	
� ����
��� ������� ���� ��� ������	�
��� ��	��	� �������� #�$� � �� �0
������� �	 �
����
� �	� ���� (���� 	��� ��� �	���� � �	�� ���������	��
���� �� ���������� �	� ������� �	��� ������(����	�� �
>!<8�>.� ��� ������(�� �	����� ���
��� �� � �	�����
���� ����� ���
��� �	��
����	� ����� � ����� �����
����
��� ��� ���������� ��� ������	� ��� ��	��	� ��� ��
���������� �	 ��� �
����	�� ������� ��� ��/����� �<.
������

+�*�* �� �1� '$�

�� ��	� ��� ���
��� �	� � I	��� 626� ��� �
������
����� ���� ����� ��� ��� �	�����	� ������� ��� ���
��� ��� ����� ���� �������� �<. �	���� ��� ���
������� ������ ��� ����������	�� �� ��	�� �� >�
�� *2�
����� ���� �	����1��� ������� ��� ��	��� �� ��	�� ��
>�
�� *3� ���� ��� ���
�� ��� ������ �� ��	�� ��
>�
�� *4� ��� ���� ��� *=;�399 �	��� ��� 224�625
����������� ��������� ��� ��� �
��	
���� ��� �	���
�� ������ �		 ��	
� �� �� �	� ��	��� <A"G" ���
��

����������� 0
����� ������� �	� 	��� *=99 ��������
#=�22E$� ���� ���
��� ���� ��� ������ ���������

-� �
	�����
	� �	� ������
�
��

�� ���� ��������� � �	�
�� ��	����� ����� ��������
� 		�'0
����� ����������� ���� �������� ��	� �	���
����� %
� ������0
� ��
���
� �	� ���������	�� �����
��� 	������ ���� �� �� �	��� �	���� �
�� �� �� �����
��� �!�" ��
����	�� � �� ���	
���
� ����� �����'
��	��� �	
�����'����� ����	����� ���� ����
�� 	� ��'
�	����������� �� 	� ��� �	�������� 	� ��� �	
�����
������������	��

%
� ������0
� �	�� �	� �
��	�� ��� ����	��	��� �
������� ����� ��� 	����� ����� ��� �
���� ��� ����������
�������� ���� ������� ������ �� ��� ����� �������	���
 � ������ ���� ���	��� ��� ����������� ���� ����� �	
�� ���� ������ < ���� �	������� ��	�����)*9,
�	
�� �� ������� �	 ���
�� ��� ������� �� ����� ���	���

"������ ����	������� �	 ��� ��	����� ��� �	�������
�� �	
�� ���� ������ ������� �	� ������� ���	�� �	
��� ���������� #"����	� +�2$ ��� �	� �������� ����
���

������ ��� 3�
�� �����
�
� � ������
� ����
� � ����� ������

#"����	� +�*�*$� �� �	
�� ���	 ���� �	 ���������� ����'
��0
�� 	� ���������� �	����	�� 	� .���
��� �	���� ��'
���� ��������� �	���� 	� ��� ���
�� �
����� ������� 	�
�� ����� �������

���	
��������	��

���� �	�� ��� �	�� �� -���� �	��	����	� ���
��� �
��	���� �� A "�'<�B ���� 6=A<AI*�2=+*�
-���� �	��	����	� �� �
��
�� B ��	�����	� �	� �����
������0
��� �� �	
�� ���� �	 ����� ��� "������(� �	�'
�
��� ��� ���� �����
�� �� ��� H��������� 	� H���
�	� ��	�����
� ���� ��� �������� �� ������� 	� �
�
��� ������

�������)�!

)*, H����� ��� B����� !� K�!�
���	��� � < >��� ���
<��
���� D�	������ �	������ :��
���1���	� ���
���� D�������	� �		� �	� 2. �!�" .���� ���
"��
����	��L �������� ���������	 �� ��� ����
������������ �������� �� ����� ����� ���
39=M393� +==2

)+, B����� !�� H����� �� K!���	���� "���'����������
�� D�	����� �	� :	��� I���� "	��� �	������L �
�

 �! ���"�	�
� � ����� !������ �� ""����#
���	� ��� *46M*55� +==2

)2, "�����
� N��� K�	��������� .���
��� �����'
�������1���	� ��� B�	����� D		� I	
����� ��'

�	�����L $$
� %��������� !�	��� &�
�������
+==+

)3, "������� ��"�� D�	��� ��O� K<
�	����� �����'
�������	��� ���� �������	�� �� ��� (���� 	�����
������0
��L %��������� '�
��� �� �
�������
!�����	 � (�������� �	�� 2+� 6=;M62;� *;;*

)4, �������� "�<�� :������ "�<� KP
����� ���� ��'
�����	� �� ������ �������	���L ���������	 �� ���
 �! ���"
�������)������� ��������� ���
+*+M++*� *;;+

)5, ��	���	� N�>�� "	�� I�O�� ���������� A�B� *��#
���+ ��)���)�������� ��� B����� *;;;

)6, G���� ��� "������� �� K<
�	����� �����'
.������	��� ���� D�������	� I� ��� �	��(��
%����� ������0
��L %��������� '�
��� ,��
�
������� !�����	 � (�������� ��� *;54M
*;;=� *;93

)9, >��� B�� "����� I�� D�
������ �� K>
��� <
�	'
����� ���� D�������	� �	� 2'. .	����� �����

�	� :	��� "����L %��������� '�
��� ��� �
#
������� !�����	 � (�������� �	�� 26� +624M
+642� *;;3

);, �������� H�� O�
�� >� K< >��� <�	����� �	�
D�������� &��� ����������� 2. >����� !������
������ ��	� ������� ���	����� �	�	�����L
���������	 �� ��� %(((-��+	��" � .���������
%���� ���	�	� ��� *93M*;+� *;;9

(a)

(b) (c)

������ ��� 2
���
�
����� ���������
������
�� �� �!� ��
���
������� �
���� �� !�����
� �� $�
��
�� ��� �����
���� ��� ����� �� ��������� ��
�� �
���

)*=, ���� .� K<�	��� ���� ' < ����	� �	� ����'
�� .����� �����L $�
� %��������� !�	���
&�
������� +==*

)**, &���� "�<�� >
���� !� �� K%%>@ <� ���'�����
>�����'!������ <������� 	� �������� ����	���
�'
�
����L ���"
��� � ������ �� (��������
��� *4M+2� +==*

)*+, ��
��	 !�� :���� <� %����
����� ������
�	 ��� �#
/ ���"
��� 0�	�� 1���"��� 23�4� B������� �����
*;;9

)*2, N	� I� KD!%�B<�O M � �	������ ������ �	�
��� �������	� 	� ������
��� �	������ ��	'
�������L �5���	 � (������� ��������� ���
2+4M22*� *;;*

������ ��� 3%! �
���
� 4
���� ���������

)*3, �Q
��� !�B� K< �	�
�� �����������	�
�	� �����'�������	��� .���
��� �����
����	���L
���������	 �� ��� $	� %��������� ���"
��#
�����)������� �������� -��+	��"� ��� 6=M62�
*;;4� �	 ������ �� ��� %��������� '�
��� ��
���"
�������)������� 6 ""�������	

)*4, B�
���� O�� N�� J�� "
������ N� K>����� ���'
���� �	��
����	�� 	� �����(� ���	����	� �����
�� ����	������� �	��	���� �
��'�	�� �	���� �	�
������������ ��������� ���������L %(((���	#
�����	 � .��������� (�������� �	�� 3=� ;22M
;34� *;;2

)*5, "���	���� ��� ������ O�� &	������ I� ��� 0�#
	
�������� ����+�� 7�8���#7������ ""�����
�� �/)��"���	� O������� ���� +==2

)*6, A		�
���� >�� �
�� D� K"�����(����	� ��� ��'
���� 	� B	��	��� �	���� H��� :	�
������ ����'
��0
���L &�	����� &�"��� 99#�:;)������ �����
*;;;

)*9, %�������'D		�� ��>� K�	������� H����
��
���
������ �� !�� �	�������	��L %���������
'�
��� ��� �
������� !�����	 � (��������
+==2� H�& ����1//�����2����2�*�2��/'�3445/

(a) (b)

������ �	� �� 4�������
'���1�� ����� 5��� ���
�������
��� ������� ������� ���� ��� �������� �� ��� ��������
�
����

(a) (b)

(c) (d)

������ �
� �� ��� �������
� ��� �
�������� ����������� ����
� � 4
���� 6 6 �
���� 	
���� ��� ��

�� ���
��������
�
��� ����������
�
� ��������� �� % ������ �
��������� -�����
�
� ��� ������ ��� ����� ��7�����
�
� ��� ���� ���
��������� �� 7�����
�
� ��� ���� ��� ���������

Panel Discussion
&

Birds-of-a-feather
Sessions

NOTES:

Index of Authors & Co-Authors

Alauzet Frederic 335
Alliez, Pierre..................................... 215
Baker, Timothy. 55
Beall, Mark ... 33
Berndt, Markos................................. 351
Blandford, Daniel 135
Blelloch, Guy.................................... 135
Borouchaki, Houman........................ 393
Branets, L. 371
Brewer, Michael139, 379
Bridson, Robert 103
Camarero, Ricardo........................... 293
Cabello, Jean 201
Cardoze, David. 135
Carey, Gary79, 371
Chen Zhijan...............................307, 361
Crawford, Curran 21
Degener, P. 227
Deister, Frank 43
Eiseman, Peter 277
Fedkiw, Ronald 103
Folwell, Nate 379
Freitag Daichin, Lori 239
Frey, Pascal 335
Gallier, J. ... 159
Gee, J. .. 159
George, Paul Lois. 393
Gotsman, Craig.........................189, 215
Gumhold, Stefan 177
Guibault, Francois 293
Haimes, Robert 21
Hancq, Alfred. 307
Hassan, Oubay 43
Joshi, Bhautik................................... 251
Kadow, Clemens.............................. 135
Khachan, Mohammed...................... 293
Klein, R. .. 227
Knoop, Sarah 415
Knupp , Patrick239, 379
Kocak, Suleyman 323
Kwok, Wa..................................307, 361
Leurent, Thomas.............................. 239
Melander, Darryl 239
Meseth, J. 227

Miller, Gary L...................................... 91
Molino, Neil 103
Ourselin, Sebastien 251
Owen, Steven J. 121
Pav, Steven E. 91
Pekkan, Kerem 285
Plaza, Angel 67, 79
Rajagopalan, Krishnakumar 277
Ramaswami, S. 159
Rivara, Maria-Cecilia 67
Saigal, Sunil 121
Shashkov, Mikhail J. 351
Sheffer, Alla...................................... 189
Shephard, Mark S. 33, 323
Shimada, Kenji 403
Shontz, Suzanne.............................. 147
Sifri, Oren ... 189
Siqueira, M. 159
Sondershaus, Ralf 177
Suarez, J.P. 79
Sundaram, T. 159
Surazhsky, Vitaly.............................. 215
Suresh, Krishnan 161
Tautges, Timothy J........................... 415
Tchon, Ko-Foa 293
Teran, Joseph 103
Tremel, Udo 43
Tristano, Joseph....................... 307, 361
Udeshi, Tushar 425
Vavasis, Stephen 147
Walkington, Noel J. 91
Walsh, Joe ... 33
Wan, Jie ... 323
Weatherill, Nigel 43
White, David 121
Yamakawa, Soji 403
Zhu Jin ... 315

Index by Affiliation
Argonne National Laboratory
Leurent, Thomas 239

ANSYS Incorporated
Chen, Zhijan......................... 307, 361
Hancq, Alfred 305
Kwok, Wa 307, 361
Tristano, Joseph................... 307, 361

Carnegie Mellon University
Blandford, Daniel.......................... 135
Blelloch, Guy 135
Cardoze, David 135
Kadow, Clemens 135
Miller, Gary..................................... 91
Pav, Steven.................................... 91
Shimada, Kenji 403
Walkington, Noel J. 91
Yamakawa, Soji 403

Centre de Recherche en Calcul
Applique (CERCA)
Camarero, Ricardo 293
Guibault, Francois 293
Khachan, Mohammed 293
Tchon, Ko-Foa 293

Cornell University
Shontz, Suzanne.......................... 147
Vavasis, Stephen 147

EADS
Deister, Frank................................. 43
Tremel, Udo 43

EDS PLM Solutions
Cabello, Jean 201

Fluent Inc.
Zhu Jin .. 315

Georgia Institute of Technology
Pekkan, Kerem............................. 285

INRIA
Alauzet, Frederic 335
Alliez, Pierre 215
Frey, Pascal 335
George, Paul Louis....................... 393

Israel Institute of Technology
Gotsman, Craig 189, 215
Sheffer, Alla.................................. 189
Sifri, Oren 189
Surazhsky, Vitaly.......................... 215

Los Alamos National Laboratory
Berndt, Markos. 351
Shashkov, Mikhail J. 351

Massachusetts Institute of
Technology
Crawford, Curran............................ 21
Haimes, Robert 21

Program Development Company
Eiseman, Peter............................. 277
Rajagopalan, Krishnakumar 277

Princeton University
Baker, Timothy 55

Rensselaer Polytechnic Institute
Kocak, Suleyman 323
Shephard, Mark...................... 33, 323
Wan, Jie 323

Rutgers University
Ramaswami, S 159

Sandia National Laboratories
Brewer, Michael 239, 379
Freitag Diachin, Lori 239
Knupp, Patrick 239, 379
Melander, Darryl........................... 239
Owen, Steven J. 121
Tautges, Timothy. 415
White, David................................. 121

Index by Affiliation

Simmetrix, Inc.
Beall, Mark. 33
Walsh, Joe 33

Stanford University
Bridson, Robert 103
Fedkiw, Ronald 103
Molino, Neil 103
Teran, Joseph 103

Stanford Linear Accelerator Center
Folwell, Nate 379

Universite de Technologie de Troyes
Borouchaki, Houman.................... 393

University of Bonn
Degener, P 227
Klein, R... 227
Meseth, J...................................... 227

University of Chile
Rivara, Maria-Cecilia 67

University of Las Palmas de Gran
Canaria
Plaza, Angel 67, 79
Suarez, J.P..................................... 79

University of Pennsylvania
Gallier, J 159
Gee, J... 159
Siqueira, M 159
Sundaram, T 159

University of South Florida
Saigal, Sunil 121

University of South Wales
Joshi, Bhautik............................... 251
Ourselin, Sebastien 251

University of Texas at Austin
Branets, L..................................... 371
Carey, Gary............................ 79, 371

University of Tubingen
Gumhold, Stefan 177
Sondershaus, Ralf........................ 177

University of Wales Swansea
Hassan, Oubay 43
Weatherill, Nigel 43

University of Wisconsin-Madison
Knoop, Sarah 415
Suresh, Krishnan.......................... 261

Zyvex Corporation
Udeshi, Tushar............................. 425

Distribution:

MS9018 Central Technical Files, 8945-1
MS0612 Review & Approval Desk, 9612

MS0321 9226 (200 copies)
 To be distributed at the
 12th International Meshing Roundtable
 Santa Fe, New Mexico
 September 14-17, 2003

 For additional copies:
 Sandia National Laboratories
 PO Box 5800, MS0847
 Albuquerque, NM 87185-0847
 (505) 844-1309

	Committee
	Table of Contents
	Invited Speakers
	Rob Leland Biography (Welcome Speaker)
	Thomas Bickel Biography (Keynote Speaker)
	Shang-Hua Teng Biography (Invited Speaker)
	Michael Garland Biography (Invited Speaker)
	Jami Shah Biography (Invited Speaker)

	Session 1A Geometric Models
	Unified Geometry Access For Analysis And Design
	Accessing CAD Geometry For Mesh Generation
	Parallel Generation Of Unstructured Surface Grids
	Interpolation From A Cloud Of Points

	Session 1B Mesh Refinement
	Mesh Refinement Based On The 8-Tetrahedra Longest-Edge Partition
	Propagation Path Properties In Iterative Longest-Edge Refinement
	When And Why Ruppert's Algorithm Works
	A Crystalline, Red Green Strategy For Meshing Highly Deformable Objects With Tetrahedra

	Plenary 1
	Meshing Complexity of Single Part CAD Models
	Compact Representations Of Simplicial Meshes In Two And Three Dimensions
	A Mesh Warping Algorithm Based On Weighted Laplacian Smoothing
	A New Algorithm For Generating Quadrilateral Meshes And Its Application To FE-Based Image Registration

	Session 2A Surface Meshing
	Meshing Of Diffusion Surfaces For Point-Based Tensor Field Visualization
	Geodesic-Based Surface Remeshing
	Toward Quality Surface Meshing
	Isotropic Remeshing Of Surfaces: A Local Parameterization Approach

	Session 2B Quality
	An Adaptable Surface Parameterization Method
	The Mesquite Mesh Quality Improvement Toolkit
	BSP-Assisted Constrained Tetrahedralization
	Generalization Of The Kantorovich Method Of Dimensional Reduction

	Session 3A Structured Meshing
	Automatic Nested Refinement - A Technique For The Generation Of High Quality Multi-Block Structured Grids For Multi-Scale Problems Using Gridpro
	Multiple Stationary And Moving Boundary Handling In Cartesian Grids
	Constructing Anisotropic Geometric Metrics Using Octrees And Skeletons

	Session 3B Adaptivity
	Fully Automatic Adaptive Mesh Refinement Integrated Into the Solution Process
	A New Type Of Size Function Respecting Premeshed Entities
	Automated Adaptive Forming Simulations
	Anisotropic Mesh Adaptation For Transient Flows Simulations

	Session 4 Smoothing
	Multilevel Accelerated Optimization For Problems In Grid Generation
	Combined Laplacian And Optimization-Based Smoothing For Quadratic Mixed Surface Meshes
	A Local Cell Quality Metric And Variational Grid Smoothing Algorithm
	Increasing TAU3P Abort-Time Via Mesh Quality Improvement

	Session 5 Mesh Topology
	Back to Edge Flips In 3 Dimensions
	Increasing The Number And Volume Of Hexahedral And Prism Elements In A Hex-Dominant Mesh By Topological Transformations
	Topology Modification Of Hexahedral Meshes Using Atomic Dual-Based Operations
	Tetrahedral Mesh Generation From Segmented Voxel Data

	Index Of Authors & Co-Authors
	Index By Affiliation

